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Fluorescence Correlation Spectroscopy in Small Cytosolic Compartments
Depends Critically on the Diffusion Model Used

Arne Gennerich and Detlev Schild
Physiologisches Institut, Universitat Gottingen, D 37073 Gottingen, Germany

ABSTRACT Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of
fluorescent molecules and their diffusion constants. In the standard case, fluorescence fluctuations are measured in an open
detection volume defined by the confocal optics. However, if FCS measurements are carried out in cellular processes that
confine the detection volume, the standard FCS model leads to erroneous results. In this paper, we derive a modified FCS
model that takes into account the confinement of the detection volume. Using this model, we have carried out the first FCS
measurements in dendrites of cultured neurons. We further derive, for the case of confined diffusion, the limits within which
the standard two- and three-dimensional diffusion models give reliable results.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) allows thdirection at which the intensity of the exciting laser beam is
measurement of nanomolar concentrations of fluorescerdropped by 16, respectively.

molecules and their diffusion constants (Widengren and In the case oim noninteracting fluorescent species, the
Rigler, 1998). The method consists, first, of observing in aACF consists of a weighted sum of individual ACFs as
small illuminated sample volume fluorescence intensitydescribed by Eq. 1la

fluctuations caused by concentration fluctuations and, sec-

ond, of calculating the autocorrelation function (ACF) of G(7) = 1(1 — IB)Z( + Te T/ﬁ)

the photodetector output. A theoretical model of the ACF is (Nges Lot 1-7T

then fitted to the experimental ACF, yielding, as parame- (1b)
ters, the average numbé\) of molecules in the detection y % b, 1

volumeV, and the diffusion constam. The model for free
translational three-dimensional (3D) diffusion in the case of
a 3D Gaussian approximation of the detectable emissioRlere®; is the fractional weighting factor for thjéh species
intensity distribution (see Eq. 3) is given by (Aragand  (Elson and Magde, 1974)

Pecora, 1976; Rigler et al., 1993)

i1 1+ 7l7gy, \1 + T/SZTdiﬁJ'

1 Ig\3(.  Tem b= 7mQ i 2 (1c)
G(’T) :<N>(l _lt:t> <1+1_T> (Eizl Qinj)
(1a) WwhereQ is the quantum efficiency ang = (N;)/(Ngeo the
1 1 relative molecular fraction.
15 . L+ oISy In cases where the diffusion of one fluorescent species

occurs in two dimensions, e.g., in tiey plane, Eg. 1a is
whereT and 7, account for the fractional part of molecules simplified to a two-dimensional (2D) diffusion model,
being in the triplet state and the triplet state decay time |\2 Te 1
constant, respectively (Widengren et al., 1995); the factoG(T) - (1 _ B) (1 + ) . ] (2a)
(1 — 1/1,,)? corrects for an uncorrelated background inten- (N) liot 1=T) 1+ gy
sity Ig, with I, being the total intensity includings (KO- f the background intensity, and triplet state populatioh

ppel, 1974); the steady state concentration of the fluorogan pe neglected, Egs. 1a and 2a take on a simpler form,
phore is(C) = (N)/V; the diffusion constarD is related to

the characteristic diffusion time constanj of the fluo- G.(7): 1 1 1 (1d)

— 2 . H T) .= 77y ° y
rescent' molecules bD.— rxy/47qiﬁ, and S_equr?lls the ratio Xz (NY 1+ 7/7g4g v+ IS T
r/r., With r, andr,,, being the distances in axial and lateral

and
G . 71 2b
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ent parts of a cell. There are as yet few reports in which FC$43.5 nm as excitation source (LK 54015, Laser Graphics, Dieburg,
has been applied to the intracellular environment (Berlandermany). Tandem galvanometer mirrors (GD120DT, GSI Lumonics,
et al.. 1995 Politz et al.. 1998: Brock et al.. 1998 Schwi”eUnterschlelsshelm, Germany) were usedxey-positioning, and a piezo-

ot al ' 1999') none of th,em tal’<ing into aCC(')unt tl‘;e Speciﬁcdriven objective holder (P-721.10, Physik Instrumente, Waldbronn, Ger-

. many) for z-positioning. The voltages to they-scanner and the-piezo
geometry of the cellular compartments from which ﬂuores'Werr—) controlled either by potentiometers or by a custom-made program

cence was measured. written in C and running on a Siemens microcontroller (MCB-167, Keil

We here report that the models given by Eqgs. 1 and 2 ar€lektronik, Grasbrunn, Germany), to which a 12-bit dual-channel DAC
generally not adequate to describe fluorescence correlatid®AC 2813AP, Burr & Brown, Tucson, AZ) were latched. The back
data taken in small cytosolic compartments. The reason igperture of the objective used (C-Apochromat 40/1.2 W, Zeistir@en,
that the volume from which fluorescence is gathered iscermany)was 9 mm. Because the laser beam diameter (doebraditis)

. . , at this aperture was 8.23 mm, the back aperture was not overilluminated.
partly confined by the boundaries of the cell's plasma,‘The detection pinhole had a diameter of pth. The focal lengths of
membrane rather than, as usually assumed, by the detec“@&anning and tube lens were such that the pinhole radius mapped into the
volume of the confocal optics. We have therefore developedbject plane was about, = 0.24um. The dark count rate of the avalanche
a modified diffusion model that takes into account the
extension of the cellular compartments from which fluores-
cence is gathered and, finally, confirm the validity of this
model by applying it to small intracellular compartments of A

neurons of the olfactory bulb (OB) ofenopus laevis. 40 ]

160

120

MATERIALS AND METHODS

Cell culture

100

80 +
Cultured neurons of the OB ofenopus laevisvere prepared as described
previously by Bischofberger and Schild (1995). Briefly, larvaeofaevis
(stage 48 to 54, Nieuwkoop and Faber, 1956) were anesthetized with
Tricain (100 mg/l), and the olfactory bulbs were extirpated. The tissue was
incubated at 22°C for 90 min in a dissociation solution containing EDTA 20 L
(2 mM), papain (30 U/ml), and cysteine (1.5 mM). The resulting pieces Iy o=t
were triturated with an Eppendorf pipette. The cells were plated onto dishes
coated with poly:-lysine (50ug/ml) and laminin (20ug/ml) in a drop of
medium (50ul) containing 70% L15, 10% horse serum, and m@/ml
gentamycin. After 20 h, 0.1 ml of growth medium, which contained 75% 160 -
L15, 5% horse serum, and 2@/ml gentamycin, was added, allowing the B

cells to condition their own environment. Measurements were carried out 140 4
within 2 weeks after plating.

The cultured cells were characterized with the use of antibodies against
glial cells and GABAergic neurons. Mitral cells were identified by injec- 100
tion of fluorescent beads into the lateral olfactory tract and successive
retrograde labeling (Bischofberger et al., 1995). The results were very
similar to those reported for rat cultured OB cells (Trombley and West-
brook, 1990); mitral cells appeared as the largest neurons in the culture and
were multipolar, whereas glutamic acid decarboxylase-positive cells were
smaller and of ellipsoidal shape. 20 4

60 -

s(y)/keps

120

s(z)/kcps

Electrophysiology °3 1 2 3 4 5 6

To load the neurons with the fluorescent dye TMR-dextran (10 kDa, z/pm

Sigma-Aldrich Chemie, Deisenhofen, Germany), the neurones were patch

clamped in the whole cell configuration using borosilicate glass pipetteS |GURE 1 Line scanning profiles through two dendrites of a cultured
having pipette resistances of about &Mthe pipette solution contained neyron stained with the membrane dye di-8-ANNERS. y¢scan (oisy
the dye with a volume fraction of 1/100). Standard patch clamp equipmen{race); scan velocity of 32 nm/s. Fitting the rectangular profile (Eq. 9,
was used as described (Bischofberger and Schild, 1995). The compositiagpjid) and the circular profile (Eq. 8jashed gaved, = 0.51um, d,
of the bath solution was (in mM): NaCl 102, KCI 2, Mg2, CaC} 2, 0.348um, e = 47.52 kepsd = 0.716um, o, = 60.5 keps, ang, =
Glucose 20, HEPES 10, 240 mOsm, pH 7.8, while that of the plpetteogz um, respective|y_ Fixed parameter§§, = 0.25 pm, r, = 1.73 wm,
solution was NaCl 2, KCI 103, MgGB, EGTA 1, HEPES 10, KATP 1, andl, = 12 kcps. B) z-scan @oisy trace; scan velocity: 107.5 nm/s.

Na,-GTP 0.01, 220 mOsm, pH 7.8. Fitting the rectangular profile (Eq. 1%plid) gaved, = 0.424pm, d, =
0.553um, oy = 52.23 keps, and, = 3.18 um. Fixed parameters;,, =
FCS set-up 0.24 um, r, = 1.7 um, andlg = 14 kcps. The tails of the data are not

perfectly fitted by Eq. 11 due to the assumption that the detectable emission
The FCS set-up was similar to that described by Rigler et al. (1993), butntensity distribution () (Eg. 3) has a 3D Gaussian shape, while the data
differed in the following features: We used a HeNe cw-laser (2.2 mW) atstill reflect the axial Lorezian shape of the exciting volume.
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photodiode used (SPCM-AQ-141, EG&G, Optoelectronics, Dumberry,and, second, a rectangular function
Canada) was 1008, its photon detection efficiency was 70—80%. Back-

reflection (\o,. = 543.5 nm) was blocked by an interference filter (HQ Yot dy/2 d, d,
582/50, OD6, AF Analysetechnik, Pfrondorf, Germany) put in front of the &ect(Y, 2) = dy"8(y" — y)[ﬁ(z — 2) + 8(2 + 2)]
photodiode. The output pulses of the photon-counting module were fed to yo—dy/2
a correlator board (ALV-5000/E, ALV, Langen, Germany).

The Gaussian laser beam profile and the pinhole used determined the dif2 dy
detectable emission intensity distributiog(r') (Rigler et al., 1993) + J dz'8(z' — z)[S(y — Yo+ 2)

—d,/2

. X2+ y? zZ
le(r) = gQly exp<—2 2 )exp(—z r2>' 3)

dy
” z +oly=vo— 5| (6
andz = 0 being the center of the dendritic cross section. The

circular cross section is defined by the diametewhereas the rectangular
cross section is defined by the widtl and the heighd,. Generallyd, d,,

g accounts for the overall optical losses of the emission pathway incIudinqNith y=y,
the efficiency of the photoavalanchediode, & the quantum efficiency °
of the fluorescent dyd,, is the maximum laser intensity in the focus. This

profile corresponds to the apparent closed detection volge andd, are slowly varying parameters along the dentrite.
The convolution of Egs. 5 or 6 with the excitation volume (Eq. 3) gives
V, = 3/2r§yrZ, (4) the theoreticay-line scanning profile,

structure factorS was determined by measuring the translational 3D
diffusion of TMR in water, assuming a diffusion constantdf= 2.8 X
10~° cn?/s (Rigler et al., 1993).

+o +o +oo
from which fluorescence is gathered. The beam waist radiyand the S(y) — <Cs>j dxrf dyrf dz &x’ y' Z)
'IE(X,!y_ y’! Z,)f (7)

with (Cg) being the average number of dye molecules per surface element.
For a circular cross section, we have

Size of dendrites Suc(y) = a- (1 — §2)7112

In this context, there are two reasons why it is important to measure the size P 2
of dendritic compartments. First, the concentration of fluorescent mole- X expl —2 d/4 yg + i _ (ysz — Yo

cules can be calculated from the average particle nugien the sample r§ I’iy I’%(S2 -1

volume only if the sample volume is known. In dendrites, the volume in
which diffusion takes place is partly given by the plasma membrane \/2(82 — 1) d y82 —Yo
boundaries, which therefore need to be estimated. The second reason is that X qerfl ——— 0T 5 —
o . o ) 2 S£-1
the dendritic diameters in the diffusion model we develop herein result as
fit parameters from the FCS analysis. An independent measurement of the hice A\
dendritic size can confirm the diameters resulting from the diffusion model. —erf \ 0 — = — (8)
We used two ways of determining the dendritic size. The first way r, 2 -1 ’
consists in staining the plasma membrane. After an FCS measurement, the ) )
cultured neurons were incubated for3 min in 20 uM di-8-ANNEPS ~ Whereas, for a rectangular cross section, we obtain
(Molecular Probes, Leiden, the Netherlands) dissolved in the bath solution. 2
e _ _ d; y—VYo+d/2
After rinsing the bath, we scanned along a line orthogonal to the dendrlteSr t(Y) =a-|exp — =5 erf /E Yy
An example of the resulting intensity profile is shown in FigA1The et 2r; \
dendritic diameters follow from the convolution analysis of the profile. A

z

Ty

line-scanning profile is the convolution product of the excitation volume, Y—Yo dy 2
approximately given by Eq. 3, and a boundary functix y, 2) which is _erf< \Er>} +S- erf( br )
zero everywhere except at the plasma membrane. Because of the high Y ez
membrane dye concentration, the cytosolic fluorescence contribution of the (y —yo+ dy/2)2

FCS measurement was neglected. Interestingly, fitting the scanned profile X {ex%—z 2)

(Fig. 1A) can provide information about the dendritic cross section. We Iy

first assumed a circular boundary function in tre-plane orthogonal to

the dendrite, + ex;{—Z(y_yoz_dy/Z)zﬂ], 9)

Iy

yo+d/2 d? where
gcirc.(yr Z) = dY'S(Y’ - Y)[S(Z - 4 - (Y' - yO)z) - r

o2 a=gQlCd 5 1, S=_". (10)

Xy
2
+ 5<Z 4 d -y - YO)ZH, (5) Fitting either function (Eqs. 8 and 9) to the data shown in Fig 1
4 revealed that the experimental profile is best described by rectangular

Biophysical Journal 79(6) 3294-3306
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boundaries (the Gaussian error deviations of the theoretical curve from th RESULTS
experimental values werng,. = 29.95 andy%,, = 11.57, respectively).
This is presumably due to the typical shape of cultured cells, which is ofterlStandard model
rectangular at their bases due to the cell’s adhesion to the Petri dish. . N . .
Similarly, the dendritic boundaries can be measured by scanning par] N€ fluctuationdC(r, t) of the local concentratio€f(r, t) at
allel to the optical axis using a calibrated piezo objective drive. Fig. 1 a pointf and timet occurs around the steady state concen-
shows az-scan through a dendrite, centereg at 0 andz = z,, along with tration (C),
the theoretical profile for the rectangular approximation,

8C(r, 1) = C(r, 1) — (C). (18)

d; 52 2%+ df2
Sect(2) = | S-exp — 22 erfl \2 r, The correlation of the concentration fluctuati®@(r, t) att
g andt with the concentration fluctuatioBC(r’, t + 7) att’

z—7—d,/2 d, and a later time + 7 is given by
—erf \57 +erfl —
’ V<l xy O, F' 1, 1) = (8C(F, )8C(F', t + 7)), (19)
y {exp(—z (z—2z+ dz/2)2) or, assuming stationarity (Papoulis, 1991),
r2 - . R
‘ (T, T', 7) = (8C(F, 0)8C(F', 7)). (20)

_ _ 2
+ exp<—2 (ZZOZdZ/Z))H (11) ¢ can be expressed in terms of the probability density for a
single molecule that started a random walk at time 0 at

r.Z
L = .
The second way of determining the dendritic size consists in measuring Bhe pointr to be atf’ at time,
line scan orthogonal to a dendrite that is homogeneously filled with a > >, . - =,
hydrophilic dye. This method is useful if the emission intensity is suffi- (r, 1, 1) =(Op(r, 1, 7), (21)
ciently high to give smooth functions and if several cells are to be used ir\Nith
the same culture dish. Assuming a concentratioh and a rectangular

cross section, (F . F’)z
z 7 _ —3/2, _
ealy, 2 = [y — Yo + 6/2) — ey — yo — /2] . 1", 7) = (4mDr) ex"( 4Dr ) (@2)
X [e(z+ dJ2) — e(z— d,/2)], (12) The normalized 3D correlation function (Eqg. 1) can be

calculated from Egs. 3, 21, and 22 (Afagand Pecora,

ith . .
W 1976). Note that the 3D autocorrelation function (Eq. 1d)
1 for y=y,
ey = Yo = { 0 otherwise, (13)
the line-scanning profile in the image plane is
y— Yot d/2
Sr/ect.(y) = B ’ |:erf< \/5 r
xy
(14)
y—Yo—d/2
—erf( \“E e
Iy E
with O
) 773/2 dz
B = gQIKC)ryr, o5 erf o ) (15)
\2r,
while line scanning along the optical axis is
7— 7 +d/? 1E3 0,01 0,1 1 10 100 1000 10000
SI{ (Z) = - | erfl ‘E L
ect. Y \ r, ©ms
(16)
27— d,/2 FIGURE 2 Autocorrelation curve calculated from fluorescence fluctua-
—erfl \/‘2 AL tions of 10 kDa TMR-dextran emitted from a dentrite of a cultured neuron
z of the OB. The ACF was measured over 60 s after diffusion had reached
with a steady state. The dye concentration in the pipette was 20 nM and the
maximum laser intensity in the focus whs= 3.14 kWi/cnf. Fitting the
/2 y standard multicomponent ACF model (Eq. 1b) gdixp = 0.933,T =
y = gQI{O)Lr, 572 erf B (17)  0.192,7 = 4.37us, and the parameters given in the text. Fixed parameter:
VE xy S=17.
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can be written as the reciprocal particle number times thevhich fluorescence is recorded. In our system, the detection
product of three functiong;(7), volumeV, has 1¢° radii of aboutr,, = 0.24pm andr, = 1.7
wm, respectively. Obviously, the size of a dendrite can be of
Gyy(7) = i / 1 —— 1 - 1 _ the same order or smaller. Therefore, the models given by Eq.
(N) \1+4D7/rZ, 1+ 4D7r3, \1+4D7/r? 1 and 2 do not adequately describe data taken in small cyto-
1 solic compartments.
= W (1) * Gy(7) * G,(7). (23) In the folIowmg, we develop a modified FCS mode.l that
takes boundaries such as the plasma membrane into ac-
count. We first consider the case where diffusion is confined
Failure of the standard model in the axial direction of the detection volume and then

. ) ) extend the results to the case where diffusion is also con-
Figure 2 shows an autocorrelation function calculated frony,eq in one lateral direction.

the fluorescence fluctuations of TMR-dextran (10 kDa)

emitted from a dendrite of a cultured neuron of the OB. The

dendrite’s diameter was slightly smaller thanuin. At-

tempts to fit this autocorrelation function with the model Model of diffusion limited by boundaries in

given by Eq. l1a failed to converge. The fluorescence fluc-axial direction

tuations of a fluorophore when injected into a cell can havgNe consider boundary planeszat 0 andz = d. pernen-

more than one kinetic constant (Brock et al., 1998). There-,. yaary p 0z = G, perpen

. ) . ; . “dicular to the optical axis such that diffusion is confined

fore we tried to fit the experimental autocorrelation function etween these boundaries. For a 2D Gaussian intensit

to the multi-component model (Eqg. 1b). The simplest modeP W ) u 1€S. . ussian | 'y

describing the data (Fig. 2) was a three-component modeP.rOf'le’ this case has been treated in detail py El_son a_nd

The first component contributed 25% with a time constantN,I""g_de ,(1974)' In the case of a ,3D -Gau55|an mtengty

of 744 = 93.5 s, the second 68% withy; = 1.51 ms distribution (Eq. 3) the detectable diffusion takes place in a
iff, . , if, . ,

and the third 7% wittrg; = 154 ms. The problem with this barrel-like volume_ (Fig. 4) rather .than in an eIIipsoid-Ii_ke

fit is that the characteristic time constangy, is much volume. As the diffusive flux v_amshes at .the»bou_ndarles,

smaller than the time constant of TMR-dextran (10 kDa) inthey expanded the concentration fluctuatid@(r, t) in a

water (about 0.16 ms for our FCS set-up)y, is also much Fourier cosine series along tlzeaxis. After a number of

smaller than the measured characteristic diffusion times oflgebraic steps and Fourier transforms, they showed that

the autofluorescent components (own data). Hence, the fElson and Magde, 1974)

shown in Fig. 2, though numerically correct, lacks physical

plausibility. o, 7', 1) = (C)py Pz (24)
The reason for this obvious discrepancy lies in the mor-

phology of the cell from which the fluorescence was recordedwhere

Fig. 3 shows a laser scanning micrograph of a typical neuron

of the OB: I.n the derivation of the standar_d FCS modgls (I_Eqspxy(x, X, Y,y 7)

1 and 2), it is assumed that the volume within which diffusion

occurs is much larger than the confocal detection volume from = (47D7) texp(—[(x — X )2 + (y — y')?)/4D7) (25)

A0 m

0 e T

o = LA iy

(176 pr

FIGURE 3 Confocal laser scanning micrograph of a cultured neuron (mitral cell) of the OB stained with fluoresceindiacetate.

Biophysical Journal 79(6) 3294-3306
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optical axis

FIGURE 4 Quasi-ellipsoid detection volumé,, characterized by the
1/&*-radii r,, andr,, confined in axial direction by boundary planeszat
Z, = d,/2. With respect to the origirx(= 0,y = 0, z = 0), the detection
volume of the confocal setup is centered@t= (Xo, Yo, Zo)-

is the 2D Fokker—Planck solution, and

pz*(zi Z’v T)

o ’
— i —D7(mm/d;)2 Mz Mz
e co co
q, = q, )4,

|

gives the one-dimensional probability density of a molecuIeG;yz*(T)
whose random walk is confined to the space between the

3299

100s

p_(@p)

00 +—r—7""—T T T T T T
00 01 02 03 04 05 06 07 08 09 10

z/um

FIGURE 5 Normalized probability density,.(2) for a single molecule
whose diffusion is confined to the space between boundary plares at
0 umandz=1um (d, = 1 um), plotted for different times after the start
of the random walk at’ = 0.2 um (D = 2.8 X 10~ ° cn?/s).

whereG;,,.(1) := (8i(0)di(7)) is the unnormalized autocor-
relation function, andz* denotes the axis along which
diffusion is confined.

Using Eq. 3 and Eqg. 24, integrations ovex’ andy, Yy’
give

~ (©)(gQl?
T ad,

boundary planes. Figure 5 shows the normalized function

p,« (Eg. 26) for a number of values af Note thatp,. stays
finite for 7 — oo

The autocorrelation functiors(7) of the fluorescence
signali(t),

+oo +o0 d;
i(t) = f de dy j
—oo —» 0

with F, = (0, 0,7,) being the center of the detection volume,
is given by

dz Ie(f — ro)C(r, 1),  (27)

(8i(0)8i(1)) _ Guy(7)
7

1 +oo [ 4o 4o [ 4o d; [d;
= i dxadx’ dydy’ dzdz
—w Y o Y —o o Yo

nyz* (T) =

|E(F - FO)IE(F’ - Fo)(b(F: r, 7), (28)

my [ [* (z2—2)’°
X1+ it f J catzon -2
Xy 0 0 z

-
’ 2 *
eXp(—Z(ZrZZO)> X [1 +2 > exp[—Dfr(rgﬂ-)

mmrz mmnz' ]
CO Tz CO Tz .

Using the normalized variablé := z/d, and the error

function
2 X
erf(x) = ff
VT,

Biophysical Journal 79(6) 3294-3306
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Gyy+(7) takes the form

C lo)?
G;yz*(T) =< >(4_gd? )

mly | | \2
“T+apar| 8|y, %%

+ erf(ﬁzo)}
r,
1 dz 2 ZO 2 2
{ f d{ex{—Z(B) (5 - dz) ]cos(mw{)] ] (31)

o r 2
m
+2d2 D exp —D7<dw) ]

Gennerich and Schild

Using the definition

\mr, 16<dz 2 o
gz*(T) = dz |:1 + ? FZ %:| (34)

simplifies the expression fdB,y,«(7),

1 1
Cue () = 2oz (€)' 1+ aDatr?,” % (7

(35)

We have thus derived an autocorrelation function that is
proportional to the 2D autocorrelation function (Eq. 2)
times a functiong,.(7), which accounts for the confined
diffusion in axial direction.g,.(7) is such that Eqg. 35 ap-
proaches the 2D modéb, (7) (Eq. 2b) for a sufficiently
small confinement parametdy/r,, while it tends to the 3D
modelG,,,(7) (Eg. 1d) for a sufficiently large confinement

To obtain the normalized autocorrelation function parameted,/r,. Below, we will quantitatively analyze what
G,y+(7), we first calculate the average fluorescence signakxactly is meant by “sufficiently” (see Discussion).

(i,

(iy = gQIo(C)f“c J'“c dx dy exp(—z)(;y2>

d; _ 2
J dz exp<—2(Z rZZO) )
0 z

32 \/E
= 9QI(C) 52 riyrz{erf[r(dz - 2)

2
+ erf(?zo)},

(32)
and then obtain
G>,< z*(T)
nyz*(T) = <y|>2
B 1 1
~ mr,d{C) 1+ 4D1/r,
1 16/d,\?> o 33
X + ? Tz @ . ( )

where

A= exp(—Da-(rzw) )
[ o3 e
X dZexp —2| —| | {— 7| |codmm?)
. r, d,
+ erf(fa)} .
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2
B = {erf[\r(dZ - Z)

Diffusion model with boundaries in
two dimensions

Neuronal processes such as axons or dendrites often have
diameters of one micrometer or less. In these cases, diffu-
sion is usually confined along the optical axis and, in
addition, orthogonally to the process, i.e., Zn and in
y-direction. Let us therefore assume additional boundary
planes perpendicular to tlyeaxis localized ay = 0 andy =

dy. Then, following the same line of thought as above, and
applying the above steps (Eqgs. 28 through 35) results in an
autocorrelation function for diffusion confined i and
z-direction,

1 1
Gyope (1) = .
e (7) T2r5r (C) 1/‘1+4D7/r§y

X Gy(7) * g(7), (36)

with g,.(7) defined in analogy t@,.(7) (Eq. 34),
o \Erxy 1 16<dy Z @ 37
gy*(T).— dy +?rxy '@ . ( )

where

w 2
n
@=> ex;(—DT dﬂ-))
n=1 y
. _
X Jdnexp
0
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If diffusion in z-direction can be neglected,( — =2
r,/d, for d, — 0), while diffusion iny-direction cannot be

neglected, the adequate diffusion model is

1 1
Gl = r5,d,(C) . 1+ 4D1/r, 19 (7):

The effect of confinement of diffusion in thedirection is
illustrated in Fig. 6 for a number of valueg/r,,. Assuming
'y = 0.25 um and a dendritic diameter of &m, i.e.,
dr,, = 4, there is a marked deviation @,,.(7) from

(38)

G,,(7) for large 7. In thinner dendrites, the deviation be-
comes increasingly larger and can also be observed at sme(tJI
7. These results clearly show the necessity for taking into

3301

and
o . z erfiz) .
9e:(7) = Z[ * (ﬁr erf(Z/\2) )
(40)
. exd —k@2)(7/(S* Z))7l741]
\/1 + T/SZ’Tdiff :|,
with
k(i) = 0.689+ 0.34- ex —0.37- (i — 0.57. (41)

An alternative and faster possibility of fitting;. () that
oes not require the calculation of error functions is

account the size of the dendritic compartment. However, [
handling Eq. 34 or Eq. 37 is highly cumbersome. In prac-g,(1) = \7
tical applications, it is presently easier and faster to use an

approximation of the modified diffusion model.

Approximation of g;.(+)

We were unable to find a closed form expresgipiir) that
approximatesy. (7) for all di/r;. However, ford/r; = 8, the
following approximations can be used:

]
ooy N (Y ey
O (1) = Y [1 + (\E erf(Y/ \JE) )

-exd_k(Y)(W/Y)ZT/Tdiff]:|

e
\Jl + ’T/’Tdiff

(39)

0,8+

o
(o]
1

G, (V/G, (0)

0,24

1E-3 0,01 0,1 1 10 100 1000

t/ms

FIGURE 6 Normalized ACFG,.(7) (Eq. 38) for a number of values

Y = d,/r,,. The upper six traces correspond, from the upper to the lower
curve, to the paramete¥s= 0, 1, 2, 3, 4 and’ = 8. The lowest solid curve
shows the normalized trace f@,,.(7) for Y — «. For comparison, we

have included the normalized AGE;,,(7) (Eq. 1d,lowest curvedashedl.
ParametersD = 2.8 X 107® cnv/s, r,, = 0.25um, S= 5.

[ 4 T
1+ 4g(1— 01004 + 0.00363(“)exp(—<y> Tdﬁ)]
for YeE[0,3.1
-1 N L - 1\exli—(/0.837T/Y)27/Tdiff)]l
_ Jr / VL + T
\ for YE[3.1,8
(42)
and
I
G =
(74 ™\
1+ 45— 0.1002% + 0.003624)9XP<_<S-Z> m)]

for Z€][0,3.]]

I 4 \exp(—(O.B?m/(S- Z))ZT/Tdiﬁ):|
1+ - = T ’
I \MT / \1 + T/Ssziff
| for Z2€[3.1, 8.

(43)

In either case, the maximum error between the exact func-

tion g (1) and the approximatiod; () is 0.1% ford/r; <
2, 1% ford/r; < 3.1, 1.2% ford,/r; < 7.7, and 1.4% for
d/ry=8,fori =yori =1z

For the approximated ACF&,y.,«(1) and G,y.(1), we
thus have

Gyyz(7) = Gy (1) G(7),  (44)

Vd<C> . \J‘Jl + T/’Tdiﬁ
and

1 1 _
GXy*(T) - chl.<C> . \f/l + ’T/’Tdiff . gy*(T)’

(45)
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With Vg, := mrZ,d,. 144
We will now apply the ACFG,.(7) to experimental data.
1,2 4

Application of the diffusion model G,,.(7) 1,0

We loaded OB neurons with TMR-dextran (10 kDa, see
Methods) and carried out FCS measurements on dendrites_ |
with diameters of 1um or less. Diffusion in the axial < .|
direction can be neglected because, with= 0.24 um and o |
S= 7, we haver, = 1.7 um, i.e., the dendritic diameter is
sufficiently smaller than the height of the detection volume
(see Discussion). In the radial direction, however, lateral
diffusion is confined by the dendritic boundaries yat= ]
*d,/2 = +0.5um that cut away a part of the open detection 0.0 b rrrrmr—eerrey ey =SS
volume. Moreover, in living cells, we have to consider more 1E3 001 0 1 10 100 1000 10000
than one characteristic diffusion time (Brock et al., 1998), ms

so that the modified ACF model is given by

0,8

0,4

0,24

1 |.\2 Te FIGURE 7 ACF of the fluorescence fluctuation data shown in Fig. 2,

G(r) = 1— 'B 1 € together with the modified ACF model (Eq. 46). The experimental ACF
T <Ngef> 1-T was calculated over 60 s from the fluorescence fluctuations of 10 kDa
TMR-dextran emitted from a dentrite of a cultured neuron. Result of the fit:

I tot,

m (N) = 0.939,T = 0.202, andry = 5.01ps. ®,, D, 7gitr,, Tairr,, aNAY are
; —i explained in the text.
X S @, g(7) - G (D), (46) P

=1

with m standard ACF terms for diffusion along the dendrite, In water, 74 of the TMR-dextran (10 kDa) was 160
i.e., thex-axis, us = 6 ws. Taken together the time constant in the range
180-350us clearly appears to be the principal time con-
(7 = 1 stant of TMR-dextran (10 kDa) in the cytosol.
o \/1 + Tl 7g, In the above case, where the standard model led to a
characteristic time constant smaller than that in water, the
and m approximated ACF terms for confined diffusion values coming out from the standard model were obviously

(47)

along they-axis (Eq. 39) wrong. However, in other cases where there were two
componentsb, and®., it was a priori not clear that these
- . \
§.(7) = NT 1 l erf(Y) _ values were erroneous. Figure 8 shows data of this type
v\ Ty Vf} erf(Y/ \/E) (48) measured in a dendrite with a diameterdyf= 0.63 um

(line-scanning measurement). The standard model (Eq. 1b)
» eXr{—k(Y)(w/Y)ZT/rdim]} led to®; = 0.84, 74, = 0.536 ms andb, = 0.16, 74, =

46.37 ms. As the dendritic boundaries severely confine the

diffusion space, these results must be supposed to be wrong.
In Fig. 2 we have shown that the standard diffusion modeln fact, applying the modified model led &, = 0.31,

is not sufficient to describe experimental data taken from agir, = 0.25 ms,®, = 0.69, 14, = 1.03 ms, andy =

dendrite. We now apply the modified ACF model (Eq. 46) d,/r,, = 2.712,i.e.d, = 2.712: 0.236pum = 0.64um. 7.

to the same experimental data (Fig. 2). The fit nicely con-was thus exactly in the expected range, dpaas virtually

verges giving two components; = 0.34, 74 = 0.187 the same value as the one obtained by line scanning through

ms, ®, = 0.66 andryy, = 2.11 ms (Fig. 7). The fit the dendrite.

parameteryY resulted to bey = 3.576 corresponding to a

dendr|t|c_d|§1m_ete|dy =Tyt Y= 0.84_ pwm (rxy_ = 0.236_ DISCUSSION

pwm). This is in good agreement with the line-scanning

measurement of the dendrite, which gave a diameter of 0.8The major application of FCS is measuring low concentrations

pwm. One of the time constants was always found to be in th@nd diffusion constants. The detection volume is usually given

range 180-300us. The same value also resulted from by the excitation volume of a focused laser together with a

measurements in the soma using Eq. 1b as diffusion modetonfocal emission pathway. A problem occurs if the diffusion

In 55 somata the predominant diffusion time constant was irspace is confined by boundaries such as a plasma membrane so

the range of 200-350.s. that the diffusion takes place in a volume that is comparable

\‘1 + T/Tdiffl
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0,8 1 1,2 4
0,74

0,6 4

0,51

0.4

G(1)
a1

0,34

1E-3 0,01 0,1 1 10 100 1000 10000 1E-3 0,01 0,1 1 10 100 1000 10000 100000

t/ms tms

FIGURE 8 Autocorrelation function calculated from fluorescence fluc- FIGURE 9 Modified one-dimensional autocorrelation functigp(r)
tuations of 10 kDa TMR-dextran emitted from a dentrite of a cultured (EQ. 34) for a number of valued = d,/r,. The lowest curve shows the
neuron of the OB. The intracellular dye concentration was 20 nM. Datamodified modelg,. ..() for unconfined diffusion. It is undistinguishable
were gathered over 60 s. The smooth curve shows the fit of the data to tHgom g,(r) = (1 + 4D1/r2) =/ (also drawn). Parameter®: = 2.8 X 107°
modified ACF model (Eg. 46). Result of the fi\) = 1.7,T = 0.225,7 = cnils, ry, = 0.25um, S= 5.

3.15us, and®y, ®,, 74i,, Tairr,, @NAY as given in the text.

volume centered &, = d,/2, we have forg,.(0) (Eq. 34)
with or smaller than the confocal detection volume. We have
shown herein that, in such cases, the standard FCS diffusian(0)
models lead to erroneous results, e.g., the false detection of

2 2 2
fluorescent species and wrong values for the characteristic > { j ' de exp[_z(dZ) (é«_l) :|cos(mfn-§)]
diffusion times. We have developed a novel model that takes fzr,|  4/d,\2 " '|Jo f2 2
boundaries explicitly into account. T4, | 1+ ;(FZ > [erf(d,/ \2r,) T

Our model allows determination of the limits within
which the standard 2D diffusion is valid, i.e., how small a - . 4\ 1\ 2
compartment has to be so that, using the standard 2D model, > { f dz exp[z(rz) (gz) }cos(mwg)]
the error does not exceed a given value. In a similar way, we 2d, m--={Jo :
will calculate the limits within which the standard 3D modelis ~ ar, [erf(d,/ \2r,) 2
valid, i.e., which size a compartment has to exceed so that,
using the 3D model, the error is smaller than a given value. i o

Another point that needs to be discussed here is the ,4 <™
volume of the diffusion space. To calculate a concentration,= ot [erf(d) 2r) T (49)
one needs the volume in addition to the average particle ' N
number(N) which follows from the model. where thec,, are the Fourier coefficients df?)

dz 2 1 2

Z—limit of the 2D diffusion model G,,(7) f(¢) 1= exrﬂ[—Z(rz) (é - 2) ] (50)

The standard 2D diffusion model reflects experimental au-
tocorrelation functions correctly ifd,/r, is sufficiently i.e.,
small. The range [0,di/r,) ., fOr Which this is the case,
follows from Eq. 34. It can easily be seen tligt(7) starts 1
Cn = J’ d¢ f(Q)cog2mmy). (51)

0

with values larger tham/?r,/d, for small - and approaches
7% /d, for T — o, If we accept 1% deviation dB,,-(7)
from G,(7), g,-(7) must be smaller than 1.0z /d, for
all 7. As g,«(7) has its maximum at = O (see Fig. 9), this For z; = d,/2, the integral in Eq. 49 vanishes for odd
condition isg,.(0) = 1.01- 72 /d,. With the detection numbersm. We therefore replacech with 2m,
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Using Parseval's Theorem, for d,/r, — . If we accept an errgB of 1%, it follows that
0,+(71) must fulfill the equation
* 1
2 el = f [f(O)* dg Oz (11) = 1.01- g(). (56)

° Numerical analysis of Eq. 56 shows that, for a typical

1 d\2 1\2 structure factor ofS = 5 andz, = d,/2, this is true for
- ol o3/
0

(d/r)min = 2.87. Given a typical waist radius of, = 0.25

2 2 wm, we obtain @), = 2.87-r, = 2.87- S-r,, = 3.59

rm.

\nrrrz d, Hence, if the distance between the cellular boundaries in

~2d, *"\y,) (52)  zdirection is larger than 3.5@m, the 3D standard diffusion
model gives a correct interpretation of experimental data for
Eq. 49 takes the form r = 7, and within an error of 1%.
0 erf(d,/r,) (53)
O+ = = a5
[erf(d/ \2r)) T Y—limit of the 2D diffusion model G,(7)

Simple numericie}lz analysis shows that the inequalityy most neuronal processes, diffusion in axial direction can
9,+(0) = 1.01- 77,/d; holds ford,/r, = 0.833. Given & g neglected (see subsection “Z-limit of the 2D diffusion
typical waist radiug,, = 0.25pm and a typical structure ,5qe| G,,(7"). This means we have to use either the
factor of S= 5, we haver, = 1.25um andd, = 1.04#”?‘- standard 2D modeb,(7), in case diffusion is not confined
For cellular compartments that do not exceeduh in iy y.direction, or the modified modeB,y.(r) (Eq. 38),
height, diffusion in axial direction can thus be neglected. iherwise. Which diametedy),,,,, must a process exceed so
Provided that diffusion is not confined in radial direction, {4t the 2D diffusion mode& (7) is appropriate? In other

. . . . X :
the standard 2D diffusion model is adequate. In case d'ﬁ”wOrds, what is the “mitdy/rxy)i/nin so that, for all ¢/r,,) =

sion is additionally confined in one dimension of the |mage(d Ir ) _the relative deviationB of the 2D modelG (’T)
y! U xy ) mine Xy

plane, the modified modé,.(r) needs to be applied. from the modified modeG,.(r) never exceeds a certain
o ) ) value? Because the relative deviatiris a monotonically
Z—limit of the 3D diffusion model G,,(7) increasing function ofr, we have to choose a valug, so

We now discuss the question of which size (in axial direc-that: for™ = 7, the 2D model deviates less thrrom the

tion) a cell must exceed so that the 3D diffusion modeiMmodified model. Io_et us choose, so that G, (r) :=
G,y.(7) is appropriate. In other words, what is the limit aGXy(O)_equaIs 10%d = 0.1) of its initial amplitude, i.e.,
(/1) SO that, for all €Jr,) = (dJr,).m the relative Gyy(1) = 0.1G,(0). We_ are thus asking for which param-
deviation B of the 3D modelG,,(r) (Eq. 1d) from the eter @y/r,y)min the functlonGXy*(r)_assumes a value such
modified modelG,,,.(r) (Eq. 35) never exceeds a certain that G,.(1,) = (1 + B)Gyy(ry). With Eq. 2b and 38, we

value? Because the relative deviatiris a monotonically obtain, for3

increasing function of, we have to choqse a valug, so Gyy+(11) — Gyy(T1)

that, forr = 7, the 3D modelG,,(7) deviates less thaf B= G, (7))

from the modified modeG,, (7). Let us choose; so that AT (57)
GXYZ(I.Tl) = aGXyz(Q)_equals 10% ¢ = 0.1)hof its ki.nitiafl _9(m) —g(m) _gp(m)
amplitude,G,,,(7;) := 0.1 G,,,(0). We are thus asking for g,(1) g,(11)

which parameterd,/r,) ., the functionG,,,.() assumes a
value such thaG,,.(t;) = (1 + B)Gyy, (1), Wwhereg is  If we accept an errop of 1%, it follows thatg,.(r,) must

given by fulfill the equation
B _ nyz*(Tl) - nyz(71) gy*(Tl) = 101gy(71) (58)
GX z . N .
(71 (54) Numerical analysis of Eq. 58 shows that, fgr= d,/2, this
0 (1) — 911 Qpe(T) is true for @,/ry)min = 7.28, i.e.,d, = 1.8 um for a typical
= 9,(10) = 9,(10) -4 waist radius of 0.2%um. Hence, if the diameter of a cellular

. process is thicker than 1.,8m, the 2D standard diffusion
As can clearly be seen from Fig. §,.(7) approaches the qqe| gives correct interpretation of experimental data for

function T = 7, and within an error of 1%.
_ 1 In conclusion, because most neuronal processes are thin-
Oz(7) 1= lim g,(1) = LD 9.(7) (55)  ner than 1.8um, the modified model for confined diffusion
z

dolrz— v should be used. Table 1 gives an overview of the various
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TABLE 1 Appropriate ACF models for confined diffusion along the y- and z-axes

Z> 23817, Z> 412,
a = 0.1, a = 0.01,
Z =0.833 vz Z=8 Z—>» S=5 S=5
Y = 0.833 Gy (7) Gy,+(7) Gy Gy,(7) — —
vY Q(y* (T) ny*z* (7) ny*i* (T) ny*z (T) - -
Eq. 38 Eq. 36
Y=38 ny*(T) ny*z* (7) ny*i*(T) ny*z(T) - -
Eq. 45 Eq. 44
Y — ® ny(T) nyz*(T) nyz* (T) nyz(T) nyz(T) nyz(T)
Eq. 2b Eq. 35 Eq. 1d Eq. 1d Eq. 1d
Y > 7.28, Gy(1) — — — — —
a=01 Eq. 2b
Y > 23, Gy(1) — — — — —
a =001 Eg. 2b

ACF models and indicates the appropriate model for theand, using Eqg. 35 ang,.(0) (Eq. 53), we have
various parameter combinations. The overlined indices de-

note the approximated part of the ACF, i.¢*,stands for Gz (0) = —3 21 . erf(d,r,)
g,-(7) (Eq. 39 or Eq. 42) anz* for g,.(r) (Eq. 40 or Eq. 43), TAYAC) [erf(d/ \2r) P
and the nonoverlined indices denote the exact functions, i.e., 1 1

y* stands forg,.(7) (Eq. 37) andz* for g,.(1) (Eq. 34), ==

whereby the asterisk indicates axes of confined diffusion. If Vi N
diffusion occurs in all directions, the detection volume inwhere(N) = V%(C) is the number of fluorescent molecules
the ACF is given by, = 7% r, = 74, - 7+ in the effective detection volume?;:

(59)

. Every directioni thus contributes a factot/r;. If
the diffusion volume is confined, e.g., idirection, this is VA 32 [erf(d,/ \2r,)? (60a)
taken into account by the functiog,.(7). In case of a d- iz erf(d,/r,)

sufficiently small confinement parametdyr;, i.e., d/r; =
0.833, the corresponding factat’%; of the detection vol-
ume is replaced by the distance of the boundary plahes
because, fod/r, = 0.833, we havey. (1) = 7 /d,. For VA = Vy= 7, (60b)
Z = 0.833, the detection volume becomes this= 7" . _

oty - Ty - d, = w2, d, = V. For confined diffusionin ~and ford,/r, << 1, we find a cylinder volume,

any comblnatlon of directions, the ACFs can be built cor- Vi — Vg, = mrdd,, (60c)
respondingly.

Quite expectedly, fod,/r, — o, the volume tends to the
unconfined volume/,

because erf) ~ 2x/7? for x << 1.
Fig. 10 shows the normalized detection volunfgV, as
a function ofd,/r,. Ford,/r, = 0.835, the detection volume
Assigning concentrations V4 equals, within an error of 1%, the cylinder volume
o _ mr2,d,, i.e., ViVy ~ 72d,r,, and ford,/r, = 2.804 the
The 3D standard diffusion model gives the average numbegjmalized volume tends to unity. The 3D ACF model

(N) of fluorescent molecules in the sample volume as anyz(T) (Eq. 1d) withV* ~ V = w3’2r§yrz gives reliable

result of the fit of the model to experimental dafil) is the  concentrations (within 1% error) &, = 2.804r,, while the

product of the average concentrati®) and the detection op ACE modelG, () (Eq. 2b) withVi ~ V,,, = wr?(ydz

volume Vy = n¥4Zr,. The concentration is thu€C) =  gives reliable concentrations (within 1% error) fdy <

(N)/Vg. Note thatVy is an open volume so that detection 0.835,. For distances, in the intermediate range, we have

occurs also beyond the characteristic ragjiandr,. to take into account the barrel-shape (see Fig. 4) of the
To find the average concentratigi€) in the case of detection volumé/ (Eq. 60a) to obtaifC).

confined diffusion, let us evaluatg,,.(r) for 7 = 0. In case of FCS measurements wilh = 0.835,, the

Assuming the center of the detection volumezat= d,/2  valued, cannot be derived from the experimental ACF data.
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FIGURE 10 Normalized effective detection voluri§/V, as a function
of the confinement parametey/r,.

The volume is thus not known, a@) cannot be calculated
from (N). However, we can obtaifC), using Eq. 60a and
line scans through the dendrite (see Methods).

In cases where diffusion is confinedanandy-direction,
we obtain, using the same arguments as above,

1
Gy (0) = 355~
Y 251 (C)

erf(d,/ry,) erf(d,/r,)
X . .
[erf(dy/\2r,)]? [erf(d,/\2r,)?

If dy/r,, = 0.835 andi,/r, = 0.835, the detection volume is

Xy —

given byV, ~ 7?r,,d,d,. To obtain(C) in this cased, and

Gennerich and Schild
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