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Curves in Abelian Varieties over Finite Fields

Fedor Bogomolov and Yuri Tschinkel

1 Introduction

Let k be an algebraic closure of a finite field and let C be a curve over k. Assume that C

is embedded into an abelian algebraic group G over k, with the group operation written

additively. Let c be a k-rational point of C. In this note, we study the distribution of orbits

{m·c}m∈N in the set G(k) of k-rational points of G. One of our main results is the following

theorem.

Theorem 1.1. Let C be a smooth projective curve over k of genus g = g(C) ≥ 2. Let A be

an abelian variety containing C. Assume that C generates A, that is, the Jacobian J of C

admits a geometrically surjective map onto A. For any � ∈ N,

A(k) =
⋃

m=1 mod �
m · C(k), (1.1)

that is, for every a ∈ A(k) and � ∈ N, there exist m ∈ N and c ∈ C(k) such that a = m · c
and m = 1 mod �.

Moreover, let A(k){�} ⊂ A(k) be the �-primary part of A(k) and let S be any finite

set of primes. Then, there exists an infinite set of primes Π, containing S and of positive

density, such that the natural composition

C(k) −→ A(k) −→⊕
�∈Π

A(k){�} (1.2)

is surjective. �
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2 Curves and their Jacobians

Throughout, C is a smooth irreducible projective curve of genus g = g(C) ≥ 2 and J is its

Jacobian. Assume that C is defined over Fq ⊂ k with a point c0 ∈ C(Fq) which we use to

identify the degree n Jacobian J(n) with J and to embed C in J. Consider the maps

Cn φn−−→ Sym(n)(C) ϕn−−→ J(n) = J,

c =
(
c1, . . . , cn

) −→ (
c1 + · · · + cn

) −→ [c].
(2.1)

Here, (c1 + · · · + cn) denotes the zero-cycle and φn is a finite cover of degree n!.

For n ≥ 2g + 1, the map ϕn is a Pn−g-bundle and the map Cn → J(n) is surjective with

geometrically irreducible fibers (see, e.g., [3, Corollary 9.1.4]). We need the following.

Lemma 2.1. For every point x ∈ J(Fq) and every n ≥ 2g + 1, there exist a finite extension

k ′/Fq and a point y ∈ Px(k ′) = ϕ−1
n (x)(k ′) such that the degree n zero-cycle c1 + · · · + cn

on C corresponding to y is k ′-irreducible. �

Proof. This follows from a version of an equidistribution theorem of Deligne as in [3,

Theorem 9.4.4]. �

Proof of Theorem 1.1. We may assume that A = J. Let a ∈ A(k) be a point. It is defined

over some finite field Fq (with c0 ∈ C(Fq)). Fix a finite extension k ′/Fq as in Lemma 2.1

and let N be the order of A(k ′).

Choose a finite extension k ′′/k ′, of degree n ≥ 2g + 1, such that n and the order

of the group A(k ′′)/A(k ′) are coprime to N�. By Lemma 2.1, there exists a k ′-irreducible

cycle c1 + · · · + cn mapped to a. The orders of c1 − cj, for j = 1, . . . , n, are all equal and

are coprime to N� (note that all cj have the same order and the same image under the

projection A(k ′′) → A(k ′)). Then, there is an m ∈ N, m = 1 mod N�, such that

0 = m

(
nc1 −

n∑
j=1

cj

)
= mnc1 − ma = mnc1 − a. (2.2)

We turn to the second claim. Fix a prime p such that p > (2g)! and p � | GL2g(Z/�Z)|

for all � ∈ Π. Let Π be the set of all primes � such that p � | GL2g(Z/�Z)|. We have � ∈ Π if

�i �= 1 mod p for all i = 1, . . . , 2g. In particular, Π has positive density.

The Galois group Gal(F̄q/Fq) = Ẑ contains Zp as a closed subgroup. Put k ′ := F̄
Zp
q .

For � ∈ Π, there exist no nontrivial continuous homomorphisms of Zp into GL2g(Z�); and
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the Galois action of Zp on A(k){�} is trivial. In particular,

A(k ′) ⊃
∏
�∈Π

A(k){�}. (2.3)

Now we apply the above argument. Given a point a ∈ ∏
�∈Π A(k){�}, we find points c1, . . . ,

cpr ∈ C(k), defined over an extension of k ′ of degree pr, and such that the cycle c1+· · ·+cpr

is k ′-irreducible and equal to a. By construction, p and the orders of ci − cj are coprime

to every � ∈ Π for all i �= j. We conclude that the natural map

C(k) −→ ∏
�∈Π

A(k){�} (2.4)

is surjective. �

Remark 2.2. This shows that, over finite fields, all algebraic points on A are obtained

from a 1-dimensional object by multiplication by a scalar.

Remark 2.3. The fact that

C(k) −→
⊕

�∈Π
A(k){�} (2.5)

is surjective was established for Π consisting of one prime in [1]; for a generalization to

finite Π, see [6].

3 Semi-abelian varieties

Let C be an irreducible curve over k and C◦ ⊂ C a Zariski open subset embedded into a

semi-abelian group T , a torus fibration over the Jacobian J = JC. Assume that C◦ gener-

ates T , that is, every point in T(k) can be written as a product of points in C◦(k).

Theorem 3.1. For every t ∈ T(k), there exist a point c ∈ C◦(k) and an m ∈ N such that

t = cm. �

Proof. We follow the arguments of Section 2. For n � 0, the map

Cn
◦ −→ JC◦ ,(
c1, . . . , cn

) �−→
n∏

j=1

cj

(3.1)

to the generalised Jacobian has geometrically irreducible fibers. In our case, C◦ is a com-

plement to a finite number of points in C and the generalised Jacobian JC◦ is a semi-

abelian variety fibered over the Jacobian J = JC with a torus T0 as a fiber.
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In particular, if Fq ⊂ k is sufficiently large (with C◦(Fq) �= ∅), then, for some finite

extension k ′/Fq and t ∈ JC◦(Fq), there exist c1, . . . , cn ∈ C◦(k ′′), where k ′′/k ′ is the unique

extension of k ′ of degree n, such that the Galois group Gal(k ′′/k ′) acts transitively on the

set {c1, . . . , cn} and t =
∏n

j=1 cj. The Galois group Gal(k ′′/k ′) is generated by the Frobenius

element Fr so that

t =

n−1∏
j=0

Frj(c), (3.2)

where c := c1.

Every k-point in JC◦ is torsion. Let x ∈ JC◦ [N] and assume that x is defined over a

finite field k ′. Consider the extension k ′′/k ′, of degree n > 2g(C◦) + 1, coprime to N�, and

such that the order of JC◦(k
′′)/JC◦(k

′) is coprime to N�. It suffices to take k ′′ to be disjoint

from the field defined by the points of the N�-primary subgroup of JC◦ . Then, the result

for JC◦ follows as in Theorem 1.1. Since JC◦ surjects onto T , the result holds for T . �

Remark 3.2. Note that the action of the Frobenius Fr on Gd
m(k) is given by the scalar en-

domorphism z �→ zq, where q = #k ′. It follows that if T = Gd
m is generated by C◦, then

every t ∈ T(k) can be represented as

t =

n−1∏
j=0

cqj

= c(qn−1)/(q−1) (3.3)

for some c ∈ C◦(k).

4 Applications

In this section, we discuss applications of Theorem 1.1.

Corollary 4.1. Let A be the Jacobian of a hyperelliptic curve C of genus g ≥ 2 over k,

embedded so that the standard involution ι of A induces the hyperelliptic involution of

C. Let Y = A/ι and Y◦ ⊂ Y be the smooth locus of Y. Then, every point y ∈ Y◦(k) lies on a

rational curve. �

Proof. Let a ∈ A(k) be a point in the preimage of y ∈ Y◦(k). By Theorem 1.1, there exists

an m ∈ N such that mc = a. The endomorphism “multiplication by m” commutes with ι.

Since a ∈ m · C(k), we have s ∈ R(k), where R = m · C/ι ⊂ Y is a rational curve. �
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Remark 4.2. This corollary was proved in [2] using more complicated endomorphisms of

A. It leads to the question whether or not every abelian variety over k = F̄p is generated

by a hyperelliptic curve. This property fails over large fields [4, 5].

Corollary 4.3. Let C be a curve of genus g ≥ 2 over a number field K. Assume that C(K) �=
∅ and choose a point c0 ∈ C(K) to embed C into its Jacobian A. Choose a model of A

over the integers OK and let S ⊂ Spec(OK) be a finite set of non-Archimedean places of

good or semi-abelian reduction for A. Assume that C has irreducible reduction Cv, v ∈ S

(in particular, Cv, v ∈ S, generates the reduction Av). Let kv be the residue fields and fix

av ∈ A(kv), v ∈ S. Then, there exist a finite extension L/K, a point c ∈ C(L), and an integer

m ∈ N such that for all v ∈ S and all places w | v, the reduction (m · c)w = av ∈ A(kv) ⊂
A(lw), where lw is the residue field at w. �

Proof. We follow the argument in the proof of Theorem 1.1. Denote by nv the orders of

av, for v ∈ S and let n be the least common multiple of nv. Replacing K by a finite exten-

sion and S by the set of all places lying over it, we may assume that the n-torsion of A is

defined over K. There exist extensions kv ′/kv for all v ∈ S, points cv ′ ∈ C(kv ′) ⊂ A(kv ′),

and mv ′ = 1 mod n, such that mv ′cv ′ = av. Thus, there is an m ∈ N such that

mcv ′ = av. (4.1)

There exist an extension L/K and a point c ∈ C(L) such that for all v ∈ S and all

w over v, the corresponding residue field lw contains kv ′ and the reduction of c modulo

w coincides with cv ′ . Using the Galois action on (4.1), we find that mc reduces to av for

all w. �

Over Q̄, it is not true that A(Q̄) =
⋃

r∈Q r · C(Q̄). Indeed, by the results of Faltings

and Raynaud, the intersection of C(Q̄) with every finitely generated Q-subspace in A(Q̄)

is finite.

Consider the map

C
(
Q̄
) −→ P

(
A
(
Q̄
)
/A
(
Q̄
)

tors
⊗ R

)
(4.2)

(defined modulo translation by a point). It would be interesting to analyze the discrete-

ness and the metric characteristics of the image of C(Q̄), combining the classical theorem

of Mumford with the results of [7].
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This book is devoted to a rapidly developing branch of the 
qualitative theory of difference equations with or without delays. 
It presents the theory of oscillation of difference equations, 

exhibiting classical as well as very recent results in that area. While there 
are several books on difference equations and also on oscillation theory 
for ordinary differential equations, there is until now no book devoted 
solely to oscillation theory for difference equations. This book is filling 
the gap, and it can easily be used as an encyclopedia and reference tool 
for discrete oscillation theory.

In nine chapters, the book covers a wide range of subjects, including 
oscillation theory for second-order linear difference equations, systems 
of difference equations, half-linear difference equations, nonlinear 
difference equations, neutral difference equations, delay difference 
equations, and differential equations with piecewise constant arguments. 
This book summarizes almost 300 recent research papers and hence 
covers all aspects of discrete oscillation theory that have been discussed 
in recent journal articles. The presented theory is illustrated with 121 
examples throughout the book. Each chapter concludes with a section 
that is devoted to notes and bibliographical and historical remarks.

The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. 
Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook 
for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses 
in calculus.
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