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ABSTRACT Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of
fluorescent molecules and their diffusion constants. In the standard case, fluorescence fluctuations are measured in an open
detection volume defined by the confocal optics. However, if FCS measurements are carried out in cellular processes that
confine the detection volume, the standard FCS model leads to erroneous results. In this paper, we derive a modified FCS
model that takes into account the confinement of the detection volume. Using this model, we have carried out the first FCS
measurements in dendrites of cultured neurons. We further derive, for the case of confined diffusion, the limits within which
the standard two- and three-dimensional diffusion models give reliable results.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) allows the
measurement of nanomolar concentrations of fluorescent
molecules and their diffusion constants (Widengren and
Rigler, 1998). The method consists, first, of observing in a
small illuminated sample volume fluorescence intensity
fluctuations caused by concentration fluctuations and, sec-
ond, of calculating the autocorrelation function (ACF) of
the photodetector output. A theoretical model of the ACF is
then fitted to the experimental ACF, yielding, as parame-
ters, the average number^N& of molecules in the detection
volumeVd and the diffusion constantD. The model for free
translational three-dimensional (3D) diffusion in the case of
a 3D Gaussian approximation of the detectable emission
intensity distribution (see Eq. 3) is given by (Arago´n and
Pecora, 1976; Rigler et al., 1993)

G~t! 5
1

^N&S1 2
IB

I tot
D2S1 1

Te2t/tT

1 2 TD
3

1

1 1 t/tdiff
z

1

Î1 1 t/S2tdiff

,

(1a)

whereT andtT account for the fractional part of molecules
being in the triplet state and the triplet state decay time
constant, respectively (Widengren et al., 1995); the factor
(1 2 IB/Itot)

2 corrects for an uncorrelated background inten-
sity IB, with Itot being the total intensity includingIB (Ko-
ppel, 1974); the steady state concentration of the fluoro-
phore is^C& 5 ^N&/Vd; the diffusion constantD is related to
the characteristic diffusion time constanttdiff of the fluo-
rescent molecules byD 5 rxy

2 /4tdiff ; andS equals the ratio
rz/rxy with rz andrxy being the distances in axial and lateral

direction at which the intensity of the exciting laser beam is
dropped by 1/e2, respectively.

In the case ofm noninteracting fluorescent species, the
ACF consists of a weighted sum of individual ACFs as
described by Eq. 1a
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HereFj is the fractional weighting factor for thejth species
(Elson and Magde, 1974)
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whereQj is the quantum efficiency andnj 5 ^Nj&/^Nges& the
relative molecular fraction.

In cases where the diffusion of one fluorescent species
occurs in two dimensions, e.g., in thex–y plane, Eq. 1a is
simplified to a two-dimensional (2D) diffusion model,
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If the background intensityIB and triplet state populationT
can be neglected, Eqs. 1a and 2a take on a simpler form,
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We set out to measurêN& andD in cultured neurons of
the olfactory bulb, in particular in small cytosolic compart-
ments such as dendrites, to understand how the intracellular
milieu affects the diffusion of fluorescent species in differ-
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ent parts of a cell. There are as yet few reports in which FCS
has been applied to the intracellular environment (Berland
et al., 1995; Politz et al., 1998; Brock et al., 1998; Schwille
et al., 1999), none of them taking into account the specific
geometry of the cellular compartments from which fluores-
cence was measured.

We here report that the models given by Eqs. 1 and 2 are
generally not adequate to describe fluorescence correlation
data taken in small cytosolic compartments. The reason is
that the volume from which fluorescence is gathered is
partly confined by the boundaries of the cell’s plasma
membrane rather than, as usually assumed, by the detection
volume of the confocal optics. We have therefore developed
a modified diffusion model that takes into account the
extension of the cellular compartments from which fluores-
cence is gathered and, finally, confirm the validity of this
model by applying it to small intracellular compartments of
neurons of the olfactory bulb (OB) ofXenopus laevis.

MATERIALS AND METHODS

Cell culture

Cultured neurons of the OB ofXenopus laeviswere prepared as described
previously by Bischofberger and Schild (1995). Briefly, larvae ofX. laevis
(stage 48 to 54, Nieuwkoop and Faber, 1956) were anesthetized with
Tricain (100 mg/l), and the olfactory bulbs were extirpated. The tissue was
incubated at 22°C for 90 min in a dissociation solution containing EDTA
(1 mM), papain (30 U/ml), and cysteine (1.5 mM). The resulting pieces
were triturated with an Eppendorf pipette. The cells were plated onto dishes
coated with poly-L-lysine (50mg/ml) and laminin (20mg/ml) in a drop of
medium (50ml) containing 70% L15, 10% horse serum, and 50mg/ml
gentamycin. After 20 h, 0.1 ml of growth medium, which contained 75%
L15, 5% horse serum, and 50mg/ml gentamycin, was added, allowing the
cells to condition their own environment. Measurements were carried out
within 2 weeks after plating.

The cultured cells were characterized with the use of antibodies against
glial cells and GABAergic neurons. Mitral cells were identified by injec-
tion of fluorescent beads into the lateral olfactory tract and successive
retrograde labeling (Bischofberger et al., 1995). The results were very
similar to those reported for rat cultured OB cells (Trombley and West-
brook, 1990); mitral cells appeared as the largest neurons in the culture and
were multipolar, whereas glutamic acid decarboxylase-positive cells were
smaller and of ellipsoidal shape.

Electrophysiology

To load the neurons with the fluorescent dye TMR-dextran (10 kDa,
Sigma-Aldrich Chemie, Deisenhofen, Germany), the neurones were patch
clamped in the whole cell configuration using borosilicate glass pipettes
having pipette resistances of about 8 MV (the pipette solution contained
the dye with a volume fraction of 1/100). Standard patch clamp equipment
was used as described (Bischofberger and Schild, 1995). The composition
of the bath solution was (in mM): NaCl 102, KCl 2, MgCl2 2, CaCl2 2,
Glucose 20, HEPES 10, 240 mOsm, pH 7.8, while that of the pipette
solution was NaCl 2, KCl 103, MgCl2 3, EGTA 1, HEPES 10, K2-ATP 1,
Na2-GTP 0.01, 220 mOsm, pH 7.8.

FCS set-up

The FCS set-up was similar to that described by Rigler et al. (1993), but
differed in the following features: We used a HeNe cw-laser (2.2 mW) at

543.5 nm as excitation source (LK 54015, Laser Graphics, Dieburg,
Germany). Tandem galvanometer mirrors (GD120DT, GSI Lumonics,
Unterschleissheim, Germany) were used forx–y-positioning, and a piezo-
driven objective holder (P-721.10, Physik Instrumente, Waldbronn, Ger-
many) for z-positioning. The voltages to thexy-scanner and thez-piezo
were controlled either by potentiometers or by a custom-made program
written in C and running on a Siemens microcontroller (MCB-167, Keil
Elektronik, Grasbrunn, Germany), to which a 12-bit dual-channel DAC
(DAC 2813AP, Burr & Brown, Tucson, AZ) were latched. The back
aperture of the objective used (C-Apochromat 40/1.2 W, Zeiss, Go¨ttingen,
Germany) was 9 mm. Because the laser beam diameter (double 1/e2 radius)
at this aperture was 8.23 mm, the back aperture was not overilluminated.
The detection pinhole had a diameter of 50mm. The focal lengths of
scanning and tube lens were such that the pinhole radius mapped into the
object plane was aboutrxy 5 0.24mm. The dark count rate of the avalanche

FIGURE 1 Line scanning profiles through two dendrites of a cultured
neuron stained with the membrane dye di-8-ANNEPS. (A) y-scan (noisy
trace); scan velocity of 32 nm/s. Fitting the rectangular profile (Eq. 9,
solid) and the circular profile (Eq. 8,dashed) gavedy 5 0.51 mm, dz 5
0.348mm, arect.5 47.52 kcps,d 5 0.716mm, acirc. 5 60.5 kcps, andy0 5
0.92 mm, respectively. Fixed parameters:rxy 5 0.25 mm, rz 5 1.73 mm,
and IB 5 12 kcps. (B) z-scan (noisy trace); scan velocity: 107.5 nm/s.
Fitting the rectangular profile (Eq. 11,solid) gavedy 5 0.424mm, dz 5
0.553mm, arect.5 52.23 kcps, andz0 5 3.18mm. Fixed parameters:rxy 5
0.24 mm, rz 5 1.7 mm, andIB 5 14 kcps. The tails of the data are not
perfectly fitted by Eq. 11 due to the assumption that the detectable emission
intensity distributionIE(rW) (Eq. 3) has a 3D Gaussian shape, while the data
still reflect the axial Lorezian shape of the exciting volume.
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photodiode used (SPCM-AQ-141, EG&G, Optoelectronics, Dumberry,
Canada) was 100 s21, its photon detection efficiency was 70–80%. Back-
reflection (lexc 5 543.5 nm) was blocked by an interference filter (HQ
582/50, OD6, AF Analysetechnik, Pfrondorf, Germany) put in front of the
photodiode. The output pulses of the photon-counting module were fed to
a correlator board (ALV-5000/E, ALV, Langen, Germany).

The Gaussian laser beam profile and the pinhole used determined the
detectable emission intensity distributionIE(rW) (Rigler et al., 1993)

IE~rW! 5 gQI0 expS22
x2 1 y2

rxy
2 DexpS22

z2

rz
2D. (3)

g accounts for the overall optical losses of the emission pathway including
the efficiency of the photoavalanchediode, andQ is the quantum efficiency
of the fluorescent dye.I0 is the maximum laser intensity in the focus. This
profile corresponds to the apparent closed detection volumeVd,

Vd 5 p3/2rxy
2 rz, (4)

from which fluorescence is gathered. The beam waist radiusrxy and the
structure factorS was determined by measuring the translational 3D
diffusion of TMR in water, assuming a diffusion constant ofD 5 2.8 3
1026 cm2/s (Rigler et al., 1993).

Size of dendrites

In this context, there are two reasons why it is important to measure the size
of dendritic compartments. First, the concentration of fluorescent mole-
cules can be calculated from the average particle number^N& in the sample
volume only if the sample volume is known. In dendrites, the volume in
which diffusion takes place is partly given by the plasma membrane
boundaries, which therefore need to be estimated. The second reason is that
the dendritic diameters in the diffusion model we develop herein result as
fit parameters from the FCS analysis. An independent measurement of the
dendritic size can confirm the diameters resulting from the diffusion model.

We used two ways of determining the dendritic size. The first way
consists in staining the plasma membrane. After an FCS measurement, the
cultured neurons were incubated for;3 min in 20 mM di-8-ANNEPS
(Molecular Probes, Leiden, the Netherlands) dissolved in the bath solution.
After rinsing the bath, we scanned along a line orthogonal to the dendrite.
An example of the resulting intensity profile is shown in Fig. 1A. The
dendritic diameters follow from the convolution analysis of the profile. A
line-scanning profile is the convolution product of the excitation volume,
approximately given by Eq. 3, and a boundary functionj(x, y, z) which is
zero everywhere except at the plasma membrane. Because of the high
membrane dye concentration, the cytosolic fluorescence contribution of the
FCS measurement was neglected. Interestingly, fitting the scanned profile
(Fig. 1A) can provide information about the dendritic cross section. We
first assumed a circular boundary function in they–z-plane orthogonal to
the dendrite,
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and, second, a rectangular function
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with y 5 y0 andz 5 0 being the center of the dendritic cross section. The
circular cross section is defined by the diameterd, whereas the rectangular
cross section is defined by the widthdy and the heightdz. Generally,d, dy,
anddz are slowly varying parameters along the dentrite.

The convolution of Eqs. 5 or 6 with the excitation volume (Eq. 3) gives
the theoreticaly-line scanning profile,
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with ^CS& being the average number of dye molecules per surface element.
For a circular cross section, we have
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whereas, for a rectangular cross section, we obtain
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Fitting either function (Eqs. 8 and 9) to the data shown in Fig. 1A
revealed that the experimental profile is best described by rectangular
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boundaries (the Gaussian error deviations of the theoretical curve from the
experimental values werexcirc.

2 5 29.95 andxrect.
2 5 11.57, respectively).

This is presumably due to the typical shape of cultured cells, which is often
rectangular at their bases due to the cell’s adhesion to the Petri dish.

Similarly, the dendritic boundaries can be measured by scanning par-
allel to the optical axis using a calibrated piezo objective drive. Fig. 1B
shows az-scan through a dendrite, centered aty 5 0 andz5 z0, along with
the theoretical profile for the rectangular approximation,

srect.~z! 5 a z FSz expS2 dy
2
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~z2 z0 2 dz/2!2
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The second way of determining the dendritic size consists in measuring a
line scan orthogonal to a dendrite that is homogeneously filled with a
hydrophilic dye. This method is useful if the emission intensity is suffi-
ciently high to give smooth functions and if several cells are to be used in
the same culture dish. Assuming a concentration^C& and a rectangular
cross section,

jrect.~y, z! 5 @«~y 2 y0 1 dy/2! 2 «~y 2 y0 2 dy/2!#

3 @«~z1 dz/2! 2 «~z2 dz/2!#, (12)

with

«~y 2 y0! 5 H 1 for y $ y0

0 otherwise, (13)

the line-scanning profile in the image plane is
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while line scanning along the optical axis is
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with
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RESULTS

Standard model

The fluctuationdC(rW, t) of the local concentrationC(rW, t) at
a pointrW and timet occurs around the steady state concen-
tration ^C&,

dC~rW, t! 5 C~rW, t! 2 ^C&. (18)

The correlation of the concentration fluctuationdC(rW, t) at rW
and t with the concentration fluctuationdC(rW9, t 1 t) at rW9
and a later timet 1 t is given by

f~rW, rW9, t, t! 5 ^dC~rW, t!dC~rW9, t 1 t!&, (19)

or, assuming stationarity (Papoulis, 1991),

f~rW, rW9, t! 5 ^dC~rW, 0!dC~rW9, t!&. (20)

f can be expressed in terms of the probability density for a
single molecule that started a random walk at timet 5 0 at
the pointrW to be atrW9 at timet,

f~rW, rW9, t! 5 ^C&p~rW, rW9, t!, (21)

with

p~rW, rW9, t! 5 ~4pDt!23/2expS2 ~rW 2 rW9!2

4Dt D. (22)

The normalized 3D correlation function (Eq. 1) can be
calculated from Eqs. 3, 21, and 22 (Arago´n and Pecora,
1976). Note that the 3D autocorrelation function (Eq. 1d)

FIGURE 2 Autocorrelation curve calculated from fluorescence fluctua-
tions of 10 kDa TMR-dextran emitted from a dentrite of a cultured neuron
of the OB. The ACF was measured over 60 s after diffusion had reached
a steady state. The dye concentration in the pipette was 20 nM and the
maximum laser intensity in the focus wasI0 5 3.14 kW/cm2. Fitting the
standard multicomponent ACF model (Eq. 1b) gave^N& 5 0.933, T 5
0.192,tT 5 4.37ms, and the parameters given in the text. Fixed parameter:
S 5 7.
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can be written as the reciprocal particle number times the
product of three functionsgi(t),

Gxyz~t! 5
1

^N&
z

1

Î1 1 4Dt/rxy
2 z

1

Î1 1 4Dt/rxy
2 z

1

Î1 1 4Dt/rz
2

5
1

^N&
z gx~t! z gy~t! z gz~t!. (23)

Failure of the standard model

Figure 2 shows an autocorrelation function calculated from
the fluorescence fluctuations of TMR-dextran (10 kDa)
emitted from a dendrite of a cultured neuron of the OB. The
dendrite’s diameter was slightly smaller than 1mm. At-
tempts to fit this autocorrelation function with the model
given by Eq. 1a failed to converge. The fluorescence fluc-
tuations of a fluorophore when injected into a cell can have
more than one kinetic constant (Brock et al., 1998). There-
fore we tried to fit the experimental autocorrelation function
to the multi-component model (Eq. 1b). The simplest model
describing the data (Fig. 2) was a three-component model.
The first component contributed 25% with a time constant
of tdiff 1

5 93.5 ms, the second 68% withtdiff 2
5 1.51 ms,

and the third 7% withtdiff 3
5 154 ms. The problem with this

fit is that the characteristic time constanttdiff 1
is much

smaller than the time constant of TMR-dextran (10 kDa) in
water (about 0.16 ms for our FCS set-up).tdiff 1

is also much
smaller than the measured characteristic diffusion times of
the autofluorescent components (own data). Hence, the fit
shown in Fig. 2, though numerically correct, lacks physical
plausibility.

The reason for this obvious discrepancy lies in the mor-
phology of the cell from which the fluorescence was recorded.
Fig. 3 shows a laser scanning micrograph of a typical neuron
of the OB. In the derivation of the standard FCS models (Eqs.
1 and 2), it is assumed that the volume within which diffusion
occurs is much larger than the confocal detection volume from

which fluorescence is recorded. In our system, the detection
volumeVd has 1/e2 radii of aboutrxy 5 0.24mm andrz 5 1.7
mm, respectively. Obviously, the size of a dendrite can be of
the same order or smaller. Therefore, the models given by Eq.
1 and 2 do not adequately describe data taken in small cyto-
solic compartments.

In the following, we develop a modified FCS model that
takes boundaries such as the plasma membrane into ac-
count. We first consider the case where diffusion is confined
in the axial direction of the detection volume and then
extend the results to the case where diffusion is also con-
fined in one lateral direction.

Model of diffusion limited by boundaries in
axial direction

We consider boundary planes atz 5 0 andz 5 dz perpen-
dicular to the optical axis such that diffusion is confined
between these boundaries. For a 2D Gaussian intensity
profile, this case has been treated in detail by Elson and
Magde (1974). In the case of a 3D Gaussian intensity
distribution (Eq. 3) the detectable diffusion takes place in a
barrel-like volume (Fig. 4) rather than in an ellipsoid-like
volume. As the diffusive flux vanishes at the boundaries,
they expanded the concentration fluctuationdC(rW, t) in a
Fourier cosine series along thez-axis. After a number of
algebraic steps and Fourier transforms, they showed that
(Elson and Magde, 1974)

f~rW, rW9, t! 5 ^C&pxypz* , (24)

where

pxy~x, x9, y, y9, t!

5 ~4pDt!21exp~2@~x 2 x9!2 1 ~y 2 y9!2#/4Dt! (25)

FIGURE 3 Confocal laser scanning micrograph of a cultured neuron (mitral cell) of the OB stained with fluoresceindiacetate.
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is the 2D Fokker–Planck solution, and

pz*~z, z9, t!

5
1

dz
O

m52`

`

e2Dt(mp/dz)2cosSmpz

dz
DcosSmpz9

dz
D

gives the one-dimensional probability density of a molecule
whose random walk is confined to the space between the
boundary planes. Figure 5 shows the normalized function
pz* (Eq. 26) for a number of values oft. Note thatpz* stays
finite for t 3 `.

The autocorrelation functionG(t) of the fluorescence
signal i(t),

i~t! 5 E
2`

1`

dxE
2`

1`

dyE
0

dz

dz IE~rW 2 rW0!C~rW, t!, (27)

with rW0 5 (0, 0,z0) being the center of the detection volume,
is given by
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^di~0!di~t!&
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5
1

^i&2E
2`

1` E
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dz E
0
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dzdz9

IE~rW 2 rW0!IE~rW9 2 rW0!f~rW, rW9, t!, (28)

whereG9xyz*(t) :5 ^di(0)di(t)& is the unnormalized autocor-
relation function, andz* denotes the axis along which
diffusion is confined.

Using Eq. 3 and Eq. 24, integrations overx, x9 andy, y9
give

G9xyz*~t! 5
^C&~gQI0!

2

4dz

3
prxy

2

1 1 4Dt/rxy
2 E

0

dzE
0

dz

dzdz9expS22
~z2 z0!

2

rz
2 D

expS22
~z9 2 z0!

2
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2 D 3 F1 1 2 O

m51

`

expF2DtSmp

dz
D2G

cosSmpz

dz
DcosSmpz9

dz
DG. (29)

Using the normalized variablez :5 z/dz and the error
function

erf~x! 5
2

ÎpE
0

x

e2t2 dt, (30)

FIGURE 4 Quasi-ellipsoid detection volumeVd, characterized by the
1/e2-radii rxy andrz, confined in axial direction by boundary planes atz 5
z0 6 dz/2. With respect to the origin (x 5 0, y 5 0, z 5 0), the detection
volume of the confocal setup is centered atr#0 5 (x0, y0, z0).

FIGURE 5 Normalized probability densitypz*(z) for a single molecule
whose diffusion is confined to the space between boundary planes atz 5
0 mm andz5 1 mm (dz 5 1 mm), plotted for different timest after the start
of the random walk atz9 5 0.2 mm (D 5 2.8 3 1026 cm2/s).
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G9xyz*(t) takes the form

G9xyz*~t! 5
^C&~gQI0!

2

4dz

3
prxy

2

1 1 4Dt/rxy
2 Fprz

2

8 HerfFÎ2

rz
~dz 2 z0!G 1 erfSÎ2
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z0DJ2

1 2dz
2 O

m51

`

expF2DtSmp

dz D2G
HE

0

1

dzexpF22Sdz

rzD2Sz 2
z0

dzD2Gcos~mpz!J2G. (31)

To obtain the normalized autocorrelation function
Gxyz*(t), we first calculate the average fluorescence signal
^i&,

^i& 5 gQI0^C&E
2`
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x2 1 y2

rxy
2 D

E
0

dz

dz expS22
~z2 z0!

2

rz
2 D

5 gQI0^C&
p3/2

25/2 rxy
2 rzHerfFÎ2

rz
~dz 2 z0!G 1 erfSÎ2

rz
z0DJ,

(32)

and then obtain
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where

! 5 O
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`
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@ 5 HerfFÎ2

rz
~dz 2 z0!G 1 erfSÎ2

rz
z0DJ2

.

Using the definition

gz*~t! :5
Îprz

dz
F1 1

16

p Sdz

rz
D2

z
!

@G (34)

simplifies the expression forGxyz*(t),

Gxyz*~t! 5
1

p3/2rxy
2 rz^C&

z
1

1 1 4Dt/rxy
2 z gz*~t!. (35)

We have thus derived an autocorrelation function that is
proportional to the 2D autocorrelation function (Eq. 2)
times a functiongz*(t), which accounts for the confined
diffusion in axial direction.gz*(t) is such that Eq. 35 ap-
proaches the 2D modelGxy(t) (Eq. 2b) for a sufficiently
small confinement parameterdz/rz, while it tends to the 3D
modelGxyz(t) (Eq. 1d) for a sufficiently large confinement
parameterdz/rz. Below, we will quantitatively analyze what
exactly is meant by “sufficiently” (see Discussion).

Diffusion model with boundaries in
two dimensions

Neuronal processes such as axons or dendrites often have
diameters of one micrometer or less. In these cases, diffu-
sion is usually confined along the optical axis and, in
addition, orthogonally to the process, i.e., inz- and in
y-direction. Let us therefore assume additional boundary
planes perpendicular to they-axis localized aty 5 0 andy 5
dy. Then, following the same line of thought as above, and
applying the above steps (Eqs. 28 through 35) results in an
autocorrelation function for diffusion confined iny- and
z-direction,

Gxy*z* ~t! 5
1

p3/2rxy
2 rz^C&

z
1

Î1 1 4Dt/rxy
2

3 gy*~t! z gz*~t!, (36)

with gy*(t) defined in analogy togz*(t) (Eq. 34),

gy*~t! :5
Îprxy

dy
F1 1

16

p Sdy

rxy
D2

z
#

$G. (37)

where

# 5 O
n51

`

expS2DtSnp

dy DD2

3 HE
0

1

dhexpF22Sdy

rxyD2Sh 2
y0

dyD2Gcos~nph!J2

$ 5 HerfFÎ2

rxy
~dy 2 y0!G 1 erfSÎ2

rxy
y0DJ2

.
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If diffusion in z-direction can be neglected (gz* 3 p1/2

rz/dz for dz 3 0), while diffusion iny-direction cannot be
neglected, the adequate diffusion model is

Gxy*~t! 5
1

prxy
2 dz^C&

z
1

Î1 1 4Dt/rxy
2 z gy*~t!. (38)

The effect of confinement of diffusion in they-direction is
illustrated in Fig. 6 for a number of valuesdy/rxy. Assuming
rxy 5 0.25 mm and a dendritic diameter of 1mm, i.e.,
dy/rxy 5 4, there is a marked deviation ofGxy*(t) from
Gxy(t) for large t. In thinner dendrites, the deviation be-
comes increasingly larger and can also be observed at small
t. These results clearly show the necessity for taking into
account the size of the dendritic compartment. However,
handling Eq. 34 or Eq. 37 is highly cumbersome. In prac-
tical applications, it is presently easier and faster to use an
approximation of the modified diffusion model.

Approximation of gi*(t)

We were unable to find a closed form expressiong# i* (t) that
approximatesgi* (t) for all di/r i. However, fordi/r i # 8, the
following approximations can be used:

g#y*~t! 5
Îp

Y F1 1 S Y

Îp
z

erf~Y!

erf2~Y/Î2!
2 1D

z
exp@2k~Y!~p/Y!2t/tdiff#

Î1 1 t/tdiff
G,

(39)

and

g#z*~t! 5
Îp

Z F1 1 S Z

Îp
z

erf~Z!

erf2~Z/Î2!
2 1D

z
exp@2k~Z!~p/~Sz Z!!2t/tdiff#

Î1 1 t/S2tdiff
G,

(40)

with

k~i! 5 0.6891 0.34z exp@20.37z ~i 2 0.5!2#. (41)

An alternative and faster possibility of fittinggi* (t) that
does not require the calculation of error functions is

g#y*~t! 5
Îp

Y

z 5
F1 1

Y4

45
~1 2 0.1004Y2 1 0.00361Y4!expS2SpYD

2 t

tdiff
DG,

for Y[ @0, 3.1#

F1 1 S Y

Îp
2 1Dexp~2~0.83p/Y!2t/tdiff!

Î1 1 t/tdiff
G,

for Y[ @3.1, 8#

(42)

and

g#z*~t! 5
Îp

Z

z 5
F1 1

Z4

45
~1 2 0.1004Z2 1 0.00361Z4!expS2S p

Sz ZD
2 t

tdiff
DG,

for Z [ @0, 3.1#

F1 1 S Z

Îp
2 1Dexp~2~0.83p/~Sz Z!!2t/tdiff!

Î1 1 t/S2tdiff
G,

for Z [ @3.1, 8#.

(43)

In either case, the maximum error between the exact func-
tion gi* (t) and the approximationg# i* (t) is 0.1% fordi/r i ,
2, 1% for di/r i , 3.1, 1.2% fordi/r i , 7.7, and 1.4% for
di/r i # 8, for i 5 y or i 5 z.

For the approximated ACFsGxy#*z#*(t) and Gxy#*(t), we
thus have

Gxy#*z#*~t! 5
1

Vd^C&
z

1

Î1 1 t/tdiff

z g#y*~t! z g#z*~t!, (44)

and

Gxy#*~t! 5
1

Vcyl.^C&
z

1

Î1 1 t/tdiff

z g#y*~t!, (45)

FIGURE 6 Normalized ACFGxy*(t) (Eq. 38) for a number of values
Y 5 dy/rxy. The upper six traces correspond, from the upper to the lower
curve, to the parametersY5 0, 1, 2, 3, 4 andY5 8. The lowest solid curve
shows the normalized trace forGxy*(t) for Y3 `. For comparison, we
have included the normalized ACFGxyz(t) (Eq. 1d,lowest curve, dashed).
Parameters:D 5 2.8 3 1026 cm2/s, rxy 5 0.25 mm, S5 5.
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with Vcyl. :5 prxy
2 dz.

We will now apply the ACFGxy#*(t) to experimental data.

Application of the diffusion model Gxy*(t)

We loaded OB neurons with TMR-dextran (10 kDa, see
Methods) and carried out FCS measurements on dendrites
with diameters of 1mm or less. Diffusion in the axial
direction can be neglected because, withrxy 5 0.24mm and
S5 7, we haverz 5 1.7 mm, i.e., the dendritic diameter is
sufficiently smaller than the height of the detection volume
(see Discussion). In the radial direction, however, lateral
diffusion is confined by the dendritic boundaries aty 5
6dy/2 # 60.5mm that cut away a part of the open detection
volume. Moreover, in living cells, we have to consider more
than one characteristic diffusion time (Brock et al., 1998),
so that the modified ACF model is given by

G~t! 5
1

^Nges&
S1 2

IB

I tot
D2S1 1

Te2t/tT

1 2 TD
3 O

j51

m

Fj z gx
j ~t! z g#y*

j ~t!, (46)

with mstandard ACF terms for diffusion along the dendrite,
i.e., thex-axis,

gx
j ~t! :5

1

Î1 1 t/tdiff j

, (47)

and m approximated ACF terms for confined diffusion
along they-axis (Eq. 39)

g#y*
j ~t! :5

Îp

Y F1 1 S Y

Îp
z

erf~Y!

erf2~Y/Î2!
2 1D

3
exp@2k~Y!~p/Y!2t/tdiff j#

Î1 1 t/tdiff j

G.
(48)

In Fig. 2 we have shown that the standard diffusion model
is not sufficient to describe experimental data taken from a
dendrite. We now apply the modified ACF model (Eq. 46)
to the same experimental data (Fig. 2). The fit nicely con-
verges giving two components:F1 5 0.34, tdiff 1

5 0.187
ms, F2 5 0.66 andtdiff 2

5 2.11 ms (Fig. 7). The fit
parameterY resulted to beY 5 3.576 corresponding to a
dendritic diameterdy 5 rxy z Y 5 0.84 mm (rxy 5 0.236
mm). This is in good agreement with the line-scanning
measurement of the dendrite, which gave a diameter of 0.81
mm. One of the time constants was always found to be in the
range 180–300ms. The same value also resulted from
measurements in the soma using Eq. 1b as diffusion model.
In 55 somata the predominant diffusion time constant was in
the range of 200–350ms.

In water, tdiff of the TMR-dextran (10 kDa) was 160
ms 6 6 ms. Taken together the time constant in the range
180–350ms clearly appears to be the principal time con-
stant of TMR-dextran (10 kDa) in the cytosol.

In the above case, where the standard model led to a
characteristic time constant smaller than that in water, the
values coming out from the standard model were obviously
wrong. However, in other cases where there were two
componentsF1 andF2, it was a priori not clear that these
values were erroneous. Figure 8 shows data of this type
measured in a dendrite with a diameter ofdy 5 0.63 mm
(line-scanning measurement). The standard model (Eq. 1b)
led toF1 5 0.84,tdiff 1

5 0.536 ms andF2 5 0.16,tdiff 2
5

46.37 ms. As the dendritic boundaries severely confine the
diffusion space, these results must be supposed to be wrong.
In fact, applying the modified model led toF1 5 0.31,
tdiff 1

5 0.25 ms,F2 5 0.69, tdiff 2
5 1.03 ms, andY 5

dy/rxy 5 2.712, i.e.,dy 5 2.712z 0.236mm 5 0.64mm. tdiff 1

was thus exactly in the expected range, anddy was virtually
the same value as the one obtained by line scanning through
the dendrite.

DISCUSSION

The major application of FCS is measuring low concentrations
and diffusion constants. The detection volume is usually given
by the excitation volume of a focused laser together with a
confocal emission pathway. A problem occurs if the diffusion
space is confined by boundaries such as a plasma membrane so
that the diffusion takes place in a volume that is comparable

FIGURE 7 ACF of the fluorescence fluctuation data shown in Fig. 2,
together with the modified ACF model (Eq. 46). The experimental ACF
was calculated over 60 s from the fluorescence fluctuations of 10 kDa
TMR-dextran emitted from a dentrite of a cultured neuron. Result of the fit:
^N& 5 0.939,T 5 0.202, andtT 5 5.01ms. F1, F2, tdiff 1

, tdiff 2
, andY are

explained in the text.
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with or smaller than the confocal detection volume. We have
shown herein that, in such cases, the standard FCS diffusion
models lead to erroneous results, e.g., the false detection of
fluorescent species and wrong values for the characteristic
diffusion times. We have developed a novel model that takes
boundaries explicitly into account.

Our model allows determination of the limits within
which the standard 2D diffusion is valid, i.e., how small a
compartment has to be so that, using the standard 2D model,
the error does not exceed a given value. In a similar way, we
will calculate the limits within which the standard 3D model is
valid, i.e., which size a compartment has to exceed so that,
using the 3D model, the error is smaller than a given value.

Another point that needs to be discussed here is the
volume of the diffusion space. To calculate a concentration,
one needs the volume in addition to the average particle
number^N& which follows from the model.

Z—limit of the 2D diffusion model Gxy(t)

The standard 2D diffusion model reflects experimental au-
tocorrelation functions correctly ifdz/rz is sufficiently
small. The range [0, (dz/rz)max], for which this is the case,
follows from Eq. 34. It can easily be seen thatgz*(t) starts
with values larger thanp1/2rz/dz for smallt and approaches
p1/2rz/dz for t 3 `. If we accept 1% deviation ofGxyz*(t)
from Gxy(t), gz*(t) must be smaller than 1.01z p1/2rz/dz for
all t. As gz*(t) has its maximum att 5 0 (see Fig. 9), this
condition is gz*(0) # 1.01 z p1/2rz/dz. With the detection

volume centered atz0 [ dz/2, we have forgz*(0) (Eq. 34)

gz*~0!

5
Îprz

dz

31 1
4

pSdz

rz
D2
O

m51

` HE
0

1

dz expF22Sdz

rzD2Sz 2
1

2D2Gcos~mpz!J2

@erf~dz/Î2rz!#
2

4

5
2dz

Îprz

z

O
m52`

` HE
0

1

dz expF22Sdz

rzD2Sz 2
1

2D2Gcos~mpz!J2

@erf~dz/Î2rz!#
2

5
2dz

Îprz

z

O
m52`

`

ucmu2

@erf~dz/Î2rz!#
2, (49)

where thecm are the Fourier coefficients off(z)

f~z! :5 expF22Sdz

rz
D2Sz 2

1

2D
2G, (50)

i.e.,

cm 5 E
0

1

dz f~z!cos~2mpz!. (51)

For z0 [ dz/2, the integral in Eq. 49 vanishes for odd
numbersm. We therefore replacedm with 2m.

FIGURE 8 Autocorrelation function calculated from fluorescence fluc-
tuations of 10 kDa TMR-dextran emitted from a dentrite of a cultured
neuron of the OB. The intracellular dye concentration was 20 nM. Data
were gathered over 60 s. The smooth curve shows the fit of the data to the
modified ACF model (Eq. 46). Result of the fit:^N& 5 1.7,T 5 0.225,tT 5
3.15 ms, andF1, F2, tdiff 1

, tdiff 2
, andY as given in the text.

FIGURE 9 Modified one-dimensional autocorrelation functiongz*(t)
(Eq. 34) for a number of valuesZ 5 dz/rz. The lowest curve shows the
modified modelgz*,`(t) for unconfined diffusion. It is undistinguishable
from gz(t) 5 (1 1 4Dt/rz

2)21/2 (also drawn). Parameters:D 5 2.83 1026

cm2/s, rxy 5 0.25 mm, S5 5.
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Using Parseval’s Theorem,

O
m52`

`

ucmu2 5 E
0

1

uf~z!u2 dz

5 E
0

1

expF24Sdz

rz
D2Sz 2

1

2D
2G dz

5
Îprz

2dz
z erfSdz

rz
D, (52)

Eq. 49 takes the form

gz*~0! 5
erf~dz/rz!

@erf~dz/Î2rz!#
2. (53)

Simple numerical analysis shows that the inequality
gz*(0) # 1.01 z p1/2rz/dz holds fordz/rz # 0.833. Given a
typical waist radiusrxy 5 0.25 mm and a typical structure
factor ofS5 5, we haverz 5 1.25mm anddz 5 1.04mm.
For cellular compartments that do not exceed 1mm in
height, diffusion in axial direction can thus be neglected.
Provided that diffusion is not confined in radial direction,
the standard 2D diffusion model is adequate. In case diffu-
sion is additionally confined in one dimension of the image
plane, the modified modelGxy*(t) needs to be applied.

Z—limit of the 3D diffusion model Gxyz(t)

We now discuss the question of which size (in axial direc-
tion) a cell must exceed so that the 3D diffusion model
Gxyz(t) is appropriate. In other words, what is the limit
(dz/rz)min so that, for all (dz/rz) $ (dz/rz)min, the relative
deviation b of the 3D modelGxyz(t) (Eq. 1d) from the
modified modelGxyz*(t) (Eq. 35) never exceeds a certain
value? Because the relative deviationb is a monotonically
increasing function oft, we have to choose a valuet1, so
that, fort # t1, the 3D modelGxyz(t) deviates less thanb
from the modified modelGxyz*(t). Let us chooset1 so that
Gxyz(t1) :5 aGxyz(0) equals 10% (a 5 0.1) of its initial
amplitude,Gxyz(t1) :5 0.1 Gxyz(0). We are thus asking for
which parameter (dz/rz)min the functionGxyz*(t) assumes a
value such thatGxyz*(t1) 5 (1 1 b)Gxyz(t1), whereb is
given by

b 5
Gxyz*~t1! 2 Gxyz~t1!

Gxyz~t1!

5
gz*~t1! 2 gz~t1!

gz~t1!
5

gz*~t1!

gz~t1!
2 1.

(54)

As can clearly be seen from Fig. 9,gz*(t) approaches the
function

gz*,`~t! :5 lim
dz/rz3`

gz*~t! 5
1

Î1 1 4Dt/rz
2 5 gz~t! (55)

for dz/rz3 `. If we accept an errorb of 1%, it follows that
gz*(t1) must fulfill the equation

gz*~t1! 5 1.01z gz~t1!. (56)

Numerical analysis of Eq. 56 shows that, for a typical
structure factor ofS 5 5 and z0 [ dz/2, this is true for
(dz/rz)min 5 2.87. Given a typical waist radius ofrxy 5 0.25
mm, we obtain (dz)min 5 2.87 z rz 5 2.87 z S z rxy 5 3.59
mm.

Hence, if the distance between the cellular boundaries in
z-direction is larger than 3.59mm, the 3D standard diffusion
model gives a correct interpretation of experimental data for
t # t1 and within an error of 1%.

Y—limit of the 2D diffusion model Gxy(t)

In most neuronal processes, diffusion in axial direction can
be neglected (see subsection “Z-limit of the 2D diffusion
model Gxy(t)”). This means we have to use either the
standard 2D modelGxy(t), in case diffusion is not confined
in y-direction, or the modified modelGxy*(t) (Eq. 38),
otherwise. Which diameter (dy)min must a process exceed so
that the 2D diffusion modelGxy(t) is appropriate? In other
words, what is the limit (dy/rxy)min so that, for all (dy/rxy) $
(dy/rxy)min, the relative deviationb of the 2D modelGxy(t)
from the modified modelGxy*(t) never exceeds a certain
value? Because the relative deviationb is a monotonically
increasing function oft, we have to choose a valuet1, so
that, fort # t1 the 2D model deviates less thanb from the
modified model. Let us chooset1 so that Gxy(t1) :5
aGxy(0) equals 10% (a 5 0.1) of its initial amplitude, i.e.,
Gxy(t1) 5 0.1Gxy(0). We are thus asking for which param-
eter (dy/rxy)min the functionGxy*(t) assumes a value such
that Gxy*(t1) 5 (1 1 b)Gxy(t1). With Eq. 2b and 38, we
obtain, forb

b 5
Gxy*~t1! 2 Gxy~t1!

Gxy~t1!

5
gy*~t1! 2 gy~t1!

gy~t1!
5

gy*~t1!

gy~t1!
2 1

(57)

If we accept an errorb of 1%, it follows thatgy*(t1) must
fulfill the equation

gy*~t1! 5 1.01gy~t1!. (58)

Numerical analysis of Eq. 58 shows that, fory0 [ dy/2, this
is true for (dy/rxy)min 5 7.28, i.e.,dy 5 1.8mm for a typical
waist radius of 0.25mm. Hence, if the diameter of a cellular
process is thicker than 1.8mm, the 2D standard diffusion
model gives correct interpretation of experimental data for
t # t1 and within an error of 1%.

In conclusion, because most neuronal processes are thin-
ner than 1.8mm, the modified model for confined diffusion
should be used. Table 1 gives an overview of the various
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ACF models and indicates the appropriate model for the
various parameter combinations. The overlined indices de-
note the approximated part of the ACF, i.e.,y#* stands for
g#y*(t) (Eq. 39 or Eq. 42) andz#* for g#z*(t) (Eq. 40 or Eq. 43),
and the nonoverlined indices denote the exact functions, i.e.,
y* stands forgy*(t) (Eq. 37) andz* for gz*(t) (Eq. 34),
whereby the asterisk indicates axes of confined diffusion. If
diffusion occurs in all directions, the detection volume in
the ACF is given byVd 5 p3/2rxy

2 rz 5 p1/2rxy z p1/2rxy z

p1/2rz. Every directioni thus contributes a factorp1/2r i. If
the diffusion volume is confined, e.g., inz-direction, this is
taken into account by the functiongz*(t). In case of a
sufficiently small confinement parameterdi/r i, i.e., di/r i #

0.833, the corresponding factorp1/2r i of the detection vol-
ume is replaced by the distance of the boundary planesdi,
because, fordi/r i # 0.833, we havegi* (t) > p1/2r i/di. For
Z # 0.833, the detection volume becomes thusVd 5 p1/

2rxy z p1/2rxy z dz 5 prxy
2 dz 5 Vcyl.. For confined diffusion in

any combination of directions, the ACFs can be built cor-
respondingly.

Assigning concentrations

The 3D standard diffusion model gives the average number
^N& of fluorescent molecules in the sample volume as a
result of the fit of the model to experimental data.^N& is the
product of the average concentration^C& and the detection
volume Vd 5 p3/2rxy

2 rz. The concentration is thuŝC& 5
^N&/Vd. Note thatVd is an open volume so that detection
occurs also beyond the characteristic radiirxy and rz.

To find the average concentration̂C& in the case of
confined diffusion, let us evaluateGxyz*(t) for t 5 0.
Assuming the center of the detection volume atz0 [ dz/2

and, using Eq. 35 andgz*(0) (Eq. 53), we have

Gxyz*~0! 5
1

p3/2rxy
2 rz^C&

z
erf~dz/rz!

@erf~dz/Î2rz!#
2

5
1

V*d^C&
5

1

^N&
, (59)

where^N& 5 V*d^C& is the number of fluorescent molecules
in the effective detection volumeV*d:

V*d :5 p3/2rxy
2 rz z

@erf~dz/Î2rz!#
2

erf~dz/rz!
. (60a)

Quite expectedly, fordz/rz 3 `, the volume tends to the
unconfined volumeVd,

V*d 3 Vd 5 p3/2rxy
2 rz, (60b)

and fordz/rz ,, 1, we find a cylinder volume,

V*d 3 Vcyl. 5 prxy
2 dz, (60c)

because erf(x) ' 2x/p1/2 for x ,, 1.
Fig. 10 shows the normalized detection volumeV*d/Vd as

a function ofdz/rz. For dz/rz # 0.835, the detection volume
V*d equals, within an error of 1%, the cylinder volume
prxy

2 dz, i.e., V*d/Vd ' p1/2dz/rz, and for dz/rz $ 2.804 the
normalized volume tends to unity. The 3D ACF model
Gxyz(t) (Eq. 1d) with V*d ' Vd 5 p3/2rxy

2 rz gives reliable
concentrations (within 1% error) ifdz $ 2.804rz, while the
2D ACF modelGxy(t) (Eq. 2b) withV*d ' Vcyl. 5 prxy

2 dz

gives reliable concentrations (within 1% error) fordz #
0.835rz. For distancesdz in the intermediate range, we have
to take into account the barrel-shape (see Fig. 4) of the
detection volumeV*d (Eq. 60a) to obtain̂C&.

In case of FCS measurements withdz # 0.835rz, the
valuedz cannot be derived from the experimental ACF data.

TABLE 1 Appropriate ACF models for confined diffusion along the y- and z-axes

Z # 0.833 @Z Z # 8 Z3 `

Z . 2.87,
a 5 0.1,
S 5 5

Z . 4.12,
a 5 0.01,

S 5 5

Y # 0.833 Gx(t) Gxz*(t) Gxz#* Gxz(t) — —

@Y Gxy*(t) Gxy*z* (t) Gxy*z#*(t) Gxy*z(t) — —
Eq. 38 Eq. 36

Y # 8 Gxy#*(t) Gxy#*z* (t) Gxy#*z#*(t) Gxy#*z(t) — —
Eq. 45 Eq. 44

Y3 ` Gxy(t) Gxyz*(t) Gxyz#*(t) Gxyz(t) Gxyz(t) Gxyz(t)
Eq. 2b Eq. 35 Eq. 1d Eq. 1d Eq. 1d

Y . 7.28, Gxy(t) — — — — —
a 5 0.1 Eq. 2b

Y . 23, Gxy(t) — — — — —
a 5 0.01 Eq. 2b
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The volume is thus not known, and^C& cannot be calculated
from ^N&. However, we can obtain̂C&, using Eq. 60a and
line scans through the dendrite (see Methods).

In cases where diffusion is confined inz- andy-direction,
we obtain, using the same arguments as above,

Gxy*z* ~0! 5
1

p3/2rxy
2 rz^C&

3
erf~dy/rxy!

@erf~dy/Î2rxy!#
2 z

erf~dz/rz!

@erf~dz/Î2rz!#
2. (61)

If dy/rxy # 0.835 anddz/rz # 0.835, the detection volume is
given byVd ' p1/2rxydydz. To obtain^C& in this case,dy and
dz need to be measured using another methods, e.g., line
scanning.
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