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Subconvexity for a double Dirichlet series

Valentin Blomer

Abstract

For two real characters ψ, ψ′ of conductor dividing 8 define

Z(s, w; ψ, ψ′) := ζ2(2s+ 2w − 1)
∑
d odd

L2(s, χdψ)ψ′(d)
dw

where χd = (d. ) and the subscript 2 denotes the fact that the Euler factor at 2 has
been removed. These double Dirichlet series can be extended to C2 possessing a group
of functional equations isomorphic to D12. The convexity bound for Z(s, w; ψ, ψ′) is
|sw(s+ w)|1/4+ε for <s= <w = 1/2. It is proved that

Z(s, w; ψ, ψ′)� |sw(s+ w)|1/6+ε, <s= <w = 1/2.

Moreover, the following mean square Lindelöf-type bound holds:∫ Y1

−Y1

∫ Y2

−Y2

|Z(1/2 + it, 1/2 + iu; ψ, ψ′)|2 du dt� (Y1Y2)1+ε,

for any Y1, Y2 > 1.

1. Introduction

The study of subconvexity bounds for L-functions is one of the central topics in analytic number
theory with deep and sometimes unexpected applications in almost every branch of
number theory. Weyl, almost a century ago, was the first to prove a subconvex bound for
the Riemann zeta-function: ζ(1/2 + it)� |t|1/6+ε. Since then, powerful methods from various
areas have been developed culminating in a complete solution of the subconvexity problem for
L-functions on GL1 and GL2 due to Michel and Venkatesh [MV10]. One would hope that new
methods emerge that will enable subconvex bounds for more general L-functions. This may
include automorphic L-functions of higher rank groups (some deep, but sporadic results are
already available, e.g. [HM06, Li, Ven]), L-functions without Euler product (e.g. L-functions
of half-integral weight modular forms) or multiple L-functions, that is, L-functions whose
coefficients are again L-functions. Multiple L-functions have become more and more frequent
in analytic number theory, and have quite recently proved to be a very powerful and elegant
tool that in some cases can prove results that are not (yet) available with other methods, see
e.g. [DGH03]. A good understanding of the more subtle analytic properties of multiple Dirichlet
series would be very desirable. The question for subconvexity bounds for double Dirichlet series
has been raised explicitly in [HK] in connection with non-vanishing results for quadratic twists.
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V. Blomer

The aim of this paper is to show the first subconvex bound for a multiple Dirichlet series in
a relatively simple situation. For <s and <w sufficiently large and two real characters ψ, ψ′ of
conductor dividing 8 we define

Z(s, w; ψ, ψ′) := ζ2(2s+ 2w − 1)
∑
d odd

L2(s, χdψ)ψ′(d)
dw

(1)

where χd = (d. ) and here and henceforth the subscripts 2 denote the fact that the Euler factors
at 2 have been removed. This type of series was first considered in [GH85], although not
from the point of view of double Dirichlet series. It has two more or less obvious functional
equations: the functional equation for L(s, χ) yields a functional equation sending s to 1− s,
and interchanging the order of summation yields a functional equation interchanging s and w.
These two functional equations generate the dihedral group D12 of order 12, and successive
application of the functional equations yields the meromorphic continuation of Z(s, w, ψ, ψ′) as
a function of two complex variables with polar lines at most at s= 1, w = 1 and s+ w = 3/2. It
is a priori not completely obvious what the convexity bound in this situation is, because running
a convexity argument for Z(s, w; ψ, ψ′) depends on what we assume on the coefficients L(s, χ)
in the region of absolute convergence of Z(s, w; ψ, ψ′). If we assume the convexity bound for
L(s, χd) in s together with the Lindelöf hypothesis on average over d, that is,∑

d6X

|L(s, χd)| � (X|s|1/4)1+ε <s= 1/2,

(cf. (16) below), then the convexity bound for Z(s, w; ψ, ψ′) is

Z(s, w; ψ, ψ′)� |sw(s+ w)|1/4+ε (2)

for <s= <w = 1/2. This is indeed a natural candidate for the convexity bound, since

Γ
(
s

2

)
Γ
(
s+ w − 1/2

2

)
Γ
(
w

2

)
Z(s, w; ψ, ψ′)

is roughly invariant under (s, w) 7→ (1− s, 1− w), see (36) below; hence it is reasonable to define
the ‘analytic conductor’ of Z(1/2 + it, 1/2 + iu; ψ, ψ′) by

C(u, t) :=
∣∣∣∣14 +

it

2

∣∣∣∣ · ∣∣∣∣14 +
i(u+ t)

2

∣∣∣∣ · ∣∣∣∣14 +
iu

2

∣∣∣∣. (3)

We shall prove the following uniform subconvexity bound.

Theorem 1. One has

Z(s, w, ψ, ψ′)� |sw(s+ w)|1/6+ε

for <s= <w = 1/2 and any ε > 0.

This matches the quality of Weyl’s bound for the Riemann zeta-function and the
corresponding estimate for L-functions attached to modular forms on GL2 due to Good [Goo82].
Theorem 1 is the first subconvex bound for a multiple Dirichlet series, and it seems to be the first
subconvex result in the literature for an L-series that is not a (linear combination of) L-series
with Euler product.

The bound of Theorem 1 is non-trivial even in a one-variable situation. Specializing to s= 1/2,
one gets an ordinary Dirichlet series (without an Euler product) with coefficients given by central
L-values. Then Γ(w)Z(1/2, w; ψ, ψ′) is roughly invariant under w 7→ 1− w; hence the standard
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Subconvexity for a double Dirichlet series

convexity bound in one variable is |w|1/2+ε on the critical line which coincides with (2) in this
case. Theorem 1 implies the subconvex bound Z(1/2, w; ψ, ψ′)� |w|1/3+ε.

Another interesting case comes from the specialization s+ w = 1, that is, s= 1/2 + it,
w = 1/2− it. Of course, Z(s, 1− s; ψ, ψ′) exists only by analytic continuation. This is a situation
where the analytic conductor (3) is unusually small due to a special configuration. This is a well-
known phenomenon that occurs, for instance, with L-functions of Maaß forms with spectral
parameter t in the neighbourhood of the point 1/2± it. Such effects have quite interesting
consequences, see for example [You] or [Blo08]. For GL(2)-Maaß forms, the subconvexity
problem in this situation has been solved only recently in [MV10]. Theorem 1 above yields
Z(1/2 + it, 1/2− it; ψ, ψ′)� (1 + |t|)1/3+ε while the convexity bound is (1 + |t|)1/2+ε.

One may speculate whether a Lindelöf-type bound holds for Z(s, w; ψ, ψ′). In this direction
we prove the following.

Theorem 2. For Y1, Y2 > 1 one has∫ Y1

−Y1

∫ Y2

−Y2

|Z(1/2 + it, 1/2 + iu; ψ, ψ′)|2 du dt� (Y1Y2)1+ε

for any ε > 0.

Both Theorems 1 and 2 can be extended to Dirichlet series Z(s, w; ψ, ψ′) where ψ, ψ′ are
allowed to have any (fixed) ramification.

The proofs of Theorems 1 and 2 start by writing down approximate functional equations for
Z(s, w; ψ, ψ′). For multiple Dirichlet series we have several choices. Since Γ(s/2)Γ(w/2)Γ((s+
w)/2)Z(s, w; ψ, ψ′) is roughly invariant under (s, w) 7→ (1− s, 1− w), see (36) below, one has
the simplest approximate functional equation of the type

Z(1/2 + it, 1/2 + iu; ψ, ψ′)≈
∑

d6(u(u+t))1/2

L2(1/2 + it, χdψ)ψ′(d)
d1/2+iu

, (4)

cf. Lemma 3. An average bound for L-values (see (16)) then recovers, as usual, the convexity
bound. We can now insert another approximate functional into the numerator L2(1/2 + it, χdψ)
getting something roughly of the form

Z(1/2 + it, 1/2 + iu; ψ, ψ′)�
∑
d∼P

∑
n∼Q

χd(n)
n1/2+itd1/2+iu

, P 6 (u(u+ t))1/2, Q6
√
Pt. (5)

This gives good bounds if P happens to be small. For large P we can successfully apply Poisson
summation in the long d-variable (by quadratic reciprocity it is self-dual at about

√
Qu) and

find something roughly of the form

Z(1/2 + it, 1/2 + iu; ψ, ψ′)�
∑

d∼Qu/P

∑
n∼Q

χd(n)
n1/2+i(t+u)d1/2−iu . (6)

Theorem 1 now follows from Heath-Brown’s large sieve estimate (15) which allows one to bound
efficiently bilinear sums in χd(n). Theorem 2 follows from (5) and (6) together with standard
bounds for Dirichlet polynomials. The above approach based on Poisson summation serves as
a good heuristic, but has to be modified. Not all numbers are squarefree and congruent to
1 (mod 4), and a rigorous argument along these lines would face similar substantial difficulties as
in [Hea95]. However, Poisson summation in the d-variable can be mimiced by applying a suitable
functional equation of Z(s, w; ψ, ψ′) sending (s, w) to (s+ w − 1/2, 1− w). Lemmas 4 and 5
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V. Blomer

will provide the crucial bounds that correspond roughly to (5) and (6). They could be turned
into equations with small error term (what one might call an approximate functional equation),
but the formulas would become even more cumbersome. We remark that it is important for the
proofs of Theorems 1 and 2 that the variables are cleanly separated which makes the argument
a little more technical than the heuristic approach.

Notation. Most of the notation is standard. We recall that ε denotes a sufficiently small positive
constant, not necessarily the same at each occurrence. Similarly, A denotes a sufficiently large
positive constant, not necessarily the same at each occurrence. The notation x∼X means
X 6 x6 2X. All implied constants may depend on ε and/or A even if not explicitly specified.

2. Preparatory material

2.1 Real characters

We follow the notation of [DGH03]. Let d and n be odd positive integers that we decompose
uniquely as d= d0d

2
1 with µ2(d0) = 1 and n= n0n

2
1 with µ2(n0) = 1. We write

χd(n) =
(
d

n

)
= χ̃n(d). (7)

The character χd is the Jacobi–Kronecker symbol of conductor d0 if d≡ 1 (mod 4) and 4d0 if
d≡ 3 (mod 4). We have

χd(2) =


1, d≡ 1 (mod 8),
−1, d≡ 5 (mod 8),
0, d≡ 3 (mod 4),

(8)

and χd(−1) = 1, that is, χd is even. By quadratic reciprocity we have

χ̃n =

{
χn, n≡ 1 (mod 4),
χ−n, n≡ 3 (mod 4).

(9)

Let ψ1, ψ−1, ψ2, ψ−2 denote the four characters modulo 8, that is, ψ1 is the trivial character,
ψ−1 is induced from the non-trivial character modulo 4, ψ2(n) = 1 if and only if n≡ 3 or 5 (mod
8) and ψ−2(n) = 1 if and only if n≡ 5 or 7 (mod 8).

By considering χd0ψ for odd squarefree d and ψ (mod 8) we can construct all real primitive
characters. The L-series satisfies a functional equation

L(s, χd0ψ) =
(
δ0
π

)1/2−sΓ(1−s+κ
2 )

Γ( s+κ2 )
L(1− s, χd0ψ) (10)

where

κ=

{
0, ψ = ψ1 or ψ2,

1, ψ = ψ−1 or ψ−2;
δ0 =


d0, ψ = ψ1, d≡ 1 (4) or ψ = ψ−1, d≡ 3 (4),
4d0, ψ = ψ1, d≡ 1 (4) or ψ = ψ−1, d≡ 3 (4),
8d0, ψ = ψ2 or ψ−2.

(11)

This gives an approximate functional equation [IK04, Theorem 5.3]

L(1/2 + it, χd0ψ) =
∑
n

(χd0ψ)(n)
n1/2+it

G
(ψ)
t

(
n√
δ0

)
+ λ(t, δ0)

∑ (χd0ψ)(n)
n1/2−it G

(ψ)
−t

(
n√
δ0

)
(12)
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where |λ(t, δ0)|= 1 and, for an arbitrary number A> 5,

G
(ψ)
t (ξ) =

1
2πi

∫
(2)

(
cos

πs

4A

)−4AΓ(1/2+it+s+κ
2 )

Γ(1/2+it+κ
2 )

ξ−s
ds

s
�
(

1 +
ξ√

1 + |t|

)−A
, (13)

cf. [IK04, Proposition 5.4]. Most of the time we shall deal with non-fundamental discriminants,
so therefore we note that

L2(1/2 + it, χdψ) =
∏
p|2d1

(
1− (χd0ψ)(p)

p1/2+it

)
L(1/2 + it, χd0ψ). (14)

The paper rests crucially on Heath-Brown’s large sieve estimate for quadratic characters. Here
we need the following two corollaries. Firstly, let (am), (bn) be sequences of complex numbers of
absolute value at most 1; then [Hea95, Corollary 4] states that∑

m6M
m odd

∑
n6N

ambn

(
n

m

)
�ε (MN)ε(MN1/2 +M1/2N)

for any ε > 0. We will use it in the following form: if ãm, b̃m�m−1/2+ε, then∑
m6M
m odd

∑
n6N

ãmb̃n

(
n

m

)
�ε (M +N)1/2+ε. (15)

This follows directly from the preceding inequality after cutting the summations into dyadic
pieces. Secondly, [Hea95, Theorem 2] states that∑

d06X
d0 odd,squarefree

|L(s, χd0ψ)|4� (X(|s|+ 1))1+ε, σ > 1/2,

from which one obtains, by (14) and Hölder’s inequality, the bound∑
d6X
d odd

|L2(s, χdψ)| � (X|s|1/4)1+ε, σ > 1/2; (16)

recall that the subscript 2 indicates the removal of the Euler factor at 2. Heath-Brown’s original
bound is somewhat stronger, and for the purpose of this paper (16) suffices, which could be
deduced from a second moment (rather than a fourth moment).

2.2 Special functions
We recall Stirling’s formula in the following form: for s, z ∈ C with <(s+ z) > 1/10 we have the
uniform bound

Γ(s+ z)
Γ(s̄− z)

�<s,<z |s+ z|2<z (17)

and [IK04, p. 100]
Γ(s+ z)

Γ(s)
�<s,<z (1 + |s|)<z exp

(
π

2
|z|
)
. (18)

For future reference we remark that

Γ(2−z
2 )

Γ( z+1
2 )

=
Γ(1−z

2 )
Γ( z2)

cot
(
πz

2

)
, z ∈ C. (19)
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Away from the poles, we have the uniform asymptotic formula

cot(x+ iy) =−i sign(y) +O(e−2|y|), min
k∈Z
|z − πk|> 1/10. (20)

2.3 Multiple Dirichlet polynomials

For the proof of Theorem 2 we will need the following lemma.

Lemma 1. Let D, N > 0, Y1, Y2 > 1, X := Y1Y2DN , and ε > 0. Let W1, W2 be two fixed smooth
functions with support in [−2, 2]. For n, d ∈ N let f(d, n) be any complex numbers with absolute
value at most 1. Then∫ ∫

W1

(
t

Y1

)
W2

(
u

Y2

)∣∣∣∣∑
d∼D
n∼N

f(d, n)
nitdiu

∣∣∣∣2 du dt�XεDNY1Y2

(
1 +

N

Y1

)(
1 +

D

Y2

)
(21)

and ∫ ∫
W1

(
t

Y1

)
W2

(
u

Y2

)∣∣∣∣∑
d∼D
n∼N

f(d, n)
niud−i(u+t)

∣∣∣∣2 du dt
�Xε(NDY1Y2 +ND2 min(Y1, Y2) +N2DY1 + (ND)2). (22)

Proof. Without loss of generality we can assume that D, N > 1, otherwise the d-sums vanish.
Opening the square, we bound the left-hand side of (21) by∑

d1,d2∼D
n1,n2∼N

∣∣∣∣∫ ∫ W1

(
t

Y1

)
W2

(
u

Y2

)(
n2

n1

)it(d2

d1

)iu
du dt

∣∣∣∣.
Integrating by parts sufficiently often, we can assume, up to an error O(X−A), that

n2 = n1(1 +O(XεY −1
1 )), d2 = d1(1 +O(XεY −1

2 )),

and (21) follows immediately. The second part requires a slightly more careful argument. Again
we bound the left-hand side of (22) by∑

d1,d2∼D
n1,n2∼N

∣∣∣∣∫ ∫ W1

(
t

Y1

)
W2

(
u

Y2

)(
n2d1

n1d2

)iu(d1

d2

)it
du dt

∣∣∣∣,
and we can restrict the summation to

d1 = d2(1 +O(XεY −1
1 )), n2d1 = n1d2(1 +O(XεY −1

2 )).

Hence the left-hand side of (22) is at most

Y1Y2#A (23)

where A is the set of all 6-tuples (d1, d2, n1, n2, a, b) ∈ Z6 satisfying

d1, d2 ∼D, n1, n2 ∼N, |a| �DXεY −1
1 , |b| �NDXεY −1

2 ,
d1 = d2 + a, n2d1 = n1d2 + b.

(24)

The number of such 6-tuples with n1 = n2 is

�XεND(1 +D max(Y1, Y2)−1). (25)
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Subconvexity for a double Dirichlet series

Let us now assume n1 6= n2. We substitute the first equation in (24) into the second and write
n3 = n1 − n2 6= 0. Hence #A is at most the number of 5-tuples (d1, n1, n3, a, b) satisfying

d1, d2 ∼D, n1 ∼N, 0< |n3|6N, |a| �DXεY −1
1 ,

|b| �NDXεY −1
2 , n3d1 = n1a+ b,

which, by a divisor argument, is at most

�XεN

(
1 +

D

Y1

)(
1 +

ND

Y2

)
. (26)

We substitute (25) and (26) into (23) and arrive at the right-hand side of (22). 2

3. Functional equation and meromorphic continuation

The aim of this section is establish the meromorphic continuation and the functional equations
of the double Dirichlet series Z(s, w; ψ, ψ′) defined in (1). We will treat these 16 series
simultaneously and introduce the following notation: let

Z(s, w; ψ) =


Z(s, w; ψ, ψ1)
Z(s, w; ψ, ψ−1)
Z(s, w; ψ, ψ2)
Z(s, w; ψ, ψ−2)

, Z(s, w) :=


Z(s, w; ψ1)
Z(s, w; ψ−1)
Z(s, w; ψ2)
Z(s, w; ψ−2)

,
so Z(s, w) is a column vector with 16 entries. We have the following lemma.

Lemma 2. The functions (s− 1)(w − 1)(s+ w − 3/2)Z(s, w; ψ, ψ′) can be extended holomor-
phically to all of C2. They are of at most polynomial growth in =s and =w in the sense that
for any C1 > 0 there is a constant C2 > 0 such that (s− 1)(w − 1)(s+ w − 3/2)Z(s, w; ψ, ψ′)�
((1 + =s)(1 + =w))C2 whenever |<s|, |<w|6 C1. Moreover, there are 16-by-16 matrices A and
B(s) given by (32) and (33) below, such that

Z(s, w) =AZ(w, s) (27)

and

Z(s, w) = B(s)Z(1− s, s+ w − 1/2). (28)

Proof. This is essentially known and follows the procedure outlined in [DGH03, § 4]. For
convenience, we give the complete argument and provide explicit formulas.

We start with following two expressions for Z(s, w; ψ, ψ′), initially valid for <s, <w sufficiently
large. On the one hand, we have

Z(s, w; ψ, ψ′) = ζ2(2s+ 2w − 1)
∑
d0 odd
µ2(d0)=1

L2(s, χd0ψ)ψ′(d0)
dw0

×
∑
d1 odd

1
d2w

1

∏
p|d1

(
1− (χd0ψ)(p)

ps

)

= ζ2(2s+ 2w − 1)
∑
d0 odd
µ2(d0)=1

L2(s, χd0ψ)ψ′(d0)ζ2(2w)
dw0 L2(s+ 2w, χd0ψ)

. (29)
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The right-hand side of (29) is, by (16) together with (10) for <s < 1/2, absolutely and locally
uniformly convergent and hence holomorphic in

R1 := {(s, w) | <w > 1} ∩ {(s, w) | <s+ <w > 3/2}

with the exception of a polar line at s= 1 if ψ = ψ1 is trivial, and it is of moderate growth in
=s, =w in this region.

On the other hand, we have

Z(s, w; ψ, ψ′) = ζ2(2s+ 2w − 1)
∑
d odd

L2(s, χdψ)ψ′(d)
dw

= ζ2(2s+ 2w − 1)
∑

d,n odd

χd(n)ψ(n)ψ′(d)
dwns

= ζ2(2s+ 2w − 1)
∑
n odd

L2(w, χ̃nψ′)ψ(n)
ns

(30)

where we have used (7). The two equalities (29) and (30) together with (8)–(11) now yield readily
the two matrices A and B(s). One way to construct the matrices explicitly is as follows. For a
character ψ mod 8 and a residue class η ∈ {1, 3, 5, 7} mod 8 let

Y (s, w; ψ, η) = ζ2(2s+ 2w − 1)
∑

d≡η (8)

L2(s, χdψ)ψ′(d)
dw

=
1
4

∑
ψ′

ψ′(η)Z(s, w, ψ, ψ′) (31)

and

Y(s, w; ψ) =


Y (s, w; ψ, 1)
Y (s, w; ψ, 3)
Y (s, w; ψ, 5)
Y (s, w; ψ, 7)

, Y(s, w) :=


Y(s, w; ψ1)
Y(s, w; ψ−1)
Y(s, w; ψ2)
Y(s, w; ψ−2)

.
Moreover, let Ỹ(s, w) and Z̃(s, w) be the same 16-by-16 vectors as Y(s, w) and Z(s, w),
respectively, except for the fact that in the numerator of each component of Ỹ(s, w) and
Z̃(s, w) the character χd in L2(s, χdψ) is replaced with χ̃d. Then (31) gives readily a relation
Z(s, w) =M1Y(s, w) for a 16-by-16 matrix M1 consisting of four identical 4-by-4 blocks on
the diagonal. Next, by (9) we find a matrix M2 such that Y(s, w) =M2Ỹ(s, w). Now we
use (30) to get a functional equation Z(s, w) =M3Z̃(w, s). Finally, applying the functional
equation (10) and (11) together with (8)–(29), we find a diagonal matrix M4(s) such
that Y(s, w) =M4(s)Y(1− s, s+ w − 1/2). Note that the map (s, w) 7→ (1− s, s+ w − 1/2)
leaves s+ 2w invariant and interchanges 2s+ 2w − 1 and 2w. Putting together these four
matrix equations, we get (27) with A=M3M1M2M−1

1 and (28) with B(s) =M1M4(s)M−1
1 ,
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Subconvexity for a double Dirichlet series

or explicitly

A=
1
2



1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 1 1 0 0

1 1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 −1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 1 1

0 0 1 1 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 −1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1 1

0 0 0 0 0 0 0 0 0 0 −1 1 0 0 1 1



∈ C16×16

(32)
and

B(s) =


B1(s)

B2(s)
B3(s)

B4(s)

,

B1(s) =
πs−1/2Γ(1−s

2 )
(4s − 4)Γ( s2)


−41−s 41−s − 2 21−s − 2s 21−s − 2s

41−s − 2 −41−s 21−s − 2s 21−s − 2s

21−s − 2s 21−s − 2s −41−s 41−s − 2
21−s − 2s 21−s − 2s 41−s − 2 −41−s

,

B2(s) =
πs−1/2Γ(2−s

2 )
(4s − 4)Γ( s+1

2 )


−41−s 2− 41−s 21−s − 2s 2s − 21−s

2− 41−s −41−s 2s − 21−s 21−s − 2s

21−s − 2s 2s − 21−s −41−s 2− 41−s

2s − 21−s 21−s − 2s 2− 41−s −41−s

,
B3(s) =

(
π

8

)s−1/2 Γ(1−s
2 )

Γ( s2)
I4, B4(s) =

(
π

8

)s−1/2 Γ(2−s
2 )

Γ( s+1
2 )

I4.

(33)

The two functional equations (27) and (28) are involutions and generate the dihedral group of
order 12. The exact shape of the matrices A and B(s) is not important, but we note that the
entries of B(s) are

holomorphic and of moderate growth in =s if <s < 1 (34)

and
B1(0) = 0. (35)

We proceed to continue Z(s, w; ψ, ψ′) meromorphically. Let α(s, w) = (w, s) and β(s, w) =
(1− s, s+ w − 1/2). Since α(R1) ∩R1 is an open set in C2, we can apply (27) to continue
Z(s, w; ψ, ψ′) to the region

R2 := α(R1) ∪R1 = {(s, w) | <s+ <w > 3/2,max(<s, <w)> 1}
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with moderate growth in =w and =s and polar lines at most at s= 1 and w = 1. Next, since
β(R2) ∩R2 is open in C2, we can apply (28) and continue Z(s, w; ψ, ψ′) to

R3 := β(R2) ∪R2 =R2 ∪ {(s, w) | <s < 0, <w > 1}.

By (34), Z(s, w; ψ, ψ′) is of moderate growth in R3, and the only possible singularities in R3\R2

can occur at β{(1, w) | w ∈ C}= {(0, w) | w ∈ C} and β{(s, 1) | s ∈ C}= {(s, w) | s+ w = 3/2}.
By (35), the first case cannot occur. Next we apply (27) again getting a continuation to

R4 := {(s, w) |max(<s, <w)> 1, <s+ <w > 3/2 if <s, <w > 0}.

Finally, we apply (28) (getting no new singularities since the line s+ w = 3/2 is mapped to w = 1)
and (27) once again. In this way we establish the meromorphic continuation with moderate
growth to all of C2 with the exception of the tube

R∗ := {(s, w) | (<s, <w) ∈ Ω} ⊆ {(s, w) : |<s|2 + |<w|2 6 3}

where Ω⊆ R2 is the closed 12-gon with vertices

(1, 1), (1/2, 1), (0, 3/2), (0, 1), (−1/2, 1), (0, 1/2), (0, 0), (1/2, 0), (1,−1/2), (1, 0), (3/2, 0), (1, 1/2).

By what we have already shown, there is a constant C such that Ξ(s, w) := ((s+
10)(w + 10))−C(s− 1)(w − 1)(s+ w − 3/2)Z(s, w; ψ, ψ′) is holomorphic and bounded in the
tube {(s, w) | 4< |<s|2 + |<w|2 < 5}. A standard argument in several complex variables (see
Propositions 4.6 and 4.7 and the argument on p. 341 of [DGH03]) shows that Ξ(s, w) is
holomorphic and bounded in the tube {(s, w) : |<s|2 + |<w|< 5}. This completes the proof of
the lemma. 2

Iterating (27) and (28) we find

Z(s, w) = B(s) · A · B(s+ w − 1/2) · A · B(w) · AZ(1− s, 1− w). (36)

A computation shows that the matrix M(s, w) := B(s) · A · B(s+ w − 1/2) · A · B(w) · A
contains 124 zeros (out of 256 entries), but it is far from being diagonal. It would be nice
to find a more symmetric version of (36).

An inspection of the matrix B in (33) shows the following notationally more cumbersome,
but slightly more practical, form of (36): there are absolute constants α(κ,j)

ρ,ρ′,ψ,ψ′ such that

Z(s, w; ψ, ψ′) =
1∑

κ1,κ2,κ3=0

2∑
j1,j2=−6

∑
ρ,ρ′∈ ̂(Z/8Z)∗

α
(κ,j)
ρ,ρ′,ψ,ψ′2

j1s+j2wπ2s+2w−2

(4s − 4)(4s+w−1/2 − 4)(4w − 4)

×
Γ(1−s+κ1

2 )
Γ( s+κ1

2 )
Γ(3/2−s−w+κ2

2 )

Γ( s+w−1/2+κ2

2 )

Γ(1−w+κ3
2 )

Γ(w+κ3
2 )

Z(1− s, 1− w; ρ, ρ′). (37)

4. A first approximate functional equation

We use the functional equation (36) to obtain an explicit description of the function Z(1/2 +
it, 1/2 + iu; ψ, ψ′), a so-called approximate functional equation. Although our assumptions are
somewhat different, we follow essentially the argument of [Har02, Theorem 2.5]. For u, t ∈ R we
introduce henceforth the following notation: let

U := 1 + |u|, T := 1 + |t|, S := 1 + |u+ t|, X = STU (38)
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and

C = 4C(0, u) =
∣∣∣∣14 +

i(u+ t)
2

∣∣∣∣ · ∣∣∣∣14 +
iu

2

∣∣∣∣
with the notation as in (3).

Lemma 3. There is a smooth, rapidly decaying function V , and for any u, t ∈ R there are
absolutely bounded constants λ±j,ρ,ρ′,ψ,ψ′(u, t) such that, for any ε > 0 and any C ′ > C1/2+ε,
one has

Z(1/2 + it, 1/2 + iu; ψ, ψ′) =
∑
ρ,ρ′

4∑
j=−8

∑
±
λ±j,ρ,ρ′,ψ,ψ′(u, t)

×
∑

d,m odd
dm26C′

L2(1/2± it, χdρ)ρ′(d)
d1/2±ium1±2i(u+t)

V

(
dm2

2j
√
C

)

+O((TC)1/4+ε min(S, U)−1).

Remark. The error term can be improved with more careful estimations, but the above result
suffices for our purposes. Note that C ′ is bounded below, but is otherwise independent of u and t.

Proof. Let t, u ∈ R. Let H be an even, holomorphic function with H(0) = 1 satisfying the growth
estimate

H(z)�<z,A (1 + |z|)−A (39)

for any A> 0. Define

Fu,t(z) =
1
2
C−z/2

Γ(1/2−iu
2 )Γ(1/2−i(u+t)

2 )

Γ(1/2+iu
2 )Γ(1/2+i(u+t)

2 )

Γ(1/2+iu+z
2 )Γ(1/2+i(u+t)+z

2 )

Γ(1/2−iu−z
2 )Γ(1/2−i(u+t)−z

2 )
+

1
2
Cz/2.

Clearly Fu,t is of moderate growth in fixed vertical strips and Fu,t(0) = 1. We consider the integral

1
2πi

∫
(1)

(21/2+iu+z − 1)(21/2+i(u+t)+z − 1)
(21/2+iu − 1)(21/2+i(u+t) − 1)

· (41/2+iu+z − 4)(41/2+i(u+t)+z − 4)
(41/2+iu − 4)(41/2+i(u+t) − 4)

× Z(1/2 + it, 1/2 + iu+ z; ψ, ψ′)Fu,t(z)H(z)
dz

z
. (40)

The first fraction cancels the possible poles at z =−1/2− iu, z =−1/2− iu− it of Fu,t; the
second fraction cancels the possible poles at z = 1/2− iu, z = 1/2− iu− it of Z and goes well
with the functional equation (37). This device is not strictly necessary, but it is convenient. We
shift the contour to <z =−1. The pole at z = 0 contributes

Z(1/2 + it, 1/2 + iu; ψ, ψ′). (41)

In the remaining integral we apply the functional equation (37) together with (19) and make a
change of variables z 7→ −z getting

− 1
2πi

∫
(1)

(21/2+iu−z − 1)(21/2+i(u+t)−z − 1)
(21/2+iu − 1)(21/2+i(u+t) − 1)

1∑
κ1,κ2,κ3=0

2∑
j1,j2=−6

∑
ρ,ρ′∈ ̂(Z/8Z)∗

α
(κ,j)
ρ,ρ′,ψ,ψ′

365



V. Blomer

× 2j1(1/2+it)+j2(1/2+iu−z)π2i(u+t)−2z

(41/2+it − 4)(41/2+iu − 4)(41/2+i(u+t) − 4)
Γ(1/2−it+κ1

2 )Γ(1/2−i(u+t)+z
2 )Γ(1/2−iu+z

2 )

Γ(1/2+it+κ1

2 )Γ(1/2+i(u+t)−z
2 )Γ(1/2+iu−z

2 )

× cot
(
π(1/2 + i(u+ t)− z)

2

)κ2

cot
(
π(1/2 + iu− z)

2

)κ3

× Z(1/2− it, 1/2− iu+ z; ρ, ρ′)Fu,t(−z)H(z)
dz

z
. (42)

Then (40) equals the sum of (41) and (42). We need to simplify the unduly complicated term
(42). We observe that

Γ(1/2−iu+z
2 )Γ(1/2−i(u+t)+z

2 )

Γ(1/2+iu−z
2 )Γ(1/2+i(u+t)−z

2 )
Fu,t(−z) =

Γ(1/2−iu
2 )Γ(1/2−i(u+t)

2 )

Γ(1/2+iu
2 )Γ(1/2+i(u+t)

2 )
F−u,−t(z),

so that (42) simplifies to

− 1
2πi

∫
(1)

1∑
κ2,κ3=0

4∑
j=−6

∑
ρ,ρ′∈ ̂(Z/8Z)∗

µ
(κ2,κ3,j)
ρ,ρ′,ψ,ψ′ (u, t)2

−jzπ−2z cot
(
π(1/2 + i(u+ t)− z)

2

)κ2

× cot
(
π(1/2 + iu− z)

2

)κ3

Z(1/2− it, 1/2− iu+ z; ρ, ρ′)F−u,−t(z)H(z)
dz

z
(43)

for certain absolutely bounded complex numbers µ
(κ2,κ3,j)
ρ,ρ′,ψ,ψ′ (u, t). In (40) and (43) we open

the Dirichlet series using the definition (1). This yields the following preliminary version of the
lemma: for κ2, κ3 ∈ {0, 1} and u, t ∈ R let

V
(κ2,κ3)
u,t (ξ) =

1
2πi

∫
(1)

cot
(
π(1/2− i(u+ t)− z)

2

)κ2

cot
(
π(1/2− iu− z)

2

)κ3

× C−z/2Fu,t(z)π−2zH(z)ξ−z
dz

z
. (44)

Then there are absolutely bounded constants µ±,(κ2,κ3,j)
ρ,ρ′,ψ,ψ′ (u, t) ∈ C such that

Z(1/2 + it, 1/2 + iu; ψ, ψ′) =
∑
ρ,ρ′

4∑
j=−6

1∑
κ2,κ3=0

∑
±
µ
±,(κ2,κ3,j)
ρ,ρ′,ψ,ψ′ (u, t)

×
∑

d,m odd

L2(1/2± it, χdρ)ρ′(d)
d1/2±ium1±2i(u+t)

V
(κ2,κ3)
±u,±t

(
2jdm2

√
C

)
. (45)

We analyze the function V
(κ2,κ3)
u,t and quote two bounds of [Har02] (see also the erratum):

by [Har02, Lemma 3.1] we have

C−z/2Fu,t(z)� (1 + |z|)2<z, <z > 0 (46)

and by [Har02, Lemma 4.1] we have

C−iy/2Fu,t(iy)− 1� |y|Cε min(S, U)−1, y ∈ R, |y|<Cε (47)

for any 0< ε < 1/2. Both (46) and (47) are uniform in u and t.
Now we return to (44) and shift the contour to the far right. We pick up possible poles

at z = 5/2 + 2n+ iu and z = 5/2 + 2n+ i(u+ t), n= 0, 1, 2, . . . from the cotangent, whose
contribution is, by (39) and (46), at most� log(2 + ξ)ξ−5/2 min(S, U)−A (we need the logarithm
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if t= 0). Hence we find

V
(κ2,κ3)
u,t (ξ)� log(2 + ξ)ξ−5/2 min(S, U)−A + ξ−A,

uniformly in u, t. Combining this with the average bound (16), we conclude that

Z(1/2 + it, 1/2 + iu; ψ, ψ′) =
∑
ρ,ρ′

4∑
j=−6

1∑
κ2,κ3=0

∑
±
µ
±,(κ2,κ3,j)
ρ,ρ′,ψ,ψ′ (u, t)

×
∑

d,m odd
dm26C1/2+ε

L2(1/2± it, χdρ)ρ′(d)
d1/2±ium1±2i(u+t)

V
(κ2,κ3)
±u,±t

(
2jdm2

√
C

)

+O((TC)1/4+ε min(S, U)−A) (48)

for any ε > 0. We can now remove the dependence on u and t of V (κ2,κ3)
u,t . To this end we consider

V (ξ) =
1

2πi

∫
(1)
π−2zH(z)ξ−z

dz

z
. (49)

This is a smooth, rapidly decreasing function. For ξ� Cε we estimate the difference

V
(κ2,κ3)
u,t (ξ)− (i sign(u+ t))κ2(i sign(u))κ3V (ξ)

=
1

2πi

∫
γ

(
cot
(
π(1/2− i(u+ t)− z)

2

)κ2

cot
(
π(1/2− iu− z)

2

)κ3

C−z/2Fu,t(z)

− (i sign(u+ t))κ2(i sign(u))κ3

)
π−2zH(z)ξ−z

dz

z
(50)

where γ = γ1γ2γ3 with γ1 = [−i∞,−iε], γ2 a semicircle to the right of the origin joining −iε
and iε, and γ3 = [iε, i∞]. The portion |=z|>Cε contributes by (46) and (39) at most O(C−A).
In the remaining part we insert the formula (20) at the cost of an error O(Cε min(S, U)−A).
The integrand is now holomorphic at z = 0, and we replace the semicircle γ2 with a straight line
through the origin. Now we insert (47) and bound the integral (50) by O(Cε min(S, U)−1).

Now we replace in (48) the weight function V
(κ2,κ3)
u,t by (i sign(u+ t))κ2(i sign(u))κ3V at the

cost of an error

Cε min(S, U)−1
∑

dm26C1/2+ε

|L2(1/2± it, χdρ)|
d1/2m

� (TC)1/4+ε min(S, U)−1

by (16). The lemma now follows with C ′ = C1/2+ε. By the rapid decay of V it remains valid for
any larger C ′. 2

Lemma 3 reduces the estimation of Z(1/2 + it, 1/2 + iu; ψ, ψ′) to bounding∑
d,m odd
dm26C′

L2(1/2± it, χdρ)ρ′(d)
d1/2±ium1±2i(u+t)

V

(
2jdm2

√
C

)
.

Applying a smooth partition of unity, it is therefore enough to bound

Dψ,ψ′(t, u, P ;W ) :=
∑

d,m odd

L2(1/2 + it, χdψ)ψ′(d)
d1/2+ium1+2i(u+t)

W

(
dm2

P

)
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for a smooth function W with support on [1, 2] and

1 6 P 6 (US)1/2+ε. (51)

Henceforth we will always assume that P satisfies (51), and we recall the notation (38). We prove
the following variant of the preceding lemma.

Lemma 4. Let δ0 be given by (11) and let T ′ > TXε. Then the following bound holds:

Dψ,ψ′(t, u, P ;W )�
∑
±

∑
m6P 1/2+ε

(Xm)ε

m

∫ ε+iXε

ε−iXε

∫ ε+iXε

ε−iXε

×
∣∣∣∣ ∑
d06m−2P 1+ε

d0 odd

∑
n6(T ′P )1/2

(χd0ψ)(n)ψ′(d0)δs/20

n1/2±it−sd
1/2+iu−w
0

∣∣∣∣ |dw| |ds|+ P−A.

Proof. This follows quickly from (12) and (15). More precisely, by (14) and (12) we have

|Dψ,ψ′(t, u, P ;W )| �
∑
±

∑
m,d1

dε1
md1

∣∣∣∣ ∑
d0 odd

∑
n

(χd0ψ)(n)ψ′(d0)

n1/2±itd
1/2+iu
0

G
(ψ)
±t

(
n√
δ0

)
W

(
d0d

2
1m

2

P

)∣∣∣∣
where G(ψ)

t is given by (13). By the rapid decay of W and Gt (cf. (13)) we can truncate the sums
at d0d

2
1m

2 6 P 1+ε and n6 (T ′P )1/2 at the cost of an error O(P−A). Let Ŵ denote the Mellin
transform of W . Then Ŵ is an entire function with rapid decay in fixed vertical strips. We recast
W and G

(ψ)
t by Mellin inversion getting

|Dψ,ψ′(t, u, P ;W )| � P−A +
∑
±

∑
m6P 1/2+ε

1
m1−ε

∫
(ε)

∫
(ε)

∣∣∣∣(cos
πs

4A

)−4AΓ(1/2+it+s+κ
2 )

Γ(1/2+it+κ
2 )

×
∑

d06m−2P 1+ε

d0 odd

∑
n6(TP )1/2+ε

(χd0ψ)(n)ψ′(d0)δs/20

n1/2±it−sd
1/2+iu−w
0

Ŵ (w)
(
P

m2

)w∣∣∣∣ |dw| ∣∣∣∣dss
∣∣∣∣

with κ as in (11). By Stirling’s formula (18) and the rapid decay of Ŵ we can truncate the s,
w-integration, and the lemma follows. 2

5. A second approximate functional equation

In this section we establish a different bound for Dψ,ψ′(t, u, P ;W ). By Mellin inversion we have

Dψ,ψ′(t, u, P ;W ) =
1

2πi

∫
(1)
Z(1/2 + it, 1/2 + iu+ w; ψ, ψ′)Ŵ (w)Pw dw. (52)

Let H be the same function as in the preceding proof, that is, H is even and holomorphic, rapidly
decaying in fixed vertical strips and H(0) = 1. For <z > 3/2 and R> 0 we consider the term

−Z(1/2 + it, z; ψ, ψ′) +
1

2πi

∫
(3)

41/2+it+s − 4
41/2+it − 4

Z(1/2 + it+ s, z; ψ, ψ′)RsH(s)
ds

s
. (53)

We shift the contour to <s=−3. The possible pole of Z at s= 1/2− it is cancelled by the first
fraction, and the possible pole at s= 1− it− z contributes at most O(R1−<z(1 + |z + it|)−A). We
change variables s 7→ −s and apply (one component of) the functional equation (28). Hence the
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preceding expression equals

− 1
2πi

∫
(3)

1∑
κ=0

1∑
j=−3

∑
ρ,ρ′∈ ̂(Z/8Z)∗

α̃
(κ,j)
ρ,ρ′,ψ,ψ′(t)2

−jsπ−s cot
(
π(1/2− it− s)

2

)κ

×
Γ(1/2+it+s

2 )

Γ(1/2−it−s
2 )

R−s/2Z(1/2− it+ s, z + it− s; ρ, ρ′)H(s)
ds

s

+O(R1−<z(1 + |it+ z|)−A) (54)

for absolutely bounded constants α̃κ,jρ,ρ′,ψ,ψ′(t). We substitute (53) and (54) with R= (PT )1/2 and
z = 1/2 + iu+ w into (52) getting

Dψ,ψ′(t, u, P ;W ) =D + D̃ +O(P 3/4S−A), (55)

say, where

D :=
(

1
2πi

)2∫
(1)

∫
(3)

41/2+it+s − 4
41/2+it − 4

Z(1/2 + it+ s, 1/2 + iu+ w; ψ, ψ′)Ŵ (w)

× H(s)
s

T s/2Pw+s/2 ds dw (56)

and

D̃ :=
1∑

κ=0

1∑
j=−3

∑
ρ,ρ′∈ ̂(Z/8Z)∗

α̃
(κ,j)
ρ,ρ′,ψ,ψ′(t)

(
1

2πi

)2∫
(1)

∫
(3)

Γ(1/2+it+s
2 )

Γ(1/2−it−s
2 )

cot
(
π(1/2− it− s)

2

)κ
× 2−jsπ−sZ(1/2− it+ s, 1/2 + i(u+ t) + w − s; ρ, ρ′)Ŵ (w)

× H(s)
s

T−s/2Pw−s/2 ds dw. (57)

For the error term in (55) we used the rapid decay of Ŵ . Both double integrals are absolutely
convergent. In (56), we shift the w-integration to <w =−1 and change variables w 7→ −w. There
is a possible pole on the way at w = 1/2− iu whose contribution is, by the rapid decay of Ŵ ,
bounded by O(U−A). Hence

D =
(

1
2πi

)2∫
(1)

∫
(3)

41/2+it+s − 4
41/2+it − 4

Z(1/2 + it+ s, 1/2 + iu− w; ψ, ψ′)

× Ŵ (−w)
H(s)
s

T s/2P−w+s/2 ds dw +O(U−A). (58)

Here it is important to note that the partition of unity has removed the pole at w = 0 that would
occur if Ŵ (w) was replaced by H(w)/w as in Lemma 3.

Now we apply the functional equations (27) and (28) in the form

Z(1/2 + it+ s, 1/2 + iu− w) =A · B(1/2 + iu− w)Z(1/2− iu+ w, 1/2 + i(u+ t)− w + s)
(59)

and

Z(1/2− it+ s, 1/2 + i(u+ t) + w − s)
=A · B(1/2 + i(u+ t) + w − s) · AZ(1/2 + iu+ w, 1/2− i(u+ t)− w + s). (60)
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For convenience we write this out explicitly: the (ψ, ψ′)-component of (59) is

Z(1/2 + it+ s, 1/2 + iu− w; ψ, ψ′) =
1∑

κ=0

1∑
j=−3

∑
ρ,ρ′∈ ̂(Z/8Z)∗

β
(κ,j)
ρ,ρ′,ψ,ψ′(u)

2−jwπ−w

41/2+iu−w − 4

×
Γ(1/2−iu+w

2 )

Γ(1/2+iu−w
2 )

cot
(
π(1/2 + iu− w)

2

)κ
× Z(1/2− iu+ w, 1/2 + i(u+ t)− w + s; ρ, ρ′) (61)

for certain absolutely bounded constants β(κ,j)
ρ,ρ′,ψ,ψ′(u), and the (ρ, ρ′)-component of (60) is

Z(1/2− it+ s, 1/2 + i(u+ t) + w − s; ρ, ρ′)

=
1∑

κ=0

1∑
j=−3

∑
ρ̃,ρ̃′∈ ̂(Z/8Z)∗

β̃
(κ,j)
ρ̃,ρ̃′,ρ,ρ′(u, t)

2j(w−s)πw−s

41/2+i(u+t)+w−s − 4

×
Γ(1/2−i(u+t)−w+s

2 )

Γ(1/2+i(u+t)+w−s
2 )

cot
(
π(1/2 + i(u+ t) + w − s)

2

)κ
× Z(1/2 + iu+ w, 1/2− i(u+ t)− w + s; ρ̃, ρ̃′) (62)

for certain absolutely bounded constants β̃(κ,j)
ρ̃,ρ̃′,ρ,ρ′(u, t). We substitute (61) into (58) and open

both components of the absolutely convergent double Dirichlet series. In this way we see that

D =
∑

ρ,ρ′∈ ̂(Z/8Z)∗

∑
n,d odd

χd(n)ρ(n)ρ′(d)
n1/2−iud1/2+i(u+t)

(
1

2πi

)2∫
(1)

∫
(3)
ζ2(2s+ 2it+ 1)

×
1∑

κ=0

1∑
j=−3

β
(κ,j)
ρ,ρ′,ψ,ψ′(u)

41/2+it+s − 4
41/2+it − 4

2−jwπ−w

41/2+iu−w − 4
cot
(
π(1/2 + iu− w)

2

)κΓ(1/2−iu+w
2 )

Γ(1/2+iu−w
2 )

×
(
nP

d

)−w( d√
TP

)−s
Ŵ (−w)

H(s)
s

ds dw +O(U−A). (63)

Similarly, we substitute (62) into (57) getting

D̃ =
∑

ρ,ρ′∈ ̂(Z/8Z)∗

∑
n,d odd

χd(n)ρ(n)ρ′(d)
n1/2+iud1/2−i(u+t)

(
1

2πi

)2∫
(1)

∫
(3)

1∑
κ1,κ2=0

1∑
j1,j2=−3

γ
(κ1,κ2,j1,j2)
ρ,ρ′,ψ,ψ′ (u, t)

× ζ2(2s+ 2it+ 1)
2−j1s+j2(w−s)πw−2s

41/2+i(u+t)+w−s − 4
cot
(
π(1/2− it− s)

2

)κ1

× cot
(
π(1/2 + i(u+ t) + w − s)

2

)κ2

×
Γ(1/2+it+s

2 )

Γ(1/2−it−s
2 )

Γ(1/2−i(u+t)−w+s
2 )

Γ(1/2+i(u+t)+w−s
2 )

Ŵ (w)
H(s)
s

(
n

dP

)−w
(d
√
TP )−s ds dw (64)

for certain absolutely bounded constants γ(κ1,κ2,j1,j2)
ρ,ρ′,ψ,ψ′ (u, t). We can now substitute (63) and (64)

into (55) to obtain an approximate functional equation for the quantity Dψ,ψ′(t, u, P ;W ) that
we want to bound. It remains to analyze the two double integrals in (63) and (64) as functions
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of d, n, t, u, P . To this end we shift contours and use Stirling’s formula (17). Let

T ′ > TXε, S′ > SXε, U ′ > UXε, X ′ := S′T ′U ′. (65)

First we shift in (63) the s-contour to <s=A, bounding the double integral by �
(dU/nP )(

√
TP/d)A. Hence we can restrict the d-summation to

d6 (T ′P )1/2

with an error of at most O(X−A). Next we shift the w-integration to <w =A. The poles
of the cotangent are cancelled by the poles of the Gamma function. On <s= <w =A we bound
the double integral by � (UT )/(

√
Pn)A; hence we can we can truncate the n-sum at

n6
(T ′)1/2U ′

P 1/2

with the same error. Similarly, in (64) we shift the s-contour to <s=A and restrict the d-sum to

d6
(T ′)1/2S′

P 1/2
,

at the cost of an error O(X−A); then we shift the w-contour to <w =A− 1 and truncate the
n-sum at

n6 (T ′P )1/2,
again with an error O(X−A). Having truncated the double sums (63) and (64) in this way, we
shift the contours back to <s= <w = ε and interchange the (now finite) d, n-double sum with
the absolutely convergent s, w-double integral. Finally, by the rapid decay of Ŵ and H we can
truncate the s, w-integration. Thus we arrive at the following complement to Lemma 4. We keep
the notation (38) and (65).

Lemma 5. The following bound holds:

Dψ,ψ′(t, u, P ;W )

� (X ′)ε max
ρ,ρ′∈ ̂(Z/8Z)∗

∫ ε+i(X′)ε

ε−i(X′)ε

∫ ε+i(X′)ε

ε−i(X′)ε

∣∣∣∣ ∑
n,d odd

d6(T ′P )1/2

n6(T ′/P )1/2U ′

χd(n)ρ(n)ρ′(d)
n1/2−iu+wd1/2+i(u+t)−w+s

∣∣∣∣

+
∣∣∣∣ ∑

n,d odd
d6(T ′/P )1/2S′

n6(T ′P )1/2

χd(n)ρ(n)ρ′(d)
n1/2+iu+wd1/2−i(u+t)−w+s

∣∣∣∣ |ds dw|+ P 3/4S−A.

6. Proof of Theorems 1 and 2

We are now prepared to prove our main theorems. In order to prove Theorem 1, we first observe
that, without loss of generality, we can assume

T 6 U � S. (66)

Indeed, by (27) and (28) we have

Z(1/2 + it, 1/2 + iu; ψ, ψ′)�max
ρ,ρ′
|Z(1/2 + iu, 1/2 + it; ρ, ρ′)|,

Z(1/2 + it, 1/2 + iu; ψ, ψ′)�max
ρ,ρ′
|Z(1/2 + i(t+ u), 1/2− iu; ρ, ρ′)|
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with absolute implied constants. Hence we can exchange u and t, if necessary, to ensure |t|6 |u|,
and then we can exchange t and t+ u (thereby sending u to −u), if necessary, to ensure
|u|/2 6 |u+ t|6 2|u|. The desired bound of Theorem 1 is symmetric in these permutations which
justifies our assumption (66).

In Lemmas 4 and 5 we estimate the character sum by (15) and conclude that

Dψ,ψ′(t, u, P ;W )� U ε min
(
P 1/2 + (TP )1/4, (TP )1/4 +

(
T

P

)1/4

U1/2

)
.

Lemma 3 now implies that

Z(1/2 + it, 1/2 + iu, ψ, ψ′)� (TU2)1/4+ε

U
+ U ε max

P�U

(
(TP )1/4 + min

(
P 1/2,

(
T

P

)1/4

U1/2

))
.

If P 6 U2/3T 1/3 we take the first term in the parentheses, otherwise we take the second. In either
case,

Z(1/2 + it, 1/2 + iu, ψ, ψ′)� U2/3+εT 1/3

as was to be proved.
We proceed to prove Theorem 2. Let W be a non-negative function satisfying W (x) = 1 for

x ∈ [−1, 1] and W (x) = 0 for |x|> 2. We need to prove∫ ∫
W

(
t

Y1

)
W

(
u

Y2

)
|Z(1/2 + it, 1/2 + iu; ψ, ψ′)|2 du dt� (Y1Y2)1+ε. (67)

The same argument as above shows that, without loss of generality, we can assume

Y1 6 Y2. (68)

Let γ be the vertical segment [ε− iY ε
2 , ε+ iY ε

2 ]. For P 6 Y 1+ε
2 let

Q
(P,Y1)
1,± (t, u; s, w) :=

∑
D=2ν16P 1+ε

N=2ν26(Y1P )1/2+ε

∣∣∣∣ ∑
d0 odd

d0∼D, n∼N

(χd0ψ)(n)ψ′(d0)δs/20

n1/2±it−sd
1/2+iu−w
0

∣∣∣∣,
Q

(P,Y1,Y2)
2 (t, u; s, w) :=

∑
D=2ν16(Y1P )1/2+ε

N=2ν26(Y1/P )1/2Y 1+ε
2

∣∣∣∣ ∑
n,d odd

d∼D,n∼N

χd(n)ρ(n)ρ′(d)
n1/2−iu+wd1/2+i(u+t)−w+s

∣∣∣∣,
Q

(P,Y1,Y2)
3 (t, u; s, w) :=

∑
D=2ν16(Y1/P )1/2Y 1+ε

2

N=2ν26(Y1P )1/2Y ε2

∣∣∣∣ ∑
n,d odd

d∼D,n∼N

χd(n)ρ(n)ρ′(d)
n1/2+iu+wd1/2−i(u+t)−w+s

∣∣∣∣,
where the D, N -sums run over O(log Y2) powers of 2. Recall that δ0 in Q

(P,Y1)
1,± (t, u; s, w) was

defined in (11). We combine Lemmas 3–5 to see that under the assumption (68) we have,
uniformly in |t|6 Y1 and |u|6 Y2,

Z(1/2 + it, 1/2 + iu; ψ, ψ′)

� Y ε
2

(
(TSU)1/4

min(S, U)
+
U3/8

SA
+ U−A

)
+ Y ε

2

∑
P=2µ6Y 1+ε

2

∑
ρ,ρ′
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×
∫
γ

∫
γ

min
(∑
±
Q

(P,Y1)
1,± (t, u; s, w), Q(P,Y1,Y2)

2 (t, u; s, w) +Q
(P,Y1,Y2)
3 (t, u; s, w)

)
dw ds

� Y ε
2 ((Y1Y2)1/4S−3/4 + Y

3/8
2 S−A + 1) + Y ε

2

∑
P=2µ6Y1

∑
ρ,ρ′,±

∫
γ

∫
γ
Q

(P,Y1)
1,± (t, u; s, w) dw ds

+ Y ε
2

∑
Y16P=2µ6Y 1+ε

2

∑
ρ,ρ′

∫
γ

∫
γ
Q

(P,Y1,Y2)
2 (t, u; s, w) +Q

(P,Y1,Y2)
3 (t, u; s, w) dw ds

=:Q0 +Q1 +Q2 +Q3, (69)

say. Here it is important to note that we may enlarge the summation ranges in the d, n-sums in
Lemmas 4 and 5 slightly to make them independent of t and u. We substitute (69) into (67). By
Cauchy–Schwarz and (21) we have∫ ∫

W

(
t

Y1

)
W

(
u

Y2

)
|Q1|2 du dt� max

P6Y1,D6P 1+ε

N6(Y1P )1/2+ε

Y1Y
1+ε
2

(
1 +

N

Y1

)(
1 +

D

Y2

)
� Y1Y

1+ε
2 .

Similarly, using (22) instead of (21), we find that∫ ∫
W

(
t

Y1

)
W

(
u

Y2

)
|Q2|2 du dt� Y ε

2 max
Y16P6Y 1+ε

2

D6(Y1P )1/2+ε

N6(Y1/P )1/2Y 1+ε
2

NDY1Y2 +ND2Y1 +N2DY1 + (ND)2

DN

� Y1Y
1+ε
2

and∫ ∫
W

(
t

Y1

)
W

(
u

Y2

)
|Q3|2 du dt� Y ε

2 max
Y16P6Y 1+ε

2

D6(Y1/P )1/2Y 1+ε
2

N6(Y1P )1/2+ε

NDY1Y2 +ND2Y1 +N2DY1 + (ND)2

DN

� Y1Y
1+ε
2 .

Finally we estimate trivially∫ ∫
W

(
t

Y1

)
W

(
u

Y2

)
|Q0|2 du dt� Y ε

2 (Y 3/2
1 Y

1/2
2 + Y

3/4
2 Y1 + Y1Y2)� Y1Y

1+ε
2

using (68) in both steps. The preceding four estimates establish (67) and complete the proof of
Theorem 2.

References

Blo08 V. Blomer, On the central value of symmetric square L-functions, Math. Z. 260 (2008), 755–777.
DGH03 A. Diaconu, D. Goldfeld and J. Hoffstein, Multiple Dirichlet series and moments of zeta and

L-functions, Compositio Math. 139 (2003), 297–360.
GH85 D. Goldfeld and J. Hoffstein, Eisenstein series of 1

2 -integral weight and the mean value of real
Dirichlet L-series, Invent. Math. 80 (1985), 185–208.

Goo82 A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29
(1982), 278–295.

Har02 G. Harcos, Uniform approximate functional equation for principal L-functions, Int. Math. Res.
Not. 2002 (2002), 923–932; Erratum, Int. Math. Res. Not. 2004 (2004), 659–660.

373



V. Blomer

HM06 G. Harcos and P. Michel, The subconvexity problem for Rankin–Selberg L-functions and
equidistribution of Heegner points. II, Invent. Math. 163 (2006), 581–655.

Hea95 D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995),
235–275.

HK J. Hoffstein and A. Kontorovich, The first non-vanishing quadratic twist of an automorphic
L-function, Preprint.

IK04 H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society
Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).

Li X. Li, Bounds for GL(3)×GL(2) L-functions and GL(3) L-functions, Ann. of Math (2),
to appear.

MV10 Ph. Michel and A. Venkatesh, The subconvexity problem for GL2, Publ. Math. Inst. Hautes
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