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Abstract. In this paper we extend results concerning conservativity and the existence of
σ -finite measures to random transformations which admit a countable relative Markov
partition. We consider random systems which are locally fibre-preserving and which admit
a countable, relative Markov partition. If the system is relative irreducible and satisfies
a relative distortion property we deduce that the system is either totally dissipative or
conservative and ergodic. For conservative systems, we provide sufficient conditions for
the existence of absolutely continuous σ -finite invariant measures.

1. Introduction
The class of random transformations considered in this note is best described by the
following example. Let (X, B, m) and (�, F, P) be Lebesgue spaces, and let θ be an
invertible, probability-preserving transformation of �. A map τ from � to the set of
non-singular transformations of X defines a skew product transformation over the base
(�, F, P, θ) by

T : X ×�→ X ×�, (x, ω) 7→ (τ (ω)(x), θ(ω)).

For a measurable set A ∈ B × F , the return time is defined by φA(x, ω) := min{n ≥ 1
| T n(x, ω) ∈ A} and its induced transformation is

TA : A → A, (x, ω) 7→ T φA(x,ω)(x, ω).

As a special case, consider A = X × B for some B ∈ F and observe that φA only depends
on the second coordinate. Since θ is conservative, TA is well defined and is a skew product
over the base θB . However, in case A = B ×� for some B ∈ B the situation is different.
If TA is well defined, that is φA <∞ almost everywhere, then the induced map is no
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longer a skew product. Defining τB(ω)(x) := τ(θφA(x,ω)−1(ω)) ◦ · · · ◦ τ(θω) ◦ τ(ω)(x),
the induced transformation has the form

TA : A → A, (x, ω) 7→ (τB(ω)(x), θ
φA(x,ω)(ω)).

The definition of the class of generalized random transformations is motivated by this
observation. Namely, a generalized random transformation consists of a transformation T
of the measure space (Y, B, m), a probability-preserving dynamical system (�, F, P, θ),
a surjective and measurable map π : Y →� and a measurable map ψ : Y → Z such that
for almost every y ∈ Y ,

π ◦ T (y)= θψ(y) ◦ π(y).

Moreover, we require that there exists a disintegration of m such that each fibre is a standard
measure space. As in the case of random transformations, � is called the base space and θ
the base transformation. Note that each random dynamical system [4, 13], random bundle
transformation [14] and Markov chain in random environment [8, 15] is a generalized
random transformation, and that the class of generalized random transformations is stable
under inducing to subsets (see §4). Finally, we remark that there are many situations in
which generalized random transformations may occur, e.g. by inducing as in the above
example or for the random coding of the geodesic flow (see §5.3).

In §2, we introduce the basic notions for generalized random Markov fibred systems,
including the relative version of a Markov partition and of a metric distortion property,
given by the absolute continuity of the fibre measures. If the base space and the base
transformation are trivial the system reduces to a Markov fibred system as defined
in [2]. Here, we give a sufficient condition for the existence of an absolutely continuous
T -invariant probability measure (see Proposition 2.1).

In §3, we investigate several notions of relative irreducibility and aperiodicity and
discuss how they relate to each other.

In §4, a relative distortion property is formulated, which generalizes the Schweiger
condition to the random situation and thus will be termed relative Schweiger property.
The class of random systems considered here is stable under inducing. From this we obtain
the main results of this paper (Theorem 4.1) which generalizes the corresponding theorem
in [2].

If a relatively irreducible generalized random Markov fibred system satisfies
the relative Schweiger condition, then it is either totally dissipative or
conservative and ergodic.

Finally, if (Y, T ) is conservative and ergodic, we give sufficient conditions for the existence
of a σ -finite T -invariant equivalent measure µ (Theorem 4.2). In particular, if (Y, T ) is a
Markov chain with stationary transition probabilities (see §5.2) this gives an answer to an
open problem presented by Orey [15, Problem 1.3.1].

Section 5 contains applications to the theory of random Markov shifts, skew products,
coding of the geodesic flow and random hyperbolic rational maps on the Riemann sphere.

2. Random Markov fibred systems
We now give the details of the underlying measure of a generalized random transformation.



Conservativity of random Markov fibred systems 69

Definition. Let (Y, B, m) be a measure space, (�, F, P) be a probability space and let
π : Y →� be a surjective and measurable map such that the following holds.
(a) For almost every (a.e.) ω ∈�, the space Yω := π−1({ω}) is a Polish space and

Bω := {A ∩ Yω | A ∈ B} is the Borel σ -algebra on Yω.
(b) There exists a family of measures {mω}ω∈� such that mω is a Borel measure on

(Yω, Bω) for a.e. ω, and such that dm = dmω d P .
Furthermore, let T : Y → Y be a non-singular and measurable transformation, θ :�→�

an invertible, bi-measurable and probability-preserving transformation and ψ : Y → Z be
measurable. If, for a.e. y ∈ Y ,

π ◦ T (y)= θψ(y) ◦ π(y),

then the system Y = ((Y, B, m, T ), (�, F, P, θ), π, ψ) is called a generalized random
transformation.

We will refer to a measure m on Y as a relative Borel measure if there exists a family of
measures {mω}ω∈� for which the properties (a) and (b) in the above definition are satisfied.
Moreover, we will refer to Yω as the fibre over ω and to mω as the fibre measure. For ω ∈�

and n = 0, 1, 2, . . ., we denote by T n
ω : Yω → T n(Yω) the restriction of T n to Yω. Here, we

will use the convention T n
ω (B)= T n

ω (B ∩ Yω) whenever B ∈ B.
Note that the existence of {mω}ω∈� is in most cases provided by the existence of

conditional measures. If for example (Y, B, m) and (�, F, P) are standard probability
spaces, that is Polish spaces with Borel probability measures, then by the disintegration
theorem there exists a family of probability measures {mω} with properties (a) and (b)
(e.g. [1]).

Definition. The system ((Y, B, m, T ), (�, F, P, θ), π, ψ, α) is called a random Markov
fibred system if ((Y, T ), (�, θ), π, ψ) is a generalized random transformation, and if there
exists a countable measurable partition α with the following properties for a.e. ω ∈�.
(a) The map ψ is constant (= ψ(a)) on every set a ∈ α, i.e. π ◦ T |a = θψ(a) ◦ π |a .
(b) α is a relative generator, that is

⋃
n>0{a ∩ Yω | a ∈ αn

} generates Bω where, for
n ∈ N ∪ {0},

αn
:=

{n−1⋂
i=0

T −i (ai )

∣∣∣∣ ai ∈ α

}
.

(c) α is a relative Markov partition, that is for all a ∈ α,

Tω(a)=

⋃
b ∈ α :

m
θψ(a)ω(b ∩ Tω(a)) > 0

b ∩ Yθψ(a)ω mod mθψ(a)ω.

(d) For all a ∈ α with mω(a ∩ Yω) > 0, the restriction Tω : a → Tω(a) is invertible,
bi-measurable and together with its inverse non-singular.

It follows immediately from the definition of a random Markov fibred system that for
n ≥ 1 T n is also a random Markov fibred system over θ . Namely, for a =

⋂n−1
i=0 ai ∈ αn

and for ω ∈ π(a), let
aω := θψ(an−1) ◦ · · · ◦ θψ(a0)(ω).



70 M. Denker et al

Then for a.e. ω ∈� and a ∈ αn with mω(a) > 0, the map T n
ω : a → T n

ω (a) is invertible,
bi-measurable and non-singular as well as its inverse va,aω : T n

ω (a)→ a ∩ Yω. Moreover,
for a ∈ αn and ω ∈ T n(a), let

a∗ω := θ−ψ(a0) ◦ · · · ◦ θ−ψ(an−1)(ω),

hence T n
a∗ω(a)⊂ Yω and va,ω : T n

a∗ω(a)→ a ∩ Ya∗ω. Finally, for ω ∈� we let

αn
ω := {a ∈ αn

| mω(a) > 0} and α̃ω :=

⋃
n≥0

αn
ω

and conclude that for a ∈ αn
ω, b ∈ αm

aω and c ∈ αn+m
ω with c ∩ Yω = a ∩ va,aω(b),

cω = baω and c∗ω = a∗b∗ω.

The concept of bounded distortion can be generalized to random Markov fibred systems
as follows. Since for each a ∈ α̃ω the map va,aω is non-singular, the relative Jacobian
v′

a,aω = (dmω ◦ va,aω)/(dmaω) is well defined and v′
a,aω(x) > 0 for maω-a.e. x ∈ T n

ω (a).
For a ∈ αn

ω, let

Ca,ω := ess sup
{
v′

a,ω(x)

v′
a,ω(y)

∣∣∣∣ x, y ∈ T n
a∗ω(a)

}
,

where the essential supremum is taken with respect to mω × mω. For a ∈ αn , ω ∈� and
B ∈ B such that B ∩ Yω ⊂ T n

a∗ω(a) we immediately obtain the estimate:

mω(B)=

∫
1B(x)

1
(v′

a,ω(x))
ma∗ω ◦ va,ω(dx)

∈

[
C−1

a,ω
ma∗ω(va,ω(B))

v′
a,ω(y)

, Ca,ω
ma∗ω(va,ω(B))

v′
a,ω(y)

]
for mω-a.e. y ∈ T n(a).

Consequently, if a ∈ αn
ω and B is measurable,

C−2
a,ωmω(B|T n

a∗ω(a))≤ ma∗ω(va,ω(B)|a)≤ C2
a,ωmω(B|T n

a∗ω(a)). (1)

We begin with a characterization of T -invariant measures for random Markov fibred
systems which project to the base probability measure under π .

LEMMA 2.1. Let µ be a relative Borel measure on (Y, B). Then µ is T -invariant if and
only if for a.e. ω ∈�,

dµω =

∑
a∈α

dµa∗ω ◦ va,ω. (2)

Proof. For n ∈ Z, let bn := {y ∈ Y | y ∈ a, ψ(a)= n}. By θ -invariance of P , we determine
that, for f ∈ L∞(µ),∫

f ◦ T dµ =

∫ ∫ (∑
n∈Z

1bn f

)
◦ T (y) dµω(y) d P(ω)

=

∑
n∈Z,a∈α

∫ ∫
1bn (y) f (y) dµω ◦ va,aω(y) d P(ω)

=

∑
a∈α

∫ ∫
f (y) dµa∗ω ◦ va,ω(y) d P(ω)

=

∫ ∫
f (y)µω(dy)P(dω)=

∫
f dµ. 2
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LEMMA 2.2. Let ((Y, T ), (�, θ), π, ψ, α) be a random Markov fibred system with
m(Y ) <∞. We then have, for a.e. ω ∈�,

Dω,n :=

∑
ω′∈�

mω′(T −n
ω′ (Yω)) <∞.

Proof. First note that D·,n is measurable, since the sum extends only over countably many
non-zero summands. Observe that∫

Dω,n P(dω)=

∑
a∈αn

0

∫
ma∗ω(a ∩ T −n

a∗ω(Yω))P(dω).

By θ -invariance of P we conclude that∫
Dω,n P(dω)=

∑
a∈αn

0

∫
mθψ(a)(ω)(a)P(dω)=

∫
mω(Y )P(dω) <∞;

therefore Dω,n is almost everywhere finite. 2

Note that, if ψ(a)= 1 for all a ∈ α, then Dω,n = mθ−n(ω)(Y ), hence

1
N

N−1∑
n=0

Dω,n =
1
N

N−1∑
n=0

mθ−nω(Y ) (3)

converges in L1(P) by Birkhoff’s ergodic theorem. In particular, condition (d) in the
following proposition is satisfied if ψ ≡ 1.

PROPOSITION 2.1. Let ((Y, T ), (�, θ), π, ψ, α) be a random Markov fibred system such
that:
(a) m(Y )= 1;
(b) for a.e. ω there exists Cω > 1 with Ca,ω ≤ Cω for all a ∈ α̃ω;
(c) for a.e. ω there exists ηω > 0 such that mω(Ta∗ω(a))≥ ηω for all a ∈ α; and
(d) for a.e. ω

D(ω)= lim sup
N→∞

1
N

N−1∑
n=0

Dω,n <∞.

Then there exists a family {µω} of finite measures such that µω � mω for a.e. ω ∈� and
such that the measure µ is T -invariant, where µ is defined by dµ= dµω d P. Moreover,
the set

Y ′
:= {x ∈ Y | dµπ(x)/dmπ(x)(x) > 0}

is a proper subsystem, that is T (Y ′)= Y ′.

Proof. Let β := {T a | a ∈ α}, then for ω ∈�, n ∈ N and A ∈ B,

νn
ω(A) :=

∑
a∈αn

mω(A|T n
a∗ωa)ma∗ω(a)

=

∑
b∈β

mω(A|b)
∑

a∈αn :T n
a∗ω

a=b∩Yω

ma∗ω(va,ω(b)).
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Using equation (1) and assumption (b), for A ∈ B and a.e. ω ∈� this gives∑
a∈αn

ma∗ω(va,ω(A)) =

∑
a∈αn

ma∗ω(va,ω(A)|a)ma∗ω(a)

∈ [C−2
ω νn

ω(A), C2
ων

n
ω(A)].

Combining Lemma 2.2 with assumption (c), we determine that for A ∈ B and a.e. ω ∈�∑
a∈αn

ma∗ω(va,ω(A)) ≤ C2
ω

∑
b∈β

mω(A|b)
∑

a∈αn :T n
a∗ω

a=b∩Yω

ma∗ω(a)

≤
C2
ω

ηω
mω(A)

∑
a∈αn

ma∗ω(a)=
C2
ωDω,n
ηω

mω(A).

We therefore have for mω-a.e. x ∈ Yω and P-a.e. ω ∈� that∑
a∈αn dma∗ω ◦ va,ω

dmω

≤ C2
ω

dνn
ω

dmω

≤
C2
ω

ηω
Dω,n .

We use this estimate to deduce that there exist convergent subsequences of

gn(x) :=
1
n

n−1∑
j=0

∑
a∈α j dma∗π(x) ◦ va,a∗π(x)

dmπ(x)
(x) and

hn(x) :=
1
n

n−1∑
j=0

dν j
π(x)

dmπ(x)
(x).

For D > 0 let
MD := {ω ∈� | D(ω) < D; Cω ≤ D; ηω ≥ D−1

}.

Observe that MD ↗� when D → ∞ by assumption (d). Moreover, gn |MD
, hn |MD ∈

L∞(m|MD ) are uniformly bounded by the above estimate, from which there exist weak∗

convergent subsequences.
Passing through a countable sequence of D → ∞ shows that there exist a monotonically

increasing sequence (nk) and g, h ∈ L∞(m) with g = limk→∞ gnk and h = limk→∞ hnk .
Let µω := gmw and νω := hmw. Clearly, the above estimate also implies that dµω/dνω ∈

[C−2
ω , C2

ω]. Observe that, for A ∈ B, ω ∈�,

µω(A)= lim
k→∞

1
nk

nk−1∑
j=0

∑
a∈α j

ma∗ω(va,ω(A))

and

νω(A) = lim
k→∞

1
nk

nk−1∑
j=0

∑
b∈β

∑
a∈α j :T n

a∗ω
j=b∩Yω

mω(A|b)ma∗ω(va,ω(b))

=

∑
b∈β

mω(A|b)µω(b).

It follows that µω(A)=
∑

a∈α µa∗ω(va,ω(A)). By Lemma 2.1, the measure µ is
T -invariant.
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Moreover, dνω/dmω =
∑

b∈β(µω(b)/mω(b))1b∩Yω . Hence

Y ′
ω :=

{
x ∈ Yω

∣∣∣∣ dνω
dmω

(x) > 0
}

=

⋃
b∈β:µω(b)>0

b ∩ Yω.

Therefore, µω(a) > 0 for a ∈ α with mω(a) > 0 if and only if there is b ∈ β with
µω(b) > 0 such that a ∩ Yω is contained in b ∩ Yω. Note that the invariance of µ (see
equation (2)) implies that µω(a)≤ µaω(Tωa) for a ∈ α. This then implies that Tω(a ∩

Y ′
ω)⊂ Y ′

aω, and hence T Y ′
⊂ Y ′. Finally,

µ(Y ′
\ T Y ′) = µ(Y ′)− µ(T −1(T Y ′))

≤ µ(Y ′)− µ(Y ′)= 0. 2

COROLLARY 2.1. If in addition to the assumptions in Proposition 2.1, we have that for
a.e. ω ∈� the family {Tω(a) ∩ Yω | a ∈ α} is finite, then there exist two families of positive
constants {lω}ω∈� and {uω}ω∈� such that for µω-a.e. y ∈ Yω,

0< lω ≤
dµω
dmω

≤ uω.

Proof. As it was shown in the proof of Proposition 2.1, dµω/dmω ≤ uω := C2
ω/ηω.

Furthermore, {b ∩ Yω | b ∈ β} is finite by assumption. Since

dνω
dmω

=

∑
b∈β

µω(b)

mω(b)
1b∩Yω ≥ min

b∈β;µω(b)>0

µω(b)

mω(b)

=: lωC2
ω mω-a.e. on

{
dνω
dmω

> 0
}
,

the non-zero values of dνω/dmω are bounded from below. Combining this with
dµω/dνω ∈ [C−2

ω , C2
ω] yields the assertion. 2

For the case that the base transformation θ is a factor of T , that is ψ ≡ 1, these results
have the following immediate implications. Using Lemma 2.1, we determine that the
measure µ is T -invariant if and only if dµθω = dµω ◦ T −1

ω for a.e. ω ∈�. This implies
that the function ω→ µω(Y ) is invariant under θ . Under the additional assumptions that
µω(Y ) <∞ for a.e. ω ∈� (e.g. under the assumptions of Proposition 2.1) and that θ is
ergodic, we then have that {µω} is a family of probability measures.

3. Relative versions of irreducibility and aperiodicity
In this section several generalizations of the notions of irreducibility and aperiodicity are
discussed. Let

α̃ :=

{
a ∈

⋃
n≥1

αn
∣∣∣∣ m(a) > 0

}
.

First recall that for a deterministic Markov fibred system (Y, B, m, T, α) the
transformation T is called irreducible if, for all a, b ∈ α̃ there exists n ∈ N such that
m(a ∩ T −n(b)) > 0. Moreover, T is called aperiodic if there exists N ∈ N such that
m(a ∩ T −n(b)) > 0 for each n > N (e.g. [1]). As a first approach we obtain the following
two weaker notions.
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Definition. The random Markov fibred system Y = ((Y, T ), (�, θ), π, ψ, α) is called
weakly relatively irreducible if for a.e. ω ∈� and for all a, b ∈ α̃ with mω(a) > 0 there
is n(ω) ∈ N such that

mω(a ∩ T −n(ω)
ω (b)) > 0. (4)

A weakly relatively irreducible system is called weakly relatively aperiodic, if for
m-a.e. y ∈ a there exists n(y) ∈ N such that relation (4) holds for all n > n(y) with
mπ(T n(y))(b) > 0.

Note that the relative irreducibility imposes the following conditions on the random
fibred system. For a, b ∈ α̃,

0 <
∫

mω(a ∩ T −n(ω)
ω (b)) d P(ω)

=

∑
k∈N

∫
{ω | n(ω)=k}

mω(a ∩ T −k
ω (b)) d P(ω).

Therefore, there exists k ∈ N such that P({ω | n(ω)= k}) > 0. Hence m(a ∩ T −n(b)) > 0
which implies the above non-relative version of irreducibility. Using the same arguments,
it can easily be seen that the system is (non-relatively) irreducible if and only if it is weakly
relatively irreducible.

On the other hand, a system is weakly relatively aperiodic if it is aperiodic, but the
converse is not true in general. This can be seen by the following example. Let the random
system Y be the cross product of an aperiodic fibred system and (�, θ), where �= {0, 1}

with θ(0)= 1 and θ(1)= 0. For ψ = 1, the system is clearly relatively aperiodic but not
aperiodic.

Furthermore, consider the following stronger versions which, as will be shown later,
imply that the base transformation is ergodic.

Definition. The random Markov fibred system Y = ((Y, T ), (�, θ), π, ψ, α) is called
relatively irreducible if for a.e. ω ∈� and for all a, b ∈ α̃ with mω(a) > 0 and A ⊂ π(b),
A ∈ F , mω′(b) > 0 for a.e. ω′

∈ A there is n(ω) ∈ N such that

mω(a ∩ T −n(ω)
ω (b ∩ π−1(A))) > 0.

A relatively irreducible system is called relatively aperiodic if there exists N (ω) ∈ N such
that

mω(a ∩ T −n
ω (b ∩ π−1(A))) > 0

for all n > N (ω) with mω(T −n(π−1(A))) > 0.

Note that, if the base � is a point, these notions reduce to the classical ones. In order
to relate relative irreducibility (respectively, aperiodicity) to its weak version the following
condition on ψ turns out to be useful.

Definition. A random dynamical system ((Y, T ), (�, θ), π, ψ) is called orbit covering
if for a.e. y ∈ Y there exists n ∈ N such that for all n > N there exists m ∈ N with
π(T m(y))= θn(π(x)).
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For example, a random dynamical system with ψ ≡ 1 covers orbits. Furthermore, for
y ∈ Y and n ∈ N , let an(y) ∈ αn be given by y ∈ an(y). If for all a ∈ α, ψ(a) ∈ {−1, 0, 1}

and, for a.e. y ∈ Y ,

lim sup
n→∞

N∑
n=1

ψ(an(y))= ∞

the system is also orbit covering.

PROPOSITION 3.1. For a random Markov fibred system ((Y, T ), (�, θ), π, ψ, α) the
following holds.
(1) A relatively irreducible system is weakly relatively irreducible, and a relatively

aperiodic system is weakly relatively aperiodic.
(2) If the system is relatively irreducible then θ is ergodic.
(3) If the system is orbit covering, weakly relatively aperiodic and θ is ergodic then the

system is relatively aperiodic.

Proof. Assertion (1) is an immediate consequence of the definitions. In order to prove (2)
let M ∈ F be a θ -invariant set of positive measure with P(Mc) > 0. Let a, b ∈

⋃
n≥1 α

n

such that m(a ∩ π−1(M)) > 0 and m(b ∩ π−1(Mc)) > 0. Hence there exists A, B ∈ F ,
A ⊂ M , B ⊂ Mc such that mω(a) > 0 for a.e. ω ∈ A and mω′(b) > 0 for a.e. ω′

∈ B. By
the relative irreducibility of the system, for a.e. ω ∈ A there exists n(ω) ∈ N such that
mω(a ∩ T −n(ω)

ω (b ∩ π−1(B))) > 0. Hence there exists m(ω) ∈ Z such that θm(ω)(ω) ∈ B
which is a contradiction to the θ -invariance of B.

In order to prove assertion (3), let a, b ∈
⋃

n≥1 α
n , A ⊂ π(b), A ∈ F , mω′(b) > 0 for

a.e. ω′
∈ A. First note that, by the weak relative aperiodicity of the system, for y ∈ a and

n ∈ N with π(T n(y)) ∈ A, we have that mπ(y)(a ∩ T −n
π(y)(b)) > 0. Moreover, since T is

orbit covering and θ is ergodic, for a.e. y ∈ a there exists n ∈ N such that π(T n(y)) ∈ A.
This proves the assertion. 2

4. Infinite invariant measures and the relative Schweiger condition
As a motivation for the following definition, consider the following. For b ∈ α̃ and ω ∈�

with mω(b) > 0 assume that there exists a constant Cbω such that, for all a ∈ α̃ ∩ αn , n ∈ N
with ma∗ω(a ∩ va,ω)(b) > 0,

Ca∩T −n(b),bω < C.

By a refinement α′ of α with respect to the base �, one can now assume without loss of
generality that the above property holds for a.e. ω ∈ π(b). For ease of exposition, we now
introduce the relative Schweiger condition with respect to the latter assumption.

Definition. The random Markov fibred system Y is said to possess the relative Schweiger
property if there exists a measurable function C : ω→ R+, ω 7→ Cω and a familyR(C)⊂

α̃ such that the following holds.
(a) Caω > Ca,aω for all a ∈R(C) and a.e. ω ∈ π(a).
(b) If a ∈ α̃ and b ∈R(C), b ∈ αn then a ∩ T −n(b) ∈R(C).
(c) For almost all ω ∈�,

⋃
b∈R(C) b = Yω mod mω.
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LEMMA 4.1. Suppose Y is a random Markov fibred system having the relative Schweiger
property with respect to R(C). For a ∈R(C) and a.e. ω ∈ π(a) we have for all n ∈ N,
b ∈ αn

b∗ω, and B ∈ B such that B ⊂ a and mω(B) > 0,

C−4
aωmb∗ω(b ∩ T −n

b∗ω(a))≤
mb∗ω(b ∩ T −n

b∗ω(B))

mω(B|a)
≤ C4

aωmb∗ω(b ∩ T −n
b∗ω(a)).

Proof. If b ∩ T −n(a) 6= ∅ then by the Schweiger property c := b ∩ T −n(a) is an element
ofR(C). For ω ∈� with a ∈ αm

ω and mb∗ω(b ∩ T −n
b∗ω(a)) > 0, we obtain by equation (1)

mb∗ω(b ∩ T −n
b∗ω(B)) = mb∗ω(b ∩ T −n

b∗ω(a) ∩ T −n−m
b∗ω (T m

ω B))

= mb∗ω(c)mb∗ω(T
−n−m

b∗ω (T m
ω B)|c)

≤ C2
aωmb∗ω(c)maω(T

m
ω (B)|T

m
ω (a))

≤ C4
aωmb∗ω(c)mω(B|a).

The lower estimate is shown analogously. 2

Recall that B ∈ B is called a wandering set if {T −n(B)}n∈N is a family of disjoint sets.
Moreover, the measurable union of the wandering sets is called the dissipative part of Y
with respect to T for which we will write D(T ). The set C(T ) :=D(T )c is referred to as
the conservative part of Y .

PROPOSITION 4.1. Suppose Y is a random Markov fibred system having the relative
Schweiger property with respect to R(C). For a ∈R(C), there exist disjoint sets Ca ,
Da ∈ F with π(a)= Ca ∪Da such that a ∩ π−1(Ca)⊂ C(T ) and a ∩ π−1(Da)⊂D(T ).

Proof. Let B ⊂ a be a wandering set and, for D, q > 0,

BD,q := {y ∈ B | Caπ(x) ≤ D, mπ(x)(B)/mπ(x)(a)≥ q}.

Then BD,q is also a wandering set, and for a.e. ω ∈ π(BD,q) we obtain the following
estimate by applying Lemma 4.1 with respect to the refined partition where a is replaced
by a ∩ π−1

◦ π(BD,q) and a ∩ π−1
◦ π(Bc

D,q):

∞∑
n=0

mω(T
−n(a ∩ π−1

◦ π(BD,q)))

=

∞∑
n=0

∑
b∈αn

ω

mω(b ∩ T −n(a ∩ π−1
◦ π(BD,q)))

≤

∞∑
n=0

∑
b∈αn

ω

C4
abωmbω(BD,q |a)−1mω(b ∩ T −n

ω (BD,q))

≤ D4q−1
∞∑

n=0

mω(T
−n(BD,q)) <∞.

Now let E ∈ B be a subset of C(T ) ∩ a ∩ π−1
◦ π(BD,q). Then, by Halmos’ recurrence

theorem (e.g. [1]), we have for each F ⊂ E, F ∈ B that
∑

∞

n=0 1T n(F)(y)= ∞ for a.e.
y ∈ F . For a.e. ω ∈ π(F) we obtain the contradiction

∞ =

∞∑
n=0

mω(T
−n(F))≤

∞∑
n=0

mω(T
−n(π−1

◦ π(BD,q))) <∞.
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Hence a ∩ π−1
◦ π(BD,q)⊂D(T ). Since

⋃
n∈N Bn,1/n = B, it follows that a ∩ π−1

◦

π(B)⊂D(T ). Hence Ca := π(a ∩ C(T )) and Da := π(a ∩D(T )) are disjoint which
proves the assertion. 2

We now obtain the following generalization of Theorem 2.5 in [2].

THEOREM 4.1. If ((Y, T ), (�, θ), π, ψ, α) is a relatively irreducible random Markov
fibred system with the relative Schweiger property with respect to R(C), then T is either
conservative or totally dissipative. Moreover, if T is conservative, then T is ergodic.

Proof. Let us first establish that the system is either conservative or totally dissipative. By
the previous proposition, we have

C(T )=

⋃
∗

a ∩ π−1(Ca) and D(T )=

⋃
∗

a ∩ π−1(Da) mod m,

where the union is taken over all a ∈
⋃

n≥1 α
n such that a ∈R(C). Since Y is relatively

irreducible we have for all a, b ∈R(C, ω) and a.e. x ∈ a ∩ π−1(Ca) that there exists n ∈ N
such that θn(π(x)) ∈Db. Since θ is ergodic, the assertion follows.

Now let T be conservative. We show it is also ergodic. Suppose that B ∈ B, T −1 B = B,
and m(B) > 0. Then there exists n ∈ N and b ∈ αn such that m(B ∩ T nb) > 0 and
b ∈R(C). Moreover, for all q > 0, there exists Mq ∈ F such that mbω(B|T nb) > q for
all ω ∈ Mq . Since T is assumed to be conservative, b ∩ π−1(Mq) is a set of full returns.
Therefore, for m-a.e.

x ∈

⋃
n∈Z

T n(b ∩ π−1(Mq))

there exists a sequence (nk)k∈N, nk ↗ ∞ such that T nk x ∈ b ∩ π−1(Mq) for all k ∈ N.
For n ∈ N, let an(x) ∈ αn be given by x ∈ an(x). By the relative Schweiger property, we
have that ank (x) ∩ T −nk (b) ∈R(C). Combining estimate (1) with the invariance of B for
sufficiently large k,

mπ(x)(B|ank (x) ∩ vank ,ank xπ(x)(b))≥
1

C2
π(x)

mbankπ(x)
(B|T nb)≥

q

C2
π(x)

. (5)

By the martingale convergence theorem, for m-a.e. x ∈ Yω,

mω(B|an(x))
n→∞
−→ 1B(x) ∈ L1(mω).

Estimate (5) then shows that 1B(x)= 1 for m-a.e. x ∈
⋃

n∈Z T n(b ∩ π−1(Mq)). Since
q > 0 was chosen arbitrarily, if we let M := {ω | mbω(B ∩ T nb) > 0} it follows that⋃

n∈Z
T n(b ∩ π−1(M))⊂ B mod m.

Using similar arguments and estimate (1), we obtain that for m-a.e.

x ∈

⋃
n∈Z

T n(b ∩ π−1(Mc)),

mπ(x)(B|am(x))≤ C2
π(x)mbamπ(x)(B|T nb)= 0



78 M. Denker et al

for infinitely many m ∈ N. Hence 1B(x)= 0 for m-a.e. x ∈
⋃

n∈Z T n(b ∩ π−1(Mc)).
Since T is irreducible, it follows that

B = B ∩ Y = B ∩

⋃
n∈Z

T n(b)=

⋃
n∈Z

T n(b ∩ π−1(M))

and

Y =

⋃
n∈Z

T n(b ∩ π−1(M)) ∪

⋃
n∈Z

T n(b ∩ π−1(Mc)).

The assertion follows by the same arguments as the first part of the proof. 2

In order to prove the existence of an invariant σ -finite measure, we have to use the
fact that the class of random systems considered here is closed under inducing to a set
of full returns. This can be seen by the following argument. For a dynamical system
S : X → X and B ⊂ X , denote by ϕS

B : X → N, x 7→ min{n ≥ 1 | Sn(y) ∈ B} the return
time to B ⊂ X with respect to (X, S). Furthermore, for a random dynamical system
Y := ((Y, B, m, T ), (�, F, P, θ), π, ψ), A ∈ B and y ∈ Y , let

ψA(y) := min
{

n ∈ N
∣∣∣∣ n−1∑

i=0

ϕθπ(A)(θ
i
π(A)(π(y)))=

ϕT
A (y)−1∑
i=0

ψ(T i (y))

}
.

Then the system ((A, TA), (π(A), θπ(A)), π |A, ψA) is a random dynamical system as
defined in §1. Moreover, ifY is a random Markov fibred system with respect to the partition
α and b ∈ α, then the induced system ((b, Tb), (π(b), θπ(b)), π |b, ψb) is again a random
Markov fibred system with respect to the partition β, where

β := {a ∩ {y : φb(y)= n} ⊂ b | a ∈ αn, n ≥ 1}.

THEOREM 4.2. Suppose Y is a conservative and ergodic random Markov fibred system
with the relative Schweiger property. Moreover, assume that there exists b ∈R(C) such
that property (d) of Proposition 2.1 holds for the induced transformation Tb. Then there
exists a σ -finite invariant relative Borel measure µ∼ m.

In case of a random fibred system, condition (d) is satisfied for a cylinder b ∈R(C) if,
for a.e. ω ∈ π(B),

1
N

∞∑
k=N+1

N∑
n=1

mθ−k (ω)

({
y

∣∣∣∣ n−1∑
i=0

φb(T
i
b y)= k

})
<∞.

This follows by a simple calculation using equation (3).

Proof. As noted before, Tb is also a random Markov fibred system with respect to partition
β. By the relative Schweiger property, we have that Ca,ω < Cω for all a ∈

⋃
n β

n and
ω ∈ π(b). Therefore, by Proposition 2.1 and Corollary 2.1 there is a finite invariant measure
equivalent to m|b and hence a σ -finite invariant measure µ∼ m. 2

5. Applications
5.1. Random dynamical systems with expanding fibre maps. We now give three
applications to random expanding systems, where (�, F, θ, P) always stands for an
invertible dynamical system with invariant probability measure P .
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Example 1. Let S be an at most countable set and let M(S) denote the set of all matrices
A = (ai j )i, j∈S with entries in {0, 1} satisfying

∑
y∈S ayx ≥ 1 and

∑
y∈S axy ≥ 1 for all

x ∈ S. Let A :�→M(S), A(ω)= (axy(ω))x,y∈S be a random element and define

Y = {(ω, (xk)k≥1) ∈�× SN : ∀i ∈ N axi xi+1(θ
i (ω))= 1}.

Y has a natural σ -algebra B generated by all sets of the form {(ω, x) ∈ Y : ω ∈ F,
x ∈ [s0, . . . , sm]}, where F ∈ F and [s1, . . . , sm] is a cylinder set in SN. The shift
transformation on SN also generates a transformation T : Y → Y by setting

T (ω, (xk)k≥1)= (θ(ω), (xk)k≥2).

The system ((�, F, θ, P), (Y, T )) is called a random topological Markov chain. Every
measurable family {mω | ω ∈�} of bounded measures defines a random Markov system
by m(A)=

∫
mω(a)P(dω), A ∈ B.

Example 2. Let τ be a measurable map taking values in the space of open and expanding
maps of a compact metric space M . We assume that there exists a probability measure λ
on the Borel σ -algebra of M which is non-singular with respect to each map τ(ω) for
P-a.e. ω ∈�. Then m = P × λ is non-singular with respect to T (ω, m)= (θ(ω),

τ (ω)(m)). Since each map is open and expanding there exists 3ω > 1 and dω > 0 such
that for x ∈ M and dist(τ (ω)(x), y) < dω there is z ∈ M , dist(x, z) < dω with τ(ω)(z)= y
and dist(τ (ω)(x), y) > 3ω dist(x, z). By [10], there exists a relative Markov partition
if there exist constants 3> 1 and d > 0 which bound 3ω and dω from below. Hence,
this is a random Markov fibred system possessing the relative Schweiger property with
R(Cω, ω)= α̃ω. We suspect that the condition open and expanding can be replaced by
open and expansive in the relative sense. This would lead to a random Markov fibred
system with a countable partition and the relative Schweiger property only holds for a
proper subclass of cylinders, which generates the σ -field.

Example 3. For each ω ∈� let fω be a hyperbolic polynomial [6], so that T̃ :�× C →

�× C, T (ω, z)= (θ(ω), fω(z)) is a skew product. Restricting to its Julia set we obtain
a random dynamical system. If the maps are uniformly hyperbolic, then for Hölder
continuous potentials a Gibbs family exists [9] in particular it defines a random Markov
fibred system by [10]. Since it satisfies the relative Schweiger property for all sets and is
irreducible, it is conservative and ergodic by Theorem 4.1 and there exists an equivalent
invariant probability measure by Theorem 4.2 (in fact, Proposition 2.1 suffices).

5.2. Random Markov chains. We now give an application of Proposition 2.1 to random
Markov chains. That is, for a countable index set I with the discrete topology, let IN be
the space of sequences in I , B be the Borel σ -algebra with respect to the product topology
and let σ : IN→ IN, (i1i2 . . .) 7→ (i2 . . .) be the shift. For a standard probability space
(�, F, P) and a probability-preserving invertible transformation θ of �, let

T : IN ×�→ IN ×�, (x, ω) 7→ (σ (x), θ(ω)).

In order to randomize the system, we now define a system of random Markov measures as
follows. Denote by V the set of probability vectors and byM the set of transition matrices,
that is
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V =

{
(νi )i∈I ∈ [0, 1]

I
∣∣∣∣ ∑

i∈I

νi = 1
}
,

M=

{
(pi j )i, j∈I ∈ [0, 1]

I×I
∣∣∣∣ ∑

j∈I

pi j = 1 for all i ∈ I

}
.

Recall that each pair ((νi ), (pi j )) ∈ V ×M defines a Markov measure m(νi ),(pi j ) on
(IN, B) as follows. For a = (i1 . . . in) ∈ I n and [a] := {(( jk)k∈N, ω) ∈ Y | ik = jk for
k = 1, . . . , n}, let

m(νi ),(pi j )([a]) := νi1

n−1∏
k=1

pik ik+1 .

Hence, for �→ V ×M, ω 7→ (ν
(ω)
j , (p(ω)i j )) measurable, we define a family of Markov

measures {mω
| ω ∈�} by

mω

(ν
(ω)
j ,(p(ω)i j ))

([a])= ν
(ω)
i1

n−1∏
k=1

p(θ
k−1ω)

ik ik+1
, (6)

where a = (i1 . . . in) ∈ I n . If Tω is non-singular with respect to mω for a.e. ω ∈�, we
refer to the system (IN ×�, B ⊗ F, (ν(ω)j , (p(ω)i j )), T ) as a random Markov chain. Note
that this definiton can be seen as a Markov chain with respect to random transitions, where
the transitions are given by a two sided, stationary sequence of random variables with
values in the set of transition matrices.

PROPOSITION 5.1. Let (IN ×�, B ⊗ F, (ν(ω)j , (p(ω)i j )), T ) be a random Markov chain
such that:
(a) there exists a family {Cω}ω∈�, Cω > 1 such that for P-a.e. ω ∈� and i, j, k ∈ I with

p(ω)i j , p(ω)ik , ν
(θω)
j , ν

(θω)
k > 0,

C−1
θ(ω) <

p(ω)i j

p(ω)ik

·
ν
(θω)
k

ν
(θω)
j

< Cθ(ω);

and
(b) there exists a family {ηω}ω∈�, ηω > 0 such that for P-a.e. ω ∈� and i ∈ I with

ν
(ω)
i > 0, ∑

j :p(ω)i j >0

ν
(θ(ω))
j > ηθ(ω).

Then there exists a measurable map ω 7→ (µ
(ω)
j ) ∈ V such that the measure dµω d P on

(IN ×�, B ⊗ F) given by
µω = mω

(µ
(ω)
j ,(p(ω)i j ))

is T -invariant.

Proof. For a = i1i2 . . . in , x = (( jk)k∈N, ω) and y = (( j ′k)k∈N, ω), the distortion with
respect to a is given by

v′
a,ω(x)

v′
a,ω(y)

=
p(θ

−1ω)
in j1

ν
(ω)
j1

·

ν
(ω)

j ′1

p(θ
−1ω)

in j ′1

.
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Hence, (a) is equivalent to condition (b) in Proposition 2.1. Since (b) implies condition (c)
in Proposition 2.1 and condition (d) is satisfied since T is a skew product, it remains to be
shown that there exists an invariant Markov measure µ. This can be seen as follows. For
b = ( j1 . . . jm) ∈ I m and (nk) as in the proof of Proposition 2.1, we have

µω([b]) = lim
k→∞

1
nk

nk−1∑
n=0

∑
(i1...in)∈I n

ν
(θ−nω)
i1

n−1∏
l=1

p(θ
l−n−1ω)

il il+1
· p(θ

−1ω)
in j1

·

m−1∏
l=1

p(θ
l−1ω)

jl jl+1

=

(
lim

k→∞

1
nk

nk−1∑
n=0

∑
(i1...in)∈I n

ν
(θ−nω)
i1

n−1∏
l=1

p(θ
l−n−1ω)

il il+1
· p(θ

−1ω)
in j1

) m−1∏
l=1

p(θ
l−1ω)

jl jl+1

=: µ
(ω)
j1

m−1∏
l=1

p(θ
l−1ω)

jl jl+1
. 2

Finally, we give an application of the above proposition for the following situation. For a
given measurable map�→M, ω 7→ (p(ω)i j )i, j∈I one may ask whether there exists a finite
invariant relative Markov measure such that the fibre measures are equivalent almost surely
to the following family of σ -finite measures {m(ω)

(λ
(ω)
j ),(p(ω)i j )

} where, for j ∈ I and ω ∈�,

λ
(ω)
j :=


0 p(θ

−1ω)
i j = 0 for all i ∈ I,

0 p(ω)jk = 0 for all k ∈ I,

1 otherwise.

We remark that this family of measures determines the canonical σ -finite measure
on IN ×� for which Tω is almost surely non-singular. In this situation, we obtain
the following corollary which is closely related to one of Cogburn’s main results
[8, Theorem 3.1].

COROLLARY 5.1. Assume that there exists a measurable function η :�→ R such that for
each k ∈ I and a.e. ω ∈� we have:
(a) ν̂

(θω)
k := sup{p(ω)ik /p(ω)jk | i, j ∈ I, p(ω)ik , p(ω)jk > 0}<∞; and

(b) 0< 1/η(θω) <
∑

j :p(ω)k j >0 ν̂
(θω)
j ≤

∑
j∈I ν̂

(θω)
j < η(θω).

Then there exists a measurable map ω 7→ (µ
(ω)
j ) ∈ V such that for a.e. ω ∈� the measure

induced by (µ(ω)j ) is absolutely continuous to (λ(ω)j ). Furthermore, the measure given by

dm(ω)

(λ
(ω)
j ),(p(ω)i j )

d P

is a T -invariant probability measure.

Proof. For j ∈ I and ω ∈�, let

ν
(ω)
j := ν̂

(ω)
j

/ ∑
i∈I

ν̂
(ω)
i .

The assertion now follows by Proposition 5.1. 2

5.3. Coding of the geodesic flow. The results obtained here can also be applied to the
coding of geodesics as follows. Let (D, d) denote the disc model of hyperbolic space with
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FIGURE 1. The geodesics {γ1, γ2, . . . , γ6} and associated isometries.

the hyperbolic metric d (e.g. [5]). We now fix 6 geodesics γ1, γ2, . . . , γ6 of Euclidean
radius

√
3/2 which are determined as follows. With the indices taken modulo 6, for

k = 1, 2, 3 we have that γ2k−1 and γ2k intersect inside D with interior angle 2π/3, and that
γ2k and γ2k+1 intersect at the ideal boundary ∂D (and hence are tangential to each other
at the point of intersection). Furthermore, if we assume that γ1, γ2, . . . , γ6 are ordered
counter-clockwise, these properties uniquely determine the geodesics up to rotation around
the origin (see Figure 1).

In order to define a Fuchsian group G, for each k = 1, 2, . . . , 6, let gk be the uniquely
determined, orientating preserving, hyperbolic isometry such that we have gk(γk)= γk+3,
and that γk is contained in the isometric circle of gk , or equivalently |g′

k(x)| = 1 for all
x ∈ γk . Note that this definition immediately implies that gk = g−1

k+3 for k = 1, 2, . . . , 6.
By Poincaré’s theorem (see [11]) we hence obtain a Fuchsian group G which is generated
by {g1, g2, g3}, and for which the component of D \ {γ1, γ2, . . . , γ6} which contains the
origin is a fundamental polygon (see Figure 1). Moreover, by the shape of the fundamental
polygon it follows immediately that D/G is a punctured torus.

In order to introduce the random Markov fibred system associated to G we now define
the relevant partition of ∂D. For k = 1, 2, . . . , n let pk ⊂ D be the hyperbolic shadow
of γk with respect to the origin. Furthermore, for k = 1, 2, 3, let a2k := p2k \ p2k−1,
a2k−1 := p2k−1 \ p2k , and b2k−1,2k := p2k−1 ∩ p2k .

The random Markov fibred system is now defined as follows. Let (�, F, P, θ) be the
two-sided Bernoulli shift with two states, that is � := {0, 1}

Z, the map θ is the left shift,
and the P-measure of a cylinder of length n is given by (1/2)n . Furthermore, let (Y, B, m)
be the product space of (∂D, B, λ) and (�, F, P), where λ refers to the Lebesgue measure.
The map T : Y → Y is defined by, where (ω)0 := ω0 for ω = (. . . ω−1ω0ω1 . . .) ∈�,

T (x, ω) :=


(gk(x), ω) ∃k = 1, . . . , 6 such that x ∈ ak,

(g2k−1(x), θω) ∃k = 1, . . . , 3 such that x ∈ b2k−1,2k and (ω)0 = 0,
(g2k(x), θω) ∃k = 1, . . . , 3 such that x ∈ b2k−1,2k and (ω)0 = 1.
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Finally, let π : Y →�, (x, ω) 7→ ω, let ψ(x, ω) := 1b1,2∪b3,4∪b5,6 , and let

α := {ak ×� | k = 1, 2, . . . , 6} ∪ {b2k−1,2k ×� | k = 1, 2, 3}.

Clearly, the system ((Y, T ), (�, θ), π, ψ) is a generalized random transformation. We
remark that the Bowen–Series map associated to the group G is contained as a fibre in
the system. Namely, the restriction of T to ∂D × {(. . . 000 . . .)} coincides with the left
Bowen–Series map whereas the restriction to ∂D × {(. . . 111 . . .)} is the right Bowen–
Series map [3, 7, 17]. Hence, in terms of coding the geodesic flow, this transformation
chooses randomly whether to ‘go left’ or to ‘go right’ [16].

PROPOSITION 5.2. The system ((Y, B, m, T ), (�, F, P, θ), π, ψ, α) is a relatively
aperiodic random Markov fibred system.

Proof. By construction, T (a) is α-measurable for each a ∈ α. In complete analogy to the
deterministic case, it follows by standard means in the theory of hyperbolic geometry that
α is relative generator. These observations immediately imply the first assertion. In order to
show that T is relatively aperiodic, note that by construction we have for k = 1, 2, . . . , 6
and l = 1, 2, 3,

T 2(ak × {ω})⊃ Yω ∪ Yθω,

T 2(b2l−1,2l × {ω})= Yθω ∪ T (b2l−1,2l × {θω}).

The system is therefore relatively aperiodic. 2

The aim is to use our results to deduce that the above system is conservative and ergodic
with respect to an infinite measure which is equivalent to m. Let A :=

⋃3
k=1 b2k−1,2k ×�.

Note that by the fact that the deterministic Bowen–Series map is conservative [7, 17] for
a.e. y ∈ Ac there exists n(y) ∈ N such that T n(y) ∈ A. In particular, the induced system
Y = ((A, TA), (�, θ), πA, ψA, αA) as introduced in §4 is well defined. Also note that by
the choice of A, we clearly have that ψA(y)= 1 for all y ∈ A. Hence, Y is a skew product.
We will proceed with the following result which relies on the application of Proposition 2.1
to the system Y .

PROPOSITION 5.3. The system ((Y, B, m, T ), (�, F, P, θ), π, ψ, α) is conservative
and ergodic. Moreover, there exists an invariant relative Borel measure µ equivalent to
m such that each fibre measure is a σ -finite, infinite measure.

Proof. We first collect some immediate implications for the induced system. Clearly,
we have that m(Y ) < 2π and ψA ≡ 1. Moreover, observe that for each a ∈ αA and a.e.
ω ∈�, there exists k = 1, 2, 3 such that TA(a ∩ Yω)= b2k−1,2k × θω. Hence, mθω(TA(a ∩

Yω))= λ(b1,2)=: η for all a ∈ αA and a.e. ω ∈�.
As a consequence of Stadlbauer [17, Lemma 4.3], we determine that there exists C > 1

such that for the first and second derivatives D and D2 in the first coordinate, we have∣∣∣∣ D2(T n
A )

(D(T n
A ))

2

∣∣∣∣< C for all n ∈ N.

By standard arguments (e.g. [1, p. 147]), it follows that Ca,ω > C for all a ∈ αA and a.e.
ω ∈�. Hence, by Proposition 2.1 and Corollary 2.1, we obtain an invariant finite measure
µ on A and a family {lω}ω∈� such that 0< lω < dµω/dmω < C2/η for a.e. ω ∈�.
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These results have the following immediate implications. Note that TA is relatively
aperiodic since T is aperiodic, and that the existence of µ implies that TA is conservative.
Hence TA is ergodic by Theorem 4.1. For the original system ((Y, T ), (�, θ), π, ψ, α)
this implies that there exists a σ -finite relative Borel measure µ̃ which is equivalent to m
and that T is conservative and ergodic.

It remains for us to show that µω(Y )= ∞. This is true by the following elementary
arguments from hyperbolic geometry. Let x0 ∈ ∂D be the fixed point of the parabolic
transformation g. For x ∈ ∂D such that |gn(x)− x0| ↘ 0, we have that |gn(x)− x0| �

1/n. We hence obtain for the return time φA to A, for n ∈ N and ω ∈�,

mω({(x, ω) ∈ A | φA(x, ω)= n})�
1
n
.

The assertion follows by Kac’s formula [12]. 2

Finally, we remark that similar results also can be obtained for arbitrary dimensions.
Namely, for a geometrically finite Kleinian group G for which there exists a fundamental
polyhedron giving rise to a generalized Markov fibred system as above, the required
estimates can be found in [18]. Note that in this situation, the Lebesgue measure has to
be replaced by the Patterson measure, and that the invariant relative Borel measure is finite
if and only if δ ≥ (kmax + 1)/2, where δ refers to the exponent of convergence and kmax to
the maximal possible rank of the parabolic fixed points of G.
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