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Abstract

Perceiving the world in terms of objects and tracking them through time is a crucial
prerequisite for reasoning and scene understanding. Recently, several methods have been
proposed for unsupervised learning of object-centric representations. However, since these
models were evaluated on different downstream tasks, it remains unclear how they compare
in terms of basic perceptual abilities such as detection, figure-ground segmentation and
tracking of objects. To close this gap, we design a benchmark with four data sets of varying
complexity and seven additional test sets featuring challenging tracking scenarios relevant
for natural videos. Using this benchmark, we compare the perceptual abilities of four
object-centric approaches: ViMON, a video-extension of MONet, based on recurrent
spatial attention, OP3, which exploits clustering via spatial mixture models, as well as
TBA and SCALOR, which use explicit factorization via spatial transformers. Our results
suggest that the architectures with unconstrained latent representations learn more powerful
representations in terms of object detection, segmentation and tracking than the spatial
transformer based architectures. We also observe that none of the methods are able to
gracefully handle the most challenging tracking scenarios despite their synthetic nature,
suggesting that our benchmark may provide fruitful guidance towards learning more robust
object-centric video representations.
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1. Introduction

Humans understand the world in terms of objects (Marr, 1982; Spelke and Kinzler, 2007;
Johnson, 2018). Being able to decompose our environment into independent objects that can
interact with each other is an important prerequisite for reasoning and scene understanding
(Spelke, 1988). Similarly, an artificial intelligence system would benefit from the ability to
represent visual scenes in a structured way (Ullman et al., 2017; Lake et al., 2017; Greff et al.,
2020) by both extracting objects and their interactions from video streams, and keeping
track of them over time.

Recently, there has been an increased interest in unsupervised learning of object-centric
representations. The key insight of these methods is that the compositionality of visual scenes
can be used to both discover (Eslami et al., 2016; Greff et al., 2019; Burgess et al., 2019)
and track objects in videos (Greff et al., 2017; van Steenkiste et al., 2018; Veerapaneni et al.,
2020) without supervision. However, it is currently not well understood how the learned
visual representations of different models compare to each other quantitatively, since the
models have been developed with different downstream tasks in mind and have not been
evaluated using a common protocol. Hence, in this work, we propose a benchmark based on
procedurally generated video sequences to test basic perceptual abilities of object-centric
video models under various challenging tracking scenarios.

An unsupervised object-based video representation should (1) effectively identify objects
as they enter a scene, (2) accurately segment objects, as well as (3) maintain a consistent
representation for each individual object in a scene over time. These perceptual abilities can
be evaluated quantitatively in the established multi-object tracking framework (Bernardin
and Stiefelhagen, 2008; Milan et al., 2016). We propose to utilize this protocol for analyzing
the strengths and weaknesses of different object-centric representation learning methods,
independent of any specific downstream task, in order to uncover the different inductive
biases hidden in their choice of architecture and loss formulation. We therefore compiled
a benchmark consisting of four procedurally generated video data sets of varying levels of
visual complexity and two generalization tests. Using this benchmark, we quantitatively
compared three classes of object-centric models, leading to the following insights:

• All of the models have shortcomings handling occlusion, albeit to different extents.
• OP3 (Veerapaneni et al., 2020) performs strongest in terms of quantitative metrics, but

exhibits a surprisingly strong dependency on color to separate objects and accumulates
false positives when fewer objects than slots are present.
• Spatial transformer models, TBA (He et al., 2019) and SCALOR (Jiang et al., 2020),

train most efficiently and feature explicit depth reasoning in combination with amodal
masks, but are nevertheless outperformed by the simpler model, ViMON, lacking a
depth or interaction model, suggesting that the proposed mechanisms may not yet
work as intended.

Our code, data, as well as a public leaderboard of results is available at https://
eckerlab.org/code/weis2021/.
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2. Related work

Several recent lines of work propose to learn object-centric representations from visual inputs
for static and dynamic scenes without explicit supervision. Though their results are promising,
methods are currently restricted to handling synthetic data sets and as of yet are unable
to scale to complex natural scenes. Furthermore, a systematic quantitative comparison of
methods is lacking.

Selecting and processing parts of an image via spatial attention has been one prominent
approach for this task (Mnih et al., 2014; Eslami et al., 2016; Kosiorek et al., 2018; Burgess
et al., 2019; Yuan et al., 2019; Crawford and Pineau, 2019). As an alternative, spatial
mixture models decompose scenes by performing image-space clustering of pixels that belong
to individual objects (Greff et al., 2016, 2017, 2019; van Steenkiste et al., 2018; Locatello
et al., 2020). Xu et al. (2019) use optic flow to learn to segment objects or object parts
in dynamic scenes. While some approaches aim at learning a suitable representation for
downstream tasks (Watters et al., 2019a; Veerapaneni et al., 2020), others target scene
generation (Engelcke et al., 2020; Kügelgen et al., 2020; Ehrhardt et al., 2020; Jiang and
Ahn, 2020). We analyze three classes of models for processing videos, covering three models
based on spatial attention and one based on spatial mixture modeling.

Spatial attention models with unconstrained latent representations use per-
object variational autoencoders, as introduced by Burgess et al. (2019). Kügelgen et al.
(2020) adapt this approach for scene generation. So far, such methods have been designed
for static images, but not for videos. We therefore extend MONet (Burgess et al., 2019) to
be able to accumulate evidence over time for tracking, enabling us to include this class of
approaches in our evaluation. Recent concurrent work on AlignNet (Creswell et al., 2020)
applies MONet frame-by-frame and tracks objects by subsequently ordering the extracted
objects consistently.

Spatial attention models with factored latents use an explicit factorization of the
latent representation into properties such as position, scale and appearance (Eslami et al., 2016;
Crawford and Pineau, 2019). These methods use spatial transformer networks (Jaderberg
et al., 2015) to render per-object reconstructions from the factored latents (Kosiorek et al.,
2018; He et al., 2019; Jiang et al., 2020). SQAIR (Kosiorek et al., 2018) does not perform
segmentation, identifying objects only at the bounding-box level. Henderson and Lampert
(2020) explicitly reason about the underlying 3D scene structure. We select Tracking-by-
Animation (TBA) (He et al., 2019) and SCALOR (Jiang et al., 2020) for analyzing spatial
transformer methods in our experiments, which explicitly disentangle object shape and
appearance, providing access to object masks.

Spatial mixture models cluster pixels using a deep neural network trained with ex-
pectation maximization (Greff et al., 2017; van Steenkiste et al., 2018). IODINE (Greff
et al., 2019) extends these methods with an iterative amortised variational inference pro-
cedure (Marino et al., 2018), improving segmentation quality. SPACE (Lin et al., 2020)
combines mixture models with spatial attention to improve scalability. To work with video
sequences, OP3 (Veerapaneni et al., 2020) extends IODINE by modeling individual objects’
dynamics as well as pairwise interactions. We therefore include OP3 in our analysis as a
representative spatial mixture model.
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Objects Background

Data Set Shape Motion Count Over Sequence Size Variation Orientation Color Motion Color

SpMOT 4 Templates (2D) Linear Varies (0-3) Minimal Fixed 6 Colors None Black
VOR 2 Templates (3D) Static Varies (0-4) Moderate Random 6 Colors Moving Camera Random
VMDS 3 Templates (2D) Non-Linear Fixed (1-4) Moderate Random 2563 Colors None 2563 Colors
texVMDS 3 Templates (2D) Non-Linear Fixed (1-4) Moderate Random ImageNet textures Linear ImageNet crop

t=1

SpMOT

t=3 t=5 t=7 t=9 t=1

VOR

t=3 t=5 t=7 t=9 t=1

VMDS

t=3 t=5 t=7 t=9

Table 1: Summary of data sets and example video sequences. See Appendix B for details.

3. Object-Centric Representation Benchmark

To compare the different object-centric representation learning models on their basic percep-
tual abilities, we use the well-established multi-object tracking (MOT) protocol (Bernardin
and Stiefelhagen, 2008). In this section, we describe the data sets and metrics considered in
our benchmark, followed by a brief description of the models evaluated.

3.1 Data Sets

Current object-centric models are not capable of modeling complex natural scenes (Burgess
et al., 2019; Greff et al., 2019; Lin et al., 2020). Hence, we focus on synthetic data sets that
resemble those which state-of-the-art models were designed for. Specifically, we evaluate
on four synthetic data sets1 (see Table 1), which cover multiple levels of visual and motion
complexity. Synthetic stimuli enable us to precisely generate challenging scenarios in a
controllable manner in order to disentangle sources of difficulty and glean insights on what
models specifically struggle with. We design different scenarios that test complexities that
would occur in natural videos such as partial or complete occlusion as well as similar object
appearances and complex textures.

Sprites-MOT (SpMOT, Table 1 left), as proposed by He et al. (2019), features simple
2D sprites moving linearly on a black background with objects moving in and out of frame
during the sequence. Video-Multi-dSprites (VMDS, Table 1 right) is a video data set we
generated based on a colored, multi-object version of the dSprites data set (Matthey et al.,
2017). Each video contains one to four sprites that move non-linearly and independently
of each other with the possibility of partial or full occlusion. Besides the i.i.d. sampled
training, validation and test sets of VMDS, we generate seven additional challenge sets that
we use to study specific test situations we observed to be challenging, such as guaranteed
occlusion, specific object properties, or out-of-distribution appearance variations. Video
Objects Room (VOR, Table 1 middle) is a video data set we generated based on the static
Objects Room data set (Burgess et al., 2019), which features static objects in a 3D room
with a moving camera. Textured Video-Multi-dSprites (texVMDS, Table 3) is based
on the generative model of VMDS regarding shapes, number and movement dynamics of
the objects, but instead of being uniformly colored the objects feature random texture crops
taken from ImageNet (Deng et al., 2009). Additionally, the background is a linearly moving
ImageNet crop. For full details on the data sets and their generation, see Appendix B.

1Data sets are available at this URL.
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3.2 Metrics

Our evaluation protocol follows the multi-object tracking (MOT) challenge, a standard
and widely-used benchmark for supervised object tracking (Milan et al., 2016). The MOT
challenge uses the CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008), which quantita-
tively evaluate different performance aspects of object detection, tracking and segmentation.
To compute these metrics, predictions have to be matched to ground truth. Unlike Bernardin
and Stiefelhagen (2008) and Milan et al. (2016), we use binary segmentation masks for
this matching instead of bounding boxes, which helps us better understand the models’
segmentation capabilities. We consider an Intersection over Union (IoU) greater than 0.5
as a match (Voigtlaender et al., 2019). We include an ablation experiment to test how this
threshold affects the results. The error metrics used are the fraction of Misses (Miss),
ID switches (ID S.) and False Positives (FPs) relative to the number of ground truth
masks. In addition, we report the Mean Squared Error (MSE) of the reconstructed
image outputs summed over image channels and pixels.

To quantify the overall number of failures, we use the MOT Accuracy (MOTA), which
measures the fraction of all failure cases compared to the total number of objects present in
all frames. A model with 100% MOTA perfectly tracks all objects without any misses, ID
switches or false positives. To quantify the segmentation quality, we define MOT Precision
(MOTP) as the average IoU of segmentation masks of all matches. A model with 100%
MOTP perfectly segments all tracked objects, but does not necessarily track all objects.
Further, to quantify detection and tracking performance independent of false positives, we
measure the Mostly Detected (MD) and Mostly Tracked (MT) metrics, the fraction
of ground truth objects that have been detected and tracked for at least 80% of their lifespan,
respectively. If an ID switch occurs, an object is considered detected but not tracked. For
full details regarding the matching process and the evaluation metrics, refer to Appendix A.

3.3 Models

We consider one color-segmentation baseline and three classes of unsupervised object-centric
representation learning models: (1) a spatial attention model with unconstrained latents, Vi-
MON, which is our video extension of MONet (Burgess et al., 2019); (2) spatial transformer-
based attention models, TBA (He et al., 2019) and SCALOR (Jiang et al., 2020); (3) a
scene mixture model, OP3 (Veerapaneni et al., 2020). At a high-level, these methods share
a common structure which is illustrated in Fig. 1a. They decompose an image into a fixed
number of slots (Burgess et al., 2019), each of which contains an embedding zt,k and a
mask mt,k of (ideally) a single object. These slots are then combined in a decoding step
to reconstruct the image. Below, we briefly describe each method. Appendix C provides a
detailed explanation of the methods in a unified mathematical framework.

As a simple baseline, we evaluate the performance of k-Means clustering on the RGB
pixel values on a per frame basis and tracking performance by frame-to-frame matching
based on the IoU of the segmentation masks using Hungarian matching (Kuhn, 1955). For
full details refer to Appendix D.1.

Video MONet (ViMON) is our video extension of MONet (Burgess et al., 2019).
MONet recurrently decomposes a static scene into slots, using an attention network to
sequentially extract attention masks mk ∈ [0, 1]H×W of individual objects k. A Variational
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Figure 1: Common principles of all models: Decomposition of an image into a fixed number
of slots, each of which contains an embedding zt,k and a mask mt,k of (ideally) a single object.
Dotted lines: temporal connections. Solid lines: information flow within one frame.

Autoencoder (VAE) (Kingma and Welling, 2014) encodes each slot into a latent representation
zk ∈ RL of the corresponding object. We use MONet as a simple frame-by-frame baseline
for detection and segmentation that does not employ temporal information. ViMON
accumulates evidence about the objects over time to maintain a consistent object-slot
assignment throughout the video. This is achieved by (1) seeding the attention network the
predicted mask m̂t,k ∈ [0, 1]H×W from the previous time step and (2) introducing a gated
recurrent unit (GRU) (Cho et al., 2014), which aggregates information over time for each
slot separately, enabling it to encode motion information. For full details on MONet and
ViMON, as well as information regarding hyperparameter tuning and ablations to provide
context for the design decisions, refer to Appendix C.1, C.2 and E.3.

Tracking-by-Animation (TBA) (He et al., 2019) is a spatial transformer-based atten-
tion model. Frames are encoded by a convolutional feature extractor f before being passed
to a recurrent block g called Reprioritized Attentive Tracking (RAT). RAT re-weights slot
input features based on their cosine similarity with the slots from the previous time step
and outputs latent representations for all K slots in parallel. Each slot latent is further
decoded into a mid-level representation yt,k consisting of pose and depth parameters, as well
as object appearance and shape templates (see Fig. 1c). For rendering, a Spatial Transformer
Network (STN) (Jaderberg et al., 2015) is used with an additional occlusion check based
on the depth estimate. TBA is trained on frame reconstruction with an additional penalty
for large object sizes to encourage compact bounding boxes. TBA can only process scenes
with static backgrounds, as it preprocesses sequences using background subtraction (Bloisi
and Iocchi, 2012). For full details on TBA as well as information regarding hyperparameter
tuning, refer to Appendix C.3.

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al.,
2020) extends IODINE (Greff et al., 2019) to operate on videos. IODINE decomposes an
image into objects and represents them independently by starting from an initial guess of the
segmentation of the entire frame, and subsequently iteratively refines it using the refinement
network f (Marino et al., 2018). In each refinement step m, the image is represented by K
slots with latent representations zm,k. OP3 applies IODINE to each frame xt to extract
latent representations zt,m,k, which are subsequently processed by a dynamics network d (see
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Model MOTA ↑ MOTP ↑ MD ↑ MT ↑ Match ↑ Miss ↓ ID S. ↓ FPs ↓ MSE ↓

SpMOT

k-Means 36.2 ± 0.0 77.6 ± 0.0 76.8 ± 0.0 76.3 ± 0.0 80.5 ± 0.0 19.3 ± 0.0 0.2 ± 0.0 44.3 ± 0.0 -
MONet 70.2 ± 0.8 89.6 ± 1.0 92.4 ± 0.6 50.4 ± 2.4 75.3 ± 1.3 4.4 ± 0.4 20.3 ± 1.6 5.1 ± 0.5 13.0 ± 2.0

ViMON 92.9 ± 0.2 91.8 ± 0.2 87.7 ± 0.8 87.2 ± 0.8 95.0 ± 0.2 4.8 ± 0.2 0.2 ± 0.0 2.1 ± 0.1 11.1 ± 0.6

TBA 79.7 ± 15.0 71.2 ± 0.3 83.4 ± 9.7 80.0 ± 13.6 87.8 ± 9.0 9.6 ± 6.0 2.6 ± 3.0 8.1 ± 6.0 11.9 ± 1.9

OP3 89.1 ± 5.1 78.4 ± 2.4 92.4 ± 4.0 91.8 ± 3.8 95.9 ± 2.2 3.7 ± 2.2 0.4 ± 0.0 6.8 ± 2.9 13.3 ± 11.9

SCALOR 94.9 ± 0.5 80.2 ± 0.1 96.4 ± 0.1 93.2 ± 0.7 95.9 ± 0.4 2.4 ± 0.0 1.7 ± 0.4 1.0 ± 0.1 3.4 ± 0.1

VOR

k-Means -38.0 ± 0.1 76.5 ± 0.0 69.9 ± 0.1 62.9 ± 0.1 72.7 ± 0.1 22.1 ± 0.0 5.2 ± 0.0 110.7 ± 0.1 -
MONet 37.0 ± 6.8 81.7 ± 0.5 76.9 ± 2.2 37.3 ± 7.8 64.4 ± 5.0 15.8 ± 1.6 19.8 ± 3.5 27.4 ± 2.3 12.2 ± 1.4

ViMON 89.0 ± 0.0 89.5 ± 0.5 90.4 ± 0.5 90.0 ± 0.4 93.2 ± 0.4 6.5 ± 0.4 0.3 ± 0.0 4.2 ± 0.4 6.4 ± 0.6

OP3 65.4 ± 0.6 89.0 ± 0.6 88.0 ± 0.6 85.4 ± 0.5 90.7 ± 0.3 8.2 ± 0.4 1.1 ± 0.2 25.3 ± 0.6 3.0 ± 0.1

SCALOR 74.6 ± 0.4 86.0 ± 0.2 76.0 ± 0.4 75.9 ± 0.4 77.9 ± 0.4 22.1 ± 0.4 0.0 ± 0.0 3.3 ± 0.2 6.4 ± 0.1

VMDS

k-Means -3.3 ± 0.0 89.8 ± 0.0 98.3 ± 0.0 93.3 ± 0.1 96.4 ± 0.0 1.0 ± 0.0 2.6 ± 0.0 99.7 ± 0.0 -
MONet 49.4 ± 3.6 78.6 ± 1.8 74.2 ± 1.7 35.7 ± 0.8 66.7 ± 0.7 13.6 ± 1.0 19.7 ± 0.6 17.2 ± 3.1 22.2 ± 2.2

ViMON 86.8 ± 0.3 86.8 ± 0.0 86.2 ± 0.3 85.0 ± 0.3 92.3 ± 0.2 7.0 ± 0.2 0.7 ± 0.0 5.5 ± 0.1 10.7 ± 0.1

TBA 54.5 ± 12.1 75.0 ± 0.9 62.9 ± 5.9 58.3 ± 6.1 75.9 ± 4.3 21.0 ± 4.2 3.2 ± 0.3 21.4 ± 7.8 28.1 ± 2.0

OP3 91.7 ± 1.7 93.6 ± 0.4 96.8 ± 0.5 96.3 ± 0.4 97.8 ± 0.1 2.0 ± 0.1 0.2 ± 0.0 6.1 ± 1.5 4.3 ± 0.2

SCALOR 74.1 ± 1.2 87.6 ± 0.4 67.9 ± 1.1 66.7 ± 1.1 78.4 ± 1.0 20.7 ± 1.0 0.8 ± 0.0 4.4 ± 0.4 14.0 ± 0.1

Table 2: Analysis of SOTA object-centric representation learning models for MOT. Results
shown as mean ± standard deviation of three runs with different random training seeds.

Fig. 1d), which models both the individual dynamics of each slot k as well as the pairwise
interaction between all combinations of slots, aggregating them into a prediction of the
posterior parameters for the next time step t+ 1 for each slot k. For full details on IODINE
and OP3, refer to Appendix C.4 and C.5, respectively.

SCALable Object-oriented Representation (SCALOR) (Jiang et al., 2020) is a
spatial transformer-based model that factors scenes into background and multiple foreground
objects, which are tracked throughout the sequence. Frames are encoded using a convolutional
LSTM f . In the proposal-rejection phase, the current frame t is divided into H×W grid cells.
For each grid cell a object latent variable zt,h,w is proposed, that is factored into existence,
pose, depth and appearance parameters. Subsequently, proposed objects that significantly
overlap with a propagated object are rejected. In the propagation phase, per object GRUs
are updated for all objects present in the scene. Additionally, SCALOR has a background
module to encode the background and its dynamics. Frame reconstructions are rendered
using a background decoder and foreground STNs for object masks and appearance. For
full details on SCALOR as well as information regarding hyperparameter tuning, refer to
Appendix C.6.

4. Results

We start with a summary of our overall results across the three data sets and four models
(Table 2) before analyzing more specific challenging scenarios using variants of the VMDS
data set.
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A simple color segmentation algorithm is not sufficient to solve tracking even in simplistic
data sets (Table 2), in which color is a good predictor for object identity. While k-Means
does well at detecting objects, on VMDS even outperforming the other models, its overall
tracking performance is significantly worse than the other models, mainly due to a high
number of false positives and in SpMOT and VOR also due to a high number of misses,
which occur in these two data sets due to multiple objects often having the same color, which
a color segmentation algorithm is by definition not able to separate. In the following, we will
therefore focus on analyzing the object-centric methods.

We first ask whether tracking could emerge automatically in an image-based model like
MONet, which may produce consistent slot assignments through its learned object-slot
assignment. This is not the case: MONet exhibits poor tracking performance (Table 2).
While MONet correctly finds and segments objects, it does not assign them to consistent
slots over time (Fig. E.4). In the following, we will thus focus on the video models: ViMON,
TBA, OP3 and SCALOR.

SpMOT. All models perform tracking well on SpMOT with the exception of one training
run of TBA with poor results leading to high standard deviation (cp. best TBA model:
89.8% MT; Table E.1). SCALOR outperforms the other models on the detection and
tracking metrics MD and MT, while ViMON exhibits the highest MOTP, highlighting its
better segmentation performance on SpMOT.

VOR. TBA is not applicable to VOR due to the dynamic background which cannot be
resolved using background subtraction. ViMON and OP3 show similarly good performance
on detection (MD) and segmentation (MOTP), while ViMON outperforms OP3 on the
tracking metrics MOTA and MT. OP3 accumulates a high number of false positives leading
to a low MOTA due to the splitting of objects into multiple masks as well as randomly
segmenting small parts of the background (Fig. E.5). In contrast, SCALOR has almost no
false positives or ID switches, but accumulates a high number of misses leading to a poor
MOTA. It often segments two objects as one that are occluding each other in the first frame,
which is common in VOR due to the geometry of its scenes (Fig. F.17, last row).

VMDS. OP3 outperforms the other models on VMDS, on which TBA performs poorly,
followed by SCALOR, which again accumulates a high number of misses. We will analyze
the models on VMDS qualitatively and quantitatively in more detail in the following.

4.1 Impact of IoU Threshold for Matching

To examine whether the IoU threshold used for matching object predictions to ground truth
impacts the ordering of the models, we compute all metrics with regard to the IoU thresholds
[0.1 .. 0.9] in steps of 0.1 on the VMDS test set. The ordering of the models with regard to
their MOTA is consistent over all matching thresholds except for a threshold of 0.9, but the
performance difference between the models increases with higher thresholds (Fig. 2a). Thus,
we will perform all following experiments with an IoU threshold of 0.5. For all metrics, see
Fig. E.6 in Appendix.

4.2 Accumulation of Evidence over Time

Recognition and tracking of objects should improve if models can exploit prior knowledge
about the objects in the scene from previous video frames. To test whether the models

8
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Figure 2: a) MOTA and MOTP performance of models shown for different IoU threshold
used for matching model predictions to ground truth objects. Note that MOTA can become
negative, since the number of FPs is unbounded. b) MOTA on frames 11–20 of the VMDS
test set with warm starts of 1–10 frames (0 = no warm start). Difference to performance of
warm start = 2 shown. c) Distribution of failure cases dependent on number of objects in
VMDS videos. Mean of three training runs. Error bars: standard deviation.

exploit such knowledge, we evaluate their MOTA performance on VMDS after warm starting
with up to 10 frames which are not included in evaluation (Fig. 2b). Note that the models
were trained on sequences of length 10, but are run for 20 frames in the case of a warm
start of 10 frames. The performance of ViMON improves with longer warm starts, showing
that the GRU accumulates evidence over time. TBA, in contrast, does not use temporal
information beyond 2–3 frames, while SCALOR’s performance slightly drops after 3 frames.
OP3 appears to most strongly rely on past information and is able to integrate information
over longer time scales: its performance does not even saturate with a warm start of 10
frames. However, the effect for all models is rather small.

4.3 Challenging Scenarios for Different Models

The number of objects in the sequence matters for ViMON, TBA and SCALOR: more
objects increase the number of failure cases (Fig. 2c). In contrast, OP3 does not exhibit this
pattern: it accumulates a higher number of false positives (FPs) in videos with fewer (only
one or two) objects (Fig. E.1), as it tends to split objects into multiple slots if fewer objects
than slots are present.

Occlusion leads to failure cases for all models (Fig. 3a–b). Partial occlusion can lead to
splitting of objects into multiple slots (Fig. 3a). Objects that reappear after full occlusion
are often missed when only a small part of them is visible (Fig. 3a). In particular, SCALOR
tends to segment two objects as one when they overlap while entering the scene, leading to a
high number of misses.

Color of the object is important. TBA often misses dark objects (Fig. 3b). In contrast,
ViMON, OP3 and SCALOR struggle with scenes that feature objects of similar colors as
well as objects that have similar colors to the background (Fig. 3c,e).

False positives are more prevalent for OP3 and TBA than for ViMON and SCALOR
(Table 2). FPs of OP3 are due to objects split in multiple masks (Fig. 3a) and random
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Figure 3: Example failure cases for all models on VMDS. Segmentation masks are binarized
and color-coded to signify slot assignment.

small parts of the background being individually segmented (Fig. 3e), while TBA tends to
compose larger objects using multiple smaller, simpler components (Fig. 3d).

4.4 Performance on Challenge Sets

Based on the challenging scenarios identified above, we design multiple ‘challenge sets’: videos
featuring (1) heavy occlusion, (2) objects with same colors, (3) only small objects and (4)
only large objects (Fig. 4a, top). For details, see Appendix B.1.1.

Occlusion reduces performance of all models compared with the i.i.d. sampled VMDS
test set, albeit to different degrees (Fig. 4a; for absolute performance see Table E.3). OP3 is
more robust to occlusion than the other models.

Tracking objects with the same color is challenging for all models (Fig. 4a). In particular,
OP3 appears to rely on object color as a way to separate objects.

OP3, ViMON and SCALOR are not sensitive to object size (Fig. 4a). They exhibit
only slightly decreased performance on the large objects test set, presumably because large
objects cause more occlusion (Fig. 4a). TBA shows increased performance on small objects
but performs poorly on the large objects set.
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Figure 4: a) Performance on challenge sets relative to performance on VMDS test set (100%)
and example video sequences. b) Performance on out-of-distribution sets relative to VMDS
test set (100%) and example video sequences. Note that MOTA can become negative, since
the number of FPs is unbounded.

4.5 Performance on Out-of-distribution Test Sets

Next, we assess generalization to out-of-distribution (o.o.d.) changes in object appearance
that are not encountered during training. In the training set of VMDS, object color, size
and orientation are constant throughout a video. To test o.o.d. generalization, we evaluate
models trained on VMDS on three data sets that feature unseen object transformations
(Fig. 4b and Table E.4): continuous changes in object color or size as well as continuous
rotation around the object’s centroid while moving. For details, see Appendix B.1.2.

Continuous changes in object size do not pose a serious problem to TBA, OP3 and
SCALOR, while ViMON’s performance drops (Fig. 4b). Surprisingly, continuous color
changes of objects do not impact the performance of any model. Tracking performance of
ViMON drops significantly for rotated objects, while OP3 and SCALOR are affected less.
TBA’s tracking performance is not as strongly influenced by object rotation (for absolute
values, see Table E.4).

4.6 Stability of Training and Runtime

TBA and SCALOR train faster and require less memory than OP3 and ViMON (see
Table E.5 for details). However, two training runs converged to suboptimal minima for
TBA (note the high variance in Table 2 and see Table E.1 and Table E.2 for individual
runs). Training OP3 is sensitive to the learning rate and unstable, eventually diverging in all
experiments. Interestingly, it often reached its best performance directly prior to divergence.
ViMON and TBA are less sensitive to hyperparameter settings in our experiments. For a
more detailed analysis of the runtime, see Appendix E.2.
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Model MOTA ↑ MOTP ↑ MD ↑ MT ↑ Match ↑ Miss ↓ ID S. ↓ FPs ↓ MSE ↓

texVMDS

k-Means -99.5 ± 0.0 76.4 ± 0.0 25.3 ± 0.0 24.3 ± 0.1 30.3 ± 0.0 69.2 ± 0.0 0.5 ± 0.0 129.8 ± 0.0 -
MONet -73.3 ± 5.5 67.7 ± 1.1 16.0 ± 3.4 12.3 ± 3.1 24.7 ± 4.7 73.1 ± 5.1 2.2 ± 0.8 98.0 ± 1.7 200.5 ± 5.7

ViMON -85.5 ± 2.8 69.0 ± 0.6 24.2 ± 1.3 23.8 ± 1.4 34.7 ± 1.7 65.0 ± 1.7 0.3 ± 0.0 120.2 ± 2.5 171.4 ± 3.3

OP3 -110.4 ± 4.3 70.6 ± 0.6 16.5 ± 5.1 16.2 ± 5.0 22.9 ± 6.6 76.9 ± 6.7 0.2 ± 0.1 133.4 ± 2.9 132.8 ± 16.2

SCALOR -99.2 ± 11.7 74.0 ± 0.5 6.5 ± 0.6 6.3 ± 0.6 12.3 ± 0.4 87.5 ± 0.4 0.2 ± 0.0 111.5 ± 11.4 133.7 ± 11.1

t=1 t=3 t=5 t=7 t=9 t=1 t=3 t=5 t=7 t=9 t=1 t=3 t=5 t=7 t=9

Table 3: MOT performance on texVMDS and example video sequences. Results shown as
mean ± standard deviation of three runs with different random training seeds. Note that
MOTA can become negative, since the number of FPs is unbounded.

4.7 Towards natural data

Object-centric methods have mostly been shown to work on synthetic data sets and seem to
rely to a certain extent on color segmentation. To quantify how these methods fare with
more realistic images, we created a fourth data set that keeps the simple scene composition of
VMDS (1–4 object and few shapes), but has a higher level of visual complexity. To this end,
we generated moving object masks as in VMDS, but filled each object and the background
with the content of a different image taken from ImageNet (Table 3, bottom). We refer to
this data set as texVMDS. Humans can easily detect objects in these video through motion
cues,2 while the evaluated models fail at detecting and tracking objects in this data set
(Table 3).

Most of the statistics of the objects in texVMDS are identical to those of VMDS (shape,
size, velocity, number of objects); the main difference is the visual complexity of the object
and background texture. We therefore tune the dimensionality of the latent space for
MONet and SCALOR, to account for the higher visual complexity, while keeping all
other hyperparameters identical to VMDS. OP3 already has a significantly larger latent
dimensionality and uses that for synthetic as well as natural data in their publication.
Therefore we keep these hyperparameters. For full details see Appendix D.

TBA is not applicable to texVMDS due to the dynamic background which cannot be
resolved using background subtraction. All other models perform poorly. They fail to learn
the object boundaries despite the fact that there are only four different object shapes and
objects and background move independently, which makes them easy to tell apart for humans.
Moreover, they generate large amounts of false positives, often using multiple slots for the
background or an object, with the split between slots mostly following color changes (see
Fig. F.8, Fig. F.14, Fig. F.18).

5. Discussion

Our experimental results provide insights into the inductive biases and failure cases of
object-centric models that were not apparent from their original publications. Despite

2See https://eckerlab.org/code/weis2021/ for example videos.
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the positive results shown in each of the papers for the evaluated methods, a controlled,
systematic analysis demonstrates that they do not convincingly succeed at tracking, which is
fundamentally what object-centric video methods should enable.

TBA has a significantly lower MOTP than the other models on all datasets, suggesting
that the simple rendering-based decoder using a fixed template might be less suitable to
generate accurate segmentation masks (see also Fig. F.10 and Fig. F.9) compared to the
VAE-based approaches of ViMON, OP3 and SCALOR.

Handling occlusion of objects during the video is a key property object-centric repre-
sentations should be capable of. Qualitatively and quantitatively, OP3 is more robust to
occlusion than the other models, suggesting that its dynamics network which models interac-
tions between objects is currently most successful at modeling occluded objects. Surprisingly,
TBA and SCALOR, which explicitly encode depth, do not handle occlusion more gracefully
than ViMON, whose simpler architecture has no explicit way of dealing with depth. Moving
forward, occlusion handling is a key component that object-centric video models need to
master. It can be addressed by either equipping the model with a potent interaction module,
that takes pairwise interaction between objects (including occlusion) into account, similar
to OP3’s dynamics model, or ensuring that the depth reasoning of the models works as
intended, which may be preferable, as explained below.

All models struggle with detecting objects that have similar color as the background (for
TBA: dark objects, since background is removed and set to black in a pre-processing step).
Color is a reliable cue to identify objects in these datasets. However, the auto-encoding
objective incurs little extra loss for missing objects with similar color as the background and,
thus, the models appear to not to learn to properly reconstruct them. In order to scale to
data with more visual complexity, one might want to replace the pixel-wise reconstruction
with for instance a loss based in feature space in order to focus more on reconstructing
semantic content rather than high-frequency texture, as is done when using perceptual loss
functions (Gatys et al., 2015; Hou et al., 2017) or by using contrastive learning (Kipf et al.,
2020). Furthermore, the models—particularly so OP3—struggle with separating objects
of similar colors from each other. This result hints at a mismatch between the intuitions
motivating these models and what the models actually learn: it should be more efficient in
terms of the complexity of the latent representation to decompose two objects—even of similar
colors—into two masks with simple shapes, rather than encoding the more complicated
shape of two objects simultaneously in one slot. However, since none of the models handle
occlusion with amodal segmentation masks (i. e. including the occluded portion of the object)
successfully, they learn to encode overly complex (modal) mask shapes. As a consequence,
they tend to merge similarly colored objects into one slot. This result suggests that resolving
the issues surrounding the depth reasoning in combination with amodal segmentation masks
would enable much more compact latents and could also resolve the merging of similarly
colored objects.

A major difference between models is the spatial transformer based model formulation
of TBA and SCALOR, compared to ViMON and OP3, which operate on image-sized masks.
The parallel processing of objects and the processing of smaller bounding boxes renders
training TBA and SCALOR to be significantly faster and more memory efficient, enabling
them to scale to a larger number of objects. On the downside, the spatial transformer
introduces its own complications. TBA depends strongly on its prior on object size and
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performs well only when this prior fits the data well as well as when the data contains little
variation in object sizes, as in SpMOT (Table 2). However, it is not able to handle VMDS
and its larger variation in object sizes and shapes. SCALOR performs tracking well in scenes
where objects are clearly separated, but struggles to separate objects that partially occlude
each other when entering the scene. This difficulty is caused by its discovery mechanism
which can propose at most one bounding box per grid cell, leading to a high number of
misses on data sets which feature significant occlusion (VOR and VMDS). Unfortunately,
simply increasing the number of proposals does not provide a simple solution, as SCALOR’s
performance is sensitive to properly tweaking the number of proposals.

Choosing a class of models is therefore dependent on the data set one wants to apply
it to as well as the computational resources at one’s disposal. Data sets that feature a
high number of objects (>10) that are well separated from each other make a method like
SCALOR, which can process objects in parallel, advisable. On data sets with a lower number
of objects per scene which feature heavy occlusion, methods like OP3 and ViMON will likely
achieve better results, but require a high computational budget for training.

In conclusion, our analysis shows that none of the models solve the basic challenges of
tracking even for relatively simple synthetic data sets. Future work should focus on developing
robust mechanisms for reliably handling depth and occlusion, additionally combining the
transformer-based efficiency of TBA and SCALOR with the stable training of ViMON
and the interaction model of OP3. The key open challenges for scaling these models to
natural videos include their computational inefficiency, complex training dynamics, as well
as over-dependence on simple appearance cues like color.
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Appendices

In the appendix, we first discuss the metrics used (Section A) and describe the data
generation process (Section B). We then describe the methods MONet, ViMON, TBA,
IODINE, OP3 and SCALOR (Section C). Section D contains information regarding the
implementation details and training protocols. Finally, we provide additional qualitative and
quantitative experimental results in Section E.

Appendix A. Evaluation Protocol Details

We quantitatively evaluate all models on three data sets using the standard CLEAR MOT
metrics (Bernardin and Stiefelhagen, 2008). Our evaluation protocol is adapted from the
multi-object tracking (MOT) challenge (Milan et al., 2016), a standard computer vision
benchmark for supervised object tracking. In particular, we focus on the metrics provided
by the py-motmetrics package3.

A.1 Mapping

In each frame, object predictions of each model in the form of binary segmentation masks
are mapped to the ground truth object segmentation masks. We require that each pixel is
uniquely assigned to at most one object in the ground truth and the predictions, respectively.
Matching is based on the Intersection over Union (IoU) between the predictions and the
ground truth masks (Voigtlaender et al., 2019). A valid correspondence between prediction
and object has to exceed a threshold in IoU of 0.5. Predictions that are not mapped to any
ground truth mask are classified as false positives (FPs). Ground truth objects that are not
matched to any prediction are classified as misses. Following (Bernardin and Stiefelhagen,
2008), ground truth objects that are mapped to two different hypothesis IDs in subsequent
frames are classified as ID switches for that frame.

A.2 MOT Metrics

MOT Accuracy (MOTA) measures the fraction of all failure cases, i.e. false positives
(FPs), misses and ID switches compared to total number of objects present in all frames.
MOT Precision (MOTP) measures the total accuracy in position for matched object
hypothesis pairs, relative to total number of matches made. We use percentage Intersection
over Union (IoU) of segmentation masks as the accuracy in position for each match. Mostly
Tracked (MT) is the ratio of ground truth objects that have been tracked for at least 80%
of their lifespan.(i.e. 80% of the frames in which they are visible). MT as implemented by
py-motmetrics counts trajectories of objects as correctly tracked even if ID switches occur.
We use a strictly more difficult definition of MT that counts trajectories with ID switches as
correctly detected but not correctly tracked. Consequently, we add the Mostly Detected
(MD) measure which does not penalize ID switches. Match, Miss, ID Switches (ID S.)

3https://pypi.org/project/motmetrics/
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and FPs are reported as the fraction of the number of occurrences divided by the total
number of object occurrences.

MOTA = 1−
∑T

t=1Mt + FPt + IDSt∑T
t=1Ot

(1)

where Mt, FPt,and IDSt are the number of misses, false positives and ID switches, respectively,
for time t, and Ot is the number of objects present in frame t. Note that MOTA can become
negative, since the number of FPs is unbounded.

MOTP =

∑T
t=1

∑I
i=1 d

i
t∑T

t=1 ct
(2)

where dit is the total accuracy in position for the ith matched object-hypothesis pair measured
in IoU between the respective segmentation masks and ct is the number of matches made in
frame t.

Note that we exclude the background masks for ViMON and OP3 before evaluating
tracking based on IoU. The Video Object Room (VOR) data set can contain up to three
background segments, namely the floor and up to two wall segments. In order to exclude
all background slots regardless of whether the model segments the background as one or
as multiple masks, we remove all masks before the tracking evaluation that have an IoU of
more than 0.2 with one of the ground truth background masks; we empirically tested that
this heuristic is successful in removing background masks regardless of whether the models
segments it as one or as three separate ones.

Appendix B. Data Set Generation Details

B.1 Video Multi-dSprites (VMDS)

The Multi-DSprites Video data set consists of 10-frame video sequences of 64×64 RGB images
with multiple moving sprites per video. In order to test temporal aggregation properties of
the models, the test set contains 20 frame-long sequences. Each video contains one to four
sprites following the data set proposed in Burgess et al. (2019) that move independently
of each other and might partially or fully occlude one another. The sprites are sampled
uniformly from the dSprites data set (Matthey et al., 2017) and colored with a random RGB
color. The background is uniformly colored with a random RGB color. Random trajectories
are sampled per object by drawing x and y coordinates from a Gaussian process with squared
exponential covariance kernel cov[xs, xt] = exp[−(xs − xt)2/(2τ2)] and time constant τ = 10
frames, and then shifted by an initial (x, y)-position of the sprite centroid, which is uniformly
sampled from [10, 54] to ensure that the object is within the image boundaries. Trajectories
that leave these boundaries are rejected. In occlusion scenarios, larger objects are always in
front of smaller objects to disambiguate prediction of occlusion. The training set consists of
10,000 examples whereas the validation set as well as the test set contain 1,000 examples
each. Additionally, we generated four challenge sets and three out-of-distribution test sets for
VMDS that contain specifically challenging scenarios. Each test set consists of 1,000 videos
of length 10 frames, which we describe in the following.
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B.1.1 VMDS Challenge Sets

Occlusion test set. In each video, one or more objects are heavily occluded and thus often
are not visible at all for a few frames. This is ensured by sampling object trajectories that
cross path, i.e. at least in one video frame, two objects are centered on the same pixel. The
time step and spatial position of occlusion is sampled randomly. Object trajectories are
sampled independently as described above and then shifted such that they are at the sampled
position of occlusion at time t. Videos contain two to four sprites (Fig. E.3), since at least
two objects are necessary for occlusion.

Small Objects. Videos contain one to four sprites with all sprites being of the smallest
size present in the original dSprites (Matthey et al., 2017) data set (Fig. E.3). Other than
that, it follows the generation process of the regular training and test set.

Large Objects. Videos contain one to four sprites with all sprites being of the largest
size present in the original dSprites (Matthey et al., 2017) data set (Fig. E.3). Other than
that, it follows the generation process of the regular training and test set.

Same Color. Videos contain two to four sprites which are identically colored with a
randomly chosen color. Other than that, it follows the generation process of the regular
training and test set (Fig. E.3).

B.1.2 VMDS Out-of-Distribution Test Sets

Rotation test set. Sprites rotate around their centroid while moving. The amount of
rotation between two video frames is uniformly sampled between 5 and 40 degrees, and is
constant for each object over the course of the video. Direction of rotation is chosen randomly.
Rotation is not included as a transformation in the training set (Fig. E.4).

Color change test set. Sprites change their color gradually during the course of the
video. The initial hue of the color is chosen randomly as well as the direction and amount
of change between two frames, which stays the same for each object over the course of the
video. Saturation and value of the color are kept constant. Color changes are not part of the
training set (Fig. E.4).

Size change test set. Sprites change their size gradually during the course of the video.
The original dSprites data set (Matthey et al., 2017) contains six different sizes per object.
For each object, its size is sampled as either the smallest or largest in the first frame as well
as a random point in time, at which it starts changing its size. At this point in time, it will
either become larger or smaller, respectively, increasing or decreasing each frame to the next
larger or smaller size present in the original dSprites data set, until the largest or smallest
size is reached. Size changes are not part of the training set (Fig. E.4).

B.1.3 texVMDS

The Textured Multi-DSprites Video data set consists of 10-frame video sequences of 64×64
RGB images with 1–4 moving sprites per video. The background is a linearly moving crop
from a uniformly sampled image (Deng et al., 2009) from the ImageNet Large Scale Visual
Recognition Challenge dataset (ILSVRC2012) and the texture of each sprite is similarly
cropped from a uniformly sampled ILSVRC2012 image (Deng et al., 2009). The direction
of the moving background is uniformly sampled from one of 8 directions (up, down, left,
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right, upper-right, upper-left, lower-right, lower-left). Other than that, texVMDS follows the
generation process of the regular VDMS.

B.2 Sprites-MOT (SpMOT)

Sprites-MOT, originally introduced by He et al. (2019), consists of video sequences of length
20 frames. Each frame is a 128×128 RGB image. It features multiple sprites moving linearly
on a black background. The sprite can have one of four shapes and one of six colors. For
more information, refer to the original paper (He et al., 2019). We generate a training set
consisting of 9600 examples, validation set of 384 samples and test set of 1,000 examples
using the author-provided public codebase4. However, instead of using the default setting of
20 frames per sequence, we instead generate sequences of length 10, in order to facilitate
comparison to the other data sets in our study which have only 10 frames per sequence.

Frames are downsampled to a resolution of 64×64 for training ViMON, OP3 and
SCALOR.

B.3 Video Objects Room (VOR)

We generate a video data set based on the static 3D Objects Room data set (Burgess et al.,
2019), with sequences of length 10 frames each at a resolution of 128×128. This data set
is rendered with OpenGL using the gym-miniworld5 reinforcement learning environment.
It features a 3D room with up to four static objects placed in one quadrant of the room,
and a camera initialized at the diagonally opposite quadrant. The objects are either static
cubes or spheres, assigned one of 6 colors and a random orientation on the ground plane
of the room. The camera then follows one of five trajectories moving towards the objects,
consisting of a small fixed distance translation and optional small fixed angle of rotation each
time step. The wall colors and room lighting are randomized, but held constant throughout
a sequence. The training set consists of 10,000 sequences whereas the validation set and the
test set contain 1,000 sequences each.

Frames are downsampled to a resolution of 64×64 for training ViMON, OP3 and
SCALOR.

Appendix C. Methods

In this section we describe the various methods in a common mathematical framework. For
details about implementation and training, please refer to Section D.

C.1 MONet

Multi-Object-Network (MONet) (Burgess et al., 2019) is an object-centric representation
model designed for static images. It consists of a recurrent attention network that sequentially
extracts attention masks of individual objects and a variational autoencoder (VAE) (Kingma
and Welling, 2014) that reconstructs the image region given by the attention mask in each
processing step.

4https://github.com/zhen-he/tracking-by-animation
5https://github.com/maximecb/gym-miniworld
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Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) pa-
rameterized by ψ. At each processing step k, the attention network receives the full image
x ∈ [0, 1]H×W×3 as input together with the scope variable sk ∈ [0, 1]H×W . The scope sk keeps
track of the regions of the image that haven’t been attended to in the previous processing
steps and thus remain to be explained. The attention network outputs a soft attention mask
mk ∈ [0, 1]H×W and the updated scope with the current mask subtracted:

mk = sk−1αψ(x, sk−1), (3)
sk+1 = sk(1− αψ(x, sk)), (4)

where αψ(x, sk) ∈ [0, 1]H×W is the output of the U-net and s0 = 1. The attention mask
for the last slot is given by mK = sK−1 to ensure that the image is fully explained, i.e.∑K

k=1mk = 1.
VAE: The VAE consists of an encoder g : [0, 1]H×W×3 × [0, 1]H×W → RL×2 and a decoder
h : RL → [0, 1]H×W×3 × [0, 1]H×W which are two neural networks parameterized by φ and θ,
respectively. The VAE encoder receives as input the full image x and the attention mask mk

and computes (µk, logσk), which parameterize the Gaussian latent posterior distribution
qφ(zk|x,mk) = N (µk,σkI). Using the reparametrization trick (Kingma and Welling, 2014),
zk ∈ RL is sampled from the latent posterior distribution. zk is decoded by the VAE decoder
into a reconstruction of the image component x̂k ∈ [0, 1]H×W×3 and mask logits, which are
used to compute the reconstruction of the mask m̂k ∈ [0, 1]H×W via a pixelwise softmax
across slots. The reconstruction of the whole image is composed by summing over the K
masked reconstructions of the VAE: x̂ =

∑K
k=1 m̂k � x̂k.

Loss: MONet is trained end-to-end with the following loss function:

L(φ; θ;ψ;x) = − log
K∑
k=1

mkpθ(x|zk) + βDKL(
K∏
k=1

qφ(zk|x,mk)‖p(z))

+γ

K∑
k=1

DKL(qψ(mk|x)‖pθ(mk|zk)),

(5)

where pθ(x|zk) is the Gaussian likelihood of the VAE decoder and zk ∈ RL is the latent
representation of slot k.

The first two loss terms are derived from the standard VAE objective, the Evidence Lower
BOund (ELBO) (Kingma and Welling, 2014), i.e. the negative log-likelihood of the decoder
and the Kullback–Leibler divergence between the unit Gaussian prior p(z) = N (0, I) and
the latent posterior distribution qφ(zk|x,mk) factorized across slots. Notably, the decoder
log-likelihood term pθ(x|zk) constrains only the reconstruction within the mask, since it is
weighted by the mask mk. Additionally, as a third term, the Kullback–Leibler divergence
of the attention mask distribution qψ(mk|x) with the VAE mask distribution pθ(m̂k|zk) is
minimized, to encourage the VAE to learn a good reconstruction of the masks.

C.2 Video MONet

We propose an extension of MONet (Burgess et al., 2019), called Video MONet (ViMON),
which accumulates evidence over time about the objects in the scene (Fig. C.1).
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ViMON processes a video recurrently by reconstructing one frame at a time and predicting
the next frame of the video. The processing of each frame follows a logic similar to MONet
with some notable differences. In the following, we use t to indicate the time step in the
video and k to indicate the processing step within one video frame.

GRU

VAE
Encoder

VAE
Dec.

K slots sequential

Attn.
Net

xt

mt,k

mt,k^

ht-1,k ht,k

zt,k

xt+1^xt^

Figure C.1: ViMON.
Attention network fol-
lowed by VAE encoder
and GRU computes la-
tent zt,k.

Attention Network: The attention network of ViMON outputs
an attention mask mt,k ∈ [0, 1]H×W in each step k conditioned
on the full frame xt ∈ [0, 1]H×W×3, the scope st,k ∈ [0, 1]H×W

and additionally the mask m̂t,k ∈ [0, 1]H×W that was predicted
by the VAE in the previous time step, in order to provide it with
information about which object it should attend to in this specific
slot k:

mt,k = st,k−1αψ(xt, st,k−1, m̂t,k). (6)

VAE: The VAE of ViMON consists of an encoder g(xt,mt,k;φ)
and a decoder h(zt,k; θ). In contrast to MONet, the encoder in
ViMON is followed by a gated recurrent unit (GRU) (Cho et al.,
2014) with a separate hidden state ht,k per slot k. Thus, the GRU
aggregates information over time for each object separately. The
GRU outputs (µt,k, logσt,k) which parameterize the Gaussian latent
posterior distribution qφ(zt,k|xt,mt,k) where zt,k ∈ RL is the latent
representation for slot k at time t:

z′t,k = g(xt,mt,k;φ), (7)

(µt,k, logσt,k),ht,k = f(GRU(z′t,k,ht−1,k))), (8)

qφ(zt,k|xt,mt,k) = N (µt,k,σt,kI) ∀t, k, (9)

where g is the VAE encoder and f is a linear layer. The latent representation zt,k is
sampled from the latent posterior distribution using the reparametrization trick (Kingma
and Welling, 2014). Subsequently, zt,k is linearly transformed into ẑt+1,k via a learned
transformation A ∈ RL×L: ẑt+1,k = Azt,k with ẑt+1,k being the predicted latent code for
the next time step t + 1. Both zt,k and ẑt+1,k are decoded by the shared VAE decoder
hθ into a reconstruction of the image x̂t,k ∈ [0, 1]H×W×3 and a reconstruction of the mask
m̂t,k ∈ [0, 1]H×W as well as x̂t+1,k and m̂t+1,k, respectively.
Loss: ViMON is trained in an unsupervised fashion with the following objective adapted
from the MONet loss (Eq. (5)) for videos. To encourage the model to learn about object
motion, we include a prediction objective in the form of a second decoder likelihood on the
next-step prediction pθ(xt+1|ẑt+1,k) and an additional mask loss term, which encourages
the predicted VAE mask distribution pθ(m̂t+1,k|ẑt+1,k) to be close to the attention mask
distribution qψ(mt+1,k|xt+1) of the next time step for each slot k:
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L(φ; θ;ψ;x) =
T∑
t=1

LnegLL + βLprior + γLmask

LnegLL = −(log
K∑
k=1

mt,kpθ(xt|zt,k) + log
K∑
k=1

mt+1,kpθ(xt+1|ẑt+1,k))

Lprior = DKL(

K∏
k=1

qφ(zt,k|xt,mt,k)‖p(z))

Lmask =
K∑
k=1

DKL(qψ(mt,k|xt)‖pθ(mt,k|zt,k)) +DKL(qψ(mt+1,k|xt+1)‖pθ(mt+1,k|ẑt+1,k))

C.3 Tracking-by-Animation

Feature
Extractor

Tracker
Array

MLP

Spatial
Transformer

(x,y)...

K slots parallel

xt

xt^

zt,k

ct

ht-1,k ht,k

yt,k

Figure C.2: TBA. Fea-
ture extractor CNN f and
tracker array g to get la-
tent zt,k. MLP h out-
puts mid-level representa-
tion yt,k, and Spatial Trans-
former renders reconstruc-
tion.

Tracking-by-Animation (TBA) (He et al., 2019) is a spatial
transformer-based attention model which uses a simple 2D ren-
dering pipeline as the decoder. Objects are assigned tracking
templates and pose parameters by a tracker array, such that
they can be reconstructed in parallel using a renderer based on
affine spatial transformation (Fig. C.2). In contrast to ViMON,
TBA uses explicit parameters to encode the position, size, as-
pect ratio and occlusion properties for each slot. Importantly,
TBA is designed for scenes with static backgrounds, and pre-
processes sequences using background subtraction (Bloisi and
Iocchi, 2012) before they are input to the tracker array.
Tracker Array: TBA uses a tracker array to output a latent
representation zt ∈ RL×K at time t using a feature extractor
f(xt;ψ) and a recurrent ’state update’, where ct ∈ RM×N×C
is a convolutional feature representation. The convolutional
feature and latent representation have far fewer elements than
xt, acting as a bottleneck:

ct = f(xt;ψ), (10)
ht,k = RAT (ht−1,k, ct;π), (11)
zt = g(ht;φ). (12)

Though the state update could be implemented as any
generic recurrent neural network block, such as an LSTM
(Hochreiter and Schmidhuber, 1997) or GRU (Cho et al., 2014),
TBA introduces a Reprioritized Attentive Tracking (RAT)
block that uses attention to achieve explicit association of slots
with similar features over time. Firstly, the previous tracker
state ht−1,k is used to generate key variables kt,k and βt,k:
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{kt,k, β̂t,k} = Tht−1,k, (13)

βt,k = 1 + ln(1 + exp(β̂t,k)), (14)

where T is a learned linear transformation, kt,k∈RS is the addressing key, and β̂t,k∈R
is an un-normalized version of a key strength variable βt,k∈(1,+∞). This key strength acts
like a temperature parameter to modulate the feature re-weighting, which is described in
the following. Each feature vector in ct, denoted by ct,m,n ∈RS , where m∈{1, 2, . . . ,M}
and n∈{1, 2, . . . , N} are the convolutional feature dimensions, is first used to get attention
weights:

Wt,k,m,n =
exp(βt,kSim(kt,k, ct,m,n))∑

m′,n′ exp(βt,kSim(kt,k, ct,m′,n′))
. (15)

Here, Sim is the cosine similarity defined as Sim(p,q)=pqT/(‖p‖‖q‖), and Wt,k,m,n is
an element of the attention weight Wt,k∈ [0, 1]M×N , satisfying

∑
m,nWt,k,m,n=1. Next, a

read operation is defined as a weighted combination of all feature vectors of ct:

rt,k =
∑
m,n

Wt,k,m,n ct,m,n, (16)

where rt,k ∈ RS is the read vector, representing the associated input feature for slot k.
Intuitively, for slots in which objects are present in the previous frame, the model can
suppress the features in rt,k that are not similar to the features of that object, helping achieve
better object-slot consistency. On the other hand, if there are slots which so far do not
contain any object, the key strength parameter allows rt,k to remain similar to ct, facilitating
the discovery of new objects.

The tracker state ht,k of the RAT block is updated with an RNN parameterized by π,
taking rt,k instead of ct as its input feature:

ht,k = RNN(ht−1,k, rt,k;π). (17)

The RAT block additionally allows for sequential prioritization of trackers, which in
turn allows only a subset of trackers to update their state at a given time step, improving
efficiency. For full details on the reprioritization and adaptive computation time elements of
the RAT block, please refer to the original paper (He et al., 2019).
Mid-Level Representation: The key feature of TBA is that each latent vector zt,k is fur-
ther decoded into a mid-level representation yt,k = {yct,k,ylt,k,y

p
t,k,Y

s
t,k,Y

a
t,k} corresponding

to interpretable, explicit object properties, via a fully-connected neural network h(zt,k; θ) as
follows:

yt,k = h(zt,k; θ). (18)

hθ is shared by all slots, improving parameter efficiency. The different components of the
mid-level representation are:
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• Confidence yct,k∈ [0, 1]: Probability of existence of an object in that slot.

• Layer ylt,k∈{0, 1}O: One-hot encoding of the discretized pseudo-depth of the object
relative to other objects in the frame. Each image is considered to be composed of O
object layers, where higher layer objects occlude lower layer objects and the background
is the zeroth (lowest) layer. E.g., when O=4, ylt,k=[0, 0, 1, 0] denotes the third layer.
For simplicity and without loss of generality, we can also denote the same layer with
its integer representation ylt,k = 3.

• Pose ypt,k=[ŝxt,k, ŝ
y
t,k, t̂

x
t,k, t̂

y
t,k]∈ [−1, 1]

4: Normalized object pose for calculating the scale
[sxt,k, s

y
t,k] = [1 + ηxŝxt,k, 1 + ηy ŝyt,k] and the translation [txt,k, t

y
t,k] = [W2 t̂

x
t,k,

H
2 t̂
y
t,k], where

ηx, ηy > 0 are constants.

• Shape Ys
t,k ∈ {0, 1}U×V and Appearance Ya

t,k ∈ [0, 1]U×V×3: Object template, with
hyperparameters U and V typically set much smaller than the image dimensions H
and W . Note that the shape is discrete (for details, see below) whereas the appearance
is continuous.

In the output layer of hθ, yct,k and Ya
t,k are generated by the sigmoid function, ypt,k is

generated by the tanh function, and ylt,k as well as Ys
t,k are sampled from the Categorical and

Bernoulli distributions, respectively. As sampling is non-differentiable, the Straight-Through
Gumbel-Softmax estimator (Jang et al., 2017) is used to reparameterize both distributions
so that backpropagation can still be applied.
Renderer: To obtain a frame reconstruction, the renderer scales and shifts Ys

t,k and Ya
t,k

according to ypt,k via a Spatial Transformer Network (STN) (Jaderberg et al., 2015):

mt,k = STN(Ys
t,k,y

p
t,k), (19)

x̂t,k = STN(Ya
t,k,y

p
t,k). (20)

where mt,k∈{0, 1}D and x̂t,k∈ [0, 1]D×3 are the spatially transformed shape and appearance
respectively. To obtain the final object masks m̂t,k, an occlusion check is performed by
initializing m̂t,k = yct,kmt,k, then removing the elements of m̂t,k for which there exists an
object in a higher layer. That is, for k=1, 2, . . . ,K and ∀j 6= k where ylt,j > ylt,k:

m̂t,k = (1−mt,j)� m̂t,k. (21)

In practice, the occlusion check is sped up by creating intermediate ‘layer masks’, partially
parallelizing the operation. Please see the original paper for more details (He et al., 2019).
The final reconstruction is obtained by summing over the K slots, x̂t =

∑K
k=1 m̂t,k � x̂t,k.

Loss: Learning is driven by a pixel-level reconstruction objective, defined as:

L(φ;ψ;π; θ;x) =

T∑
t=1

(
MSE(x̂t,xt) + λ · 1

K

K∑
k=1

sxt,k s
y
t,k

)
, (22)

where MSE refers to the mean squared error and the second term penalizes large scales
[sxt,k, s

y
t,k] in order to make object bounding boxes more compact.
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C.4 IODINE
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Figure C.3: OP3. Refinement network f fol-
lowed by LSTM and dynamics network d com-
pute latent zt,k.

The Iterative Object Decomposition Infer-
ence NEtwork (IODINE) (Greff et al., 2019),
similar to MONet (Burgess et al., 2019),
learns to decompose a static scene into a
multi-slot representation, in which each slot
represents an object in the scene and the
slots share the underlying format of the in-
dependent representations. In contrast to
MONet, it does not recurrently segment
the image using spatial attention, rather it
starts from an initial guess of the segmen-
tation of the whole image and iteratively
refines it. Thus, the inference component
of both models differ, while the generative
component is the same.

Iterative Inference: As with MONet,
IODINE models the latent posterior q(zk|x)
per slot k as a Gaussian parameterized by
(µm,k,σm,k) ∈ RL×2. To obtain latent rep-
resentations for independent regions of the
input image, IODINE starts from initial
learned posterior parameters (µ1,k,σ1,k) and
iteratively refines them using the refinement
network fφ for a fixed number of refinement steps M . fφ consists of a convolutional neural
network (CNN) in combination with an LSTM cell (Hochreiter and Schmidhuber, 1997)
parameterized by φ. In each processing step, fφ receives as input the image x ∈ [0, 1]H×W×3,
a sample from the current posterior estimate zm,k ∈ RL and various auxiliary inputs ak, which
are listed in the original paper (Greff et al., 2019). The posterior parameters are concatenated
with the output of the convolutional part of the refinement network and together form the
input to the refinement LSTM. The posterior parameters are additively updated in each
step m in parallel for all K slots:

(µm+1,k,σm+1,k) = (µm,k,σm,k) + fφ(zm,k,x,ak). (23)

Decoder: In each refinement stepm, the image is represented byK latent representations
zm,k. Similar to MONet, each zm,k is independently decoded into a reconstruction of the
image x̂m,k ∈ [0, 1]H×W×3 and mask logits m̃m,k, which are subsequently normalized by
applying the softmax across slots to obtain the masks mm,k ∈ [0, 1]H×W . The reconstruction
of the whole image at each refinement step m is composed by summing over the K masked
reconstructions of the decoder: x̂ =

∑K
k=1mm,k � x̂m,k.
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Training: IODINE is trained by minimizing the following loss function that consists
of the Evidence Lower BOund (ELBO) (Kingma and Welling, 2014) unrolled through N
iterations:

L(θ, φ, (µ1,k,σ1,k);x) =
M∑
m=1

m

M

[
− log

K∑
k=1

mm,kpθ(x|zm,k) +DKL

(
K∏
k=1

qφ(zm,k|x)‖p(z)

)]
,

(24)

where pθ(x|zm,k) is the decoder log-likelihood weighted by the mask mk and DKL is the
Kullback-Leibler divergence between the unit Gaussian prior p(z) = N (0, I) and the latent
posterior distribution q(zm,k|x) factorized across slots.

C.5 Object-centric Perception, Prediction, and Planning (OP3)

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al., 2020) extends
IODINE to work on videos and in a reinforcement learning (RL) setting. It uses the above
described IODINE as an observation model to decompose visual observations into objects
and represent them independently. These representations are subsequently processed by a
dynamics model that models the individual dynamics of the objects, the pairwise interaction
between the objects, as well as the action’s effect on the object’s dynamics, predicting the
next frame in latent space (Fig. C.3). By modeling the action’s influence on individual
objects, OP3 can be applied to RL tasks.

OP3 performs M refinement steps after each dynamics step.

Refinement network: The refinement steps proceed as in the description for IODINE
in Section C.4. The input image xt ∈ [0, 1]H×W×3, which is the frame from a video
at time t, is processed by the refinement network fφ conditioned on a sample from the
current posterior estimate zt,m,k ∈ RL. The refinement network outputs an update of the
posterior parameters (µt,m,k,σt,m,k) (see Eq. (23)). The posterior parameters (µ1,1,k, σ1,1,k)
are randomly initialized.

Dynamics model: After refinement, samples from the current posterior estimate zt,M,k

for each slot k are used as input to the dynamics network. The dynamics model dψ consists
of a series of linear layers and nonlinearities parameterized by ψ. It models the individual
dynamics of the objects per slot k, the pairwise interaction between all combinations of
objects, aggregating them into a prediction of the posterior parameters for the next time step
t+ 1 for each object k. The full dynamics model additionally contains an action component
that models the influence of a given action on each object, which we do not use in our
tracking setting. The predicted posterior parameters are then used in the next time step as
initial parameters for the refinement network.

(µt,1,k,σt,1,k) = dψ(zt−1,M,k, zt−1,M,[6=k]). (25)
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Training. OP3 is trained end-to-end with the ELBO used at every refinement and
dynamics step, with the loss L(θ, φ;x) given by:

T∑
t=1

1

T

M+1∑
m=1

min(m,M)

M

(
− log

K∑
k=1

mt,m,kpθ(xt|zt,m,k) +DKL(

K∏
k=1

qφ(zt,m,k|xt)‖q(zt,1,k|xt))

)
,

(26)
where for time step 1, q(z1,1,k|x1) = N (0, I).

C.6 SCALable Object-oriented Representation (SCALOR)

SCALable Object-oriented Representation (SCALOR) (Jiang et al., 2020) is a spatial
transformer-based model that extends SQAIR (Kosiorek et al., 2018) to scale to cluttered
scenes. Similar to TBA, it factors the latent representations in pose, depth and appearance
per object and uses spatial transformers (Jaderberg et al., 2015) to render objects in parallel.
In contrast to TBA, it can handle dynamic backgrounds by integrating a background RNN
that models background transitions.

Proposal-Rejection Module: SCALOR uses a proposal-rejection module g to discover
new objects. All frames up to the current time step x1:t are first encoded using a convolutional
LSTM f . The resulting features are then aggregated with an encoding of propagated object
masks and divided into H ×W grid cells.

cimgt = f(x1:t;ψ), (27)

cmaskt =MaskEncoder(MP
t ), (28)

caggt = Concat([cimgt , cmaskt ]. (29)

Per grid cell a latent variable zt,h,w is proposed. Proposal generation is done in parallel.
Each zt,h,w consists of existence, pose, depth and appearance parameters (zprest,h,w, z

pose
t,h,w, z

depth
t,h,w , z

what
t,h,w).

zprest,h,w ∼ Bern(·|g1(c
agg
t )), (30)

zdeptht,h,w ∼ N (·|g2(caggt )), (31)

zposet,h,w ∼ N (·|g3(caggt )), (32)

where g1, g2 and g3 are convolutional layers.
The appearance parameters zwhatt,h,w are obtained by first taking a glimpse from frame xt

of the area specified by zposet,h,w via a Spatial Transformer Network (STN) (Jaderberg et al.,
2015) and subsequently extracting features from it via a convolutional neural network:

cattt,h,w = STN(xt, z
pose
t,h,w), (33)

zwhatt,h,w ∼ N (·|GlimpseEnc(cattt,h,w)), (34)

ot,h,w,mt,h,w = STN−1(GlimpseDec(zwhatt,h,w), z
pose
t,h,w), (35)

where ot,h,w is the object RGB glimpse and mt,h,w is the object mask glimpse.

26



Benchmarking Unsupervised Object Representations

MLP

Feature
Extractor

(x,y)...

K slots parallel

Reject-
ion

Tracker
RNNs

BG-
Network

Spatial
Transformer

Proposal

x1:t

xt^

ht-1,k

xbgt^

zt,k

xfg^t,k

zt,h,w

Figure C.4: SCALOR Feature ex-
tractor CNN f followed by tracker
RNNs or proposal-rejection module
to compute latent zt,k. Spatial Trans-
former in addition to background
module renders reconstruction.

In the rejection phase, objects that overlap more
than a threshold τ in pixel space with a propagated
object from the previous time step are rejected.

Propagation Module: During propagation, for
each object k from the previous time step t − 1 a
feature attention map at,k from the encoded frame
features cimgt is extracted centered on the position
of the object in the previous time step and used to
update the hidden state ht,k of the tracker RNN for
object k.

at,k = att(STN(cimgt , zposet−1,k), (36)

ht,k = GRU([at,k, zt−1,k],ht−1,k), (37)
zt,k = update(at,k,ht,k, zt−1,k), (38)

where STN is a spatial transformer module (Jader-
berg et al., 2015). If zprest,k = 1 the latent representa-
tion zt,k of the respective object k will be propagated
to the next time step.

Background: The background of each frame xt
is encoded using a convolutional neural network con-
ditioned on the masks Mt of the objects present at
time step t and decoded using a convolutional neural
network.

(µbg,σbg) = BgEncoder(xt, (1−Mt)), (39)

zbgt ∼ N (µbg,σbg), (40)

x̂bgt = BgDecoder(zbgt ). (41)

Rendering: To obtain frame reconstructions x̂t foreground object appearances and
masks are scaled and shifted using via a Spatial Transformer Network (STN):

x̂fgt,k = STN−1(ot,k, z
pose
t,k ), (42)

γt,k = STN−1(mt,k · zprest,k σ(−zdeptht,k ), zposet,k ), (43)

x̂fgt =
∑
K

x̂fgt,kγt,k. (44)

Subsequently, foreground objects and background reconstruction are combined as follows
to obtain the final reconstruction:

x̂t = x̂fgt + (1−Mt)� x̂bgt . (45)
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Training: SCALOR is trained on frame reconstruction using the evidence lower bound
(ELBO):

T∑
t=1

− log pθ(xt|zt) +DKL(qφ(zt|z<t,x≤t)‖q(zt|z<t)). (46)

Appendix D. Model Implementation Details

D.1 Baseline: k-Means

As a baseline, we implement a simple color segmentation algorithm to evaluate if this is
sufficient to solve the benchmark data sets. To this end, we cluster the videos using the
k-Means algorithm as implemented by sklearn (Pedregosa et al., 2011). The number of
clusters are chosen equal to the number of slots in the other models, i.e. K = 5 for SpMOT,
K = 6 for VMDS and K = 8 for VOR. We run the clustering three times per video with
different random seeds. Each pixel is treated as one sample with 3 features (RGB values).
k-Means clustering is performed for each frame in the video separately. To obtain the tracking
performance, we match objects in consecutive frames using IoU of the extracted segmentation
masks with the Hungarian matching algorithm (Kuhn, 1955).

D.2 MONet and Video MONet

VAE: Following Burgess et al. (2019), the VAE encoder is a CNN with 3x3 kernels, stride 2,
and ReLU activations (Table D.1). It receives the input image and mask from the attention
network as input and outputs (µ, log σ) of a 16-dimensional Gaussian latent posterior. The
GRU has 128 latent dimensions and one hidden state per slot followed by a linear layer with
32 output dimensions. The VAE decoder is a Broadcast decoder as published by Watters
et al. (2019b) with no padding, 3x3 kernels, stride 1 and ReLU activations (Table D.2). The
output distribution is an independent pixel-wise Gaussian with a fixed scale of σ = 0.09 for
the background slot and σ = 0.11 for the foreground slots.
Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) and
follows the architecture proposed by Burgess et al. (2019). The down- and up-sampling
components consist each of five blocks with 3x3 kernels, 32 channels, instance normalization,
ReLU activations and down- or up-sampling by a factor of two. The convolutional layers are
bias-free and use stride 1 and padding 1. A three-layer MLP with hidden layers of size 128
connect the down- and the up-sampling part of the U-Net.
Training: MONet and ViMON are implemented in PyTorch (Paszke et al., 2019) and
trained with the Adam optimizer (Kingma and Ba, 2015) with a batch size of 64 for MONet
and 32 for ViMON, using an initial learning rate of 0.0001. Reconstruction performance
is evaluated after each epoch on the validation set and the learning rate is decreased by a
factor of 3 after the validation loss has not improved in 25 consecutive epochs for MONet
and 100 epochs for ViMON, respectively. MONet and ViMON are trained for 600 and
1000 epochs, respectively. The checkpoint with the lowest reconstruction error is selected
for the final MOT evaluation. MONet is trained with β = 0.5 and γ = 1 and ViMON is
trained with β = 1 and γ = 2. K = 5 for SpMOT, K = 6 for VMDS and K = 8 for VOR.
Due to the increased slot number for VOR, batch size for ViMON had to be decreased to
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Type Size/Ch. Act. Func. Comment

Input 4 RGB + Mask
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 64 ReLU
Conv 3x3 64 ReLU
MLP 256 ReLU
MLP 32 Linear

Table D.1: Architecture of ViMON VAE Encoder.

Type Size/Ch. Act. Func. Comment

Input 16
Broadcast 18 + coordinates
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 1x1 4 Linear RGB + Mask

Table D.2: Architecture of ViMON VAE Decoder.

24 to fit into the GPU memory. Respectively, the initial learning rate is set to 0.000075 for
ViMON on VOR. We initialize the attention network and the VAE in ViMON with the
pre-trained weights from MONet to facilitate learning and speed up the training. Note that
for all evaluations, the reconstructed masks m̂ from the VAE were used.

Sprites-MOT Initialization: When training MONet and Video MONet on Sprites-
MOT from scratch, MONet struggles to learn the extreme color values of the objects that
Sprites-MOT features. Instead it completely focuses on learning the shapes. To circumvent
that, we initialized the weights of the models with MONet weights that were trained for
100 epochs on Multi-dSprites.
Hyperparameter tuning: Hyperparameters for MONet and ViMON were selected using
the best MSE on the validation set of VMDS. Hyperparameter tuning for MONet included
β from {0.5, 1.0} and γ from {0.5, 1.0, 2.0} and initial learning rate from {1e-05, 1e-04}.

Hyperparameter tuning for ViMON included β from {0.5, 1.0} and γ from {1.0, 2.0, 5.0,
10.0, 50.0} and initial learning rate from {1e-05, 1e-04, 1e-03}.

Hyperparameters for texVMDS were kept fixed to the best selected hyperparameters
for VMDS, except for the VAE latent dimension, which is tuned to account for the higher
visual complexity. The VAE latent dimension 16 is selected from {16, 32, 64, 128} as the one
with the best MOTA for MONet on texVMDS validation set — analogous to the SCALOR
hyperparameter tuning paradigm — and subsequently also used for training of ViMON on
texVMDS.
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D.3 Tracking by Animation

Preprocessing: TBA expects its input frames to contain only foreground objects. In He
et al. (2019), the authors use Independent Multimodal Background Subtraction (IMBS)
(Bloisi and Iocchi, 2012) to remove the background from data sets consisting of natural videos
with static backgrounds. Background subtraction algorithms maintain a spatio-temporal
window around each pixel in the sequence, and remove the dominant mode based on a
histogram of color values. Since the default implementation of IMBS has several hand-tuned
thresholds corresponding to natural videos (e.g., for shadow suppression), it cannot be directly
applied to synthetic data sets like VMDS without significant hyperparameter tuning. We
instead re-generate all of the VMDS data sets with identical objects and motion but a black
background for our experiments with TBA, to mimic a well-tuned background subtraction
algorithm.

Architecture: For SpMOT, we follow the same architecture as in (He et al., 2019),
while we increase the number of slots from K = 4 to K = 5 and number of layers from O = 3
to O = 4 for VMDS. Since TBA does not model the background, this makes the number of
foreground slots equal to the other models in our study.

Hyperparameter tuning: Further, we increase the size prior parameters U × V used
for the shape and appearance templates from 21× 21 which is used for SpMOT, to 64× 64
for VMDS, which we empirically found gave the best validation loss among 48× 48, 56× 56,
64× 64 and 72× 72. All other architectural choices are kept fixed for both data sets, and
follow He et al. (2019). Note that due to this, we trained the TBA models at its default
resolution of 128×128 unlike the 64×64 resolution used by MONet and OP3.

Training and Evaluation: We train for 1000 epochs using the same training schedule
as He et al. (2019). The checkpoint with the lowest validation loss is selected for the final
MOT evaluation. Further, we observed that the discrete nature of the shape code used in
TBA’s mid-level representation leads to salt-and-pepper noise in the reconstructed masks.
We therefore use a 2× 2 minimum pooling operation on the final output masks to remove
isolated, single pixel foreground predictions and generate 64× 64 resolution outputs, similar
to MONet and OP3 before evaluation.

Deviation of SpMOT results compared to original publication: Our results were
generated with 100k training frames, while the original TBA paper (He et al., 2019) uses
2M training frames for the simple SpMOT task. Further, we report the mean of three
training runs, while the original paper reports one run (presumably the best). Our best run
achieves MOTA of 90.5 (Table E.1). Third, we evaluate using intersection over union (IoU)
of segmentation masks instead of bounding boxes.

D.4 OP3

Training: The OP3 loss is a weighted sum over all refinement and dynamics steps (Eq. (26)).
For our evaluation on multi-object tracking, we weight all time steps equally. In contrast
to the original training loss, in which the weight value is linearly increased indiscriminately,
thus weighting later predictions more highly, we perform the linear increase only for the
refinement steps between dynamics steps, thus weighting all predictions equally.

OP3, as published by Veerapaneni et al. (2020), uses curriculum learning. For the first
100 epochs, M refinement steps are taken, followed by a single dynamics step, with a final
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refinement step afterwards. Starting after 100 epochs, the number of dynamics steps is
incremented by 1 every 10 epochs, until five dynamics steps are reached. Thus, only 5 frames
of the sequence are used during training at maximum.

We chose to use an alternating schedule for training, where after each dynamics step,
M = 2 refinement steps are taken, and this is continued for the entire sequence. Thus, the
entire available sequence is used, and error is not propagated needlessly, since the model is
enabled to refine previous predictions on the reconstruction before predicting again. Note
that this is the schedule OP3 uses by default at test-time, when it is used for model predictive
control. Note that we still use 4 refinement steps on the initial observation to update the
randomly initialized posterior parameters, as in the released implementation. We split all
10-step sequences into 5-step sequences to avoid premature divergence.

Hyperparameter tuning: Note that OP3 by default uses a batch size of 80 with the
default learning rate of 0.0003. As we found training OP3 to be very unstable, leading
to eventual divergence in almost all experiments that have been performed for this study,
we tested batch sizes [64, 32, 16, 8] and found reducing the batch size significantly, to 16,
improved performance. We found the default learning rate to be too large for SpMOT in
particular, as the model diverged significantly earlier than on VMDS and VOR. We tested
learning rates [0.0002, 0.0001, 0.00006, 0.00003], and found decreasing the learning rate to
0.0001 rectified the observed premature divergence.

The checkpoint prior to divergence with the lowest KL loss is selected for the final MOT
evaluation, as the KL loss enforces consistency in the latents over the sequence. Interestingly,
the checkpoint almost always corresponded to the epochs right before divergence.

D.5 SCALOR

Architecture: We follow the same architecture as in Jiang et al. (2020). We use a grid of
4× 4 for object discovery with a maximum number of objects of 10. The standard deviation
of the image distribution is set to 0.1. Size anchor and variance are set to 0.2 and 0.1,
respectively.

For SpMOT, background modeling is disabled and the dimensionality of the latent object
appearance is set to 8.

For VMDS, the dimensionality of background is set to 3 and the dimensionality of the
latent object appearance is set to 16. For object discovery, a grid of 3 × 3 cells with a
maximum number of objects of 8 is used.

For VOR, the dimensionality of background is set to 8 and the dimensionality of the
latent object appearance is set to 16.

For texVMDS, the dimensionality of background is set to 32 and the dimensionality of
the latent object appearance is set to 16. For object discovery, a grid of 3× 3 cells with a
maximum number of objects of 8 is used.

Best model checkpoint according to the validation loss was chosen for MOT evaluation.
Hyperparameter tuning: For VMDS, we run hyperparameter search over number of

grid cells {3× 3, 4× 4}, background dimension {1, 3, 5}, maximum number of objects {5, 8,
10} (dependent on number of grid cells), size anchor {0.2, 0.25, 0.3, 0.4}, zwhat dimensionality
{8, 16, 24} and end value of τ {0.3, 0.5}.
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For SpMOT, we run hyperparameter search over maximum number of objects {4, 10},
size anchor {0.1, 0.2, 0.3}, zwhat dimensionality {8, 16} and whether to model background
(with background dimensionality 1) or not.

For VOR, we run hyperparameter search over size anchor {0.2, 0.3} and background
dimensionality {8, 12}.

For texVMDS, we keep hyperparameters fixed as for VMDS and only tune background
dimension {3, 8, 16, 32, 64, 128} and zwhat dimensionality {16, 32, 64, 128} to account for
the higher visual complexity of the data set.

We picked best hyperparameters according to the validation loss with the exception of the
data set texVMDS, for which the best validation loss was given by the model using a latent
dimensionality of 128 for both background and object. This led to the model using only
the background slot to reconstruct the whole frame without using the object slots (object
matches ˜3%). As a sanity check, we picked the model which had the best MOTA on the
validation set (shown in Table 3), but it also did not perform well on the more complex
texVMDS data set.

We additionally tested if down-weighing the log-likelihood during training by a factor of
10, while keeping the high latent dimensionality (128 for both zwhat and background) would
help, by decreasing the focus on reconstructing the high frequency textures, but it still relied
on the background to reconstruct the image without using object slots.

Training: We train SCALOR with a batch size of 16 for 300 epochs using a learning
rate of 0.0001 for SpMOT and VOR and for 400 epochs for VMDS. For the final MOT
evaluation, the checkpoint with the lowest loss on the validation set is chosen.

Appendix E. Additional Results

Table E.1 lists the individual results for the three training runs with different random seeds
per model and data set. The results of ViMON and SCALOR are coherent between the
three runs with different random seed, while TBA has one run on SpMOT with significantly
lower performance than the other two and shows variation in the three training runs on
VMDS. OP3 exhibits one training run on SpMOT with lower performance than the other
two.

Fig. E.2 shows the fraction of failure cases dependent on the number of objects over all
types of failures (misses, ID. switches and FPs). Fig. E.1 shows the fraction of failure cases
dependent on the number of objects present in the video for the three different failure cases
separately; ID switches, FPs and misses. For ViMON, TBA and SCALOR, the number
of failures increase with the number of objects present regardless of the type of failure. In
contrast, OP3 shows this pattern for ID switches and misses, while it accumulates a higher
number of false positives (FPs) in videos with fewer (only one or two) objects.

Fig. E.4 shows a comparison between MONet and ViMON on VMDS. MONet correctly
finds and segments objects, but it does not assign them to consistent slots over time, while
ViMON maintains a consistent slot assignment throughout the video.

Fig. E.5 shows failures cases of OP3 on VOR.
Table E.3 and Table E.4 list the results for the four models, ViMON, TBA, OP3 and

SCALOR, on the VMDS challenge sets and out-of-distribution (o.o.d.) sets respectively.
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Model Run MOTA ↑ MOTP ↑ MD ↑ MT ↑ Match ↑ Miss ↓ ID S. ↓ FPs ↓ MSE ↓

SpMOT

1 36.2 77.6 76.8 76.3 80.5 19.2 0.2 44.3 -
k-Means 2 36.2 77.6 76.8 76.3 80.5 19.2 0.2 44.3 -

3 36.3 77.6 76.8 76.2 80.5 19.3 0.2 44.2 -

1 70.0 90.6 92.8 49.4 74.7 4.1 21.2 4.7 10.4
MONet 2 69.4 90.0 92.7 48.1 74.2 4.1 21.6 4.8 13.4

3 71.3 88.1 91.6 53.8 77.1 4.9 18.0 5.8 15.2

1 92.7 92.0 87.5 87.0 94.9 4.9 0.2 2.2 10.5
ViMON 2 92.8 92.0 86.9 86.3 94.8 5.0 0.2 2.0 11.8

3 93.2 91.6 88.8 88.3 95.2 4.6 0.2 2.0 10.9

1 90.5 71.4 90.2 89.8 94.4 5.3 0.3 3.9 10.3
TBA 2 58.4 70.7 69.6 60.8 75.0 18.1 6.9 16.6 14.6

3 90.1 71.5 90.3 89.4 94.0 5.5 0.5 3.9 10.9

1 92.4 80.0 94.5 93.7 97.3 2.4 0.4 4.8 4.3
OP3 2 81.9 74.9 86.9 86.5 92.8 6.8 0.3 10.9 30.1

3 92.9 80.1 95.9 95.2 97.6 2.0 0.4 4.7 5.6

1 94.4 80.1 96.5 92.3 95.4 2.4 2.2 1.0 3.3
SCALOR 2 94.7 80.2 96.4 93.1 95.8 2.4 1.8 1.1 3.4

3 95.5 80.2 96.3 94.0 96.4 2.4 1.2 0.9 3.6

VOR

1 -38.0 76.5 69.8 62.8 72.6 22.1 5.3 110.7 -
k-Means 2 -38.1 76.5 69.8 63.0 72.7 22.1 5.2 110.8 -

3 -37.9 76.5 70.0 62.9 72.8 22.0 5.2 110.7 -

1 28.0 81.3 73.8 26.7 57.4 18.0 24.6 29.4 14.1
MONet 2 44.5 82.4 78.2 45.4 68.7 15.0 16.3 24.2 11.8

3 38.5 81.6 78.7 39.8 67.0 14.4 18.5 28.5 10.8

1 89.0 88.9 90.2 89.8 92.9 6.8 0.3 3.9 7.1
ViMON 2 89.0 89.8 89.9 89.6 93.0 6.8 0.2 4.0 6.2

3 89.0 89.9 91.0 90.6 93.8 6.0 0.2 4.8 5.9

1 64.8 89.5 87.2 85.1 90.3 8.8 0.9 25.5 3.1
OP3 2 66.2 88.1 88.6 85.1 90.7 7.9 1.4 24.5 2.9

3 65.3 89.3 88.2 86.1 91.1 8.0 0.9 25.8 3.0

1 74.1 85.8 75.6 75.5 77.4 22.6 0.0 3.3 6.4
SCALOR 2 74.6 86.0 75.9 75.9 78.1 21.9 0.1 3.5 6.4

3 75.1 86.1 76.5 76.4 78.2 21.7 0.0 3.1 6.3

Table E.1: Analysis of SOTA object-centric representation learning models for MOT. Results
for three runs with different random training seeds.
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Model Run MOTA ↑ MOTP ↑ MD ↑ MT ↑ Match ↑ Miss ↓ ID S. ↓ FPs ↓ MSE ↓

VMDS

1 -3.3 89.8 98.3 93.4 96.4 1.0 2.6 99.7 -
k-Means 2 -3.3 89.8 98.2 93.2 96.4 1.1 2.6 99.7 -

3 -3.2 89.8 98.2 93.4 96.4 1.0 2.6 99.6 -

1 51.7 79.6 75.1 36.7 67.6 12.9 19.5 15.9 20.8
MONet 2 44.3 76.1 71.8 34.8 65.9 15.0 19.1 21.5 25.3

3 52.2 80.2 75.6 35.5 66.5 13.0 20.5 14.2 20.4

1 87.0 86.8 86.7 85.4 92.4 6.8 0.7 5.5 10.6
ViMON 2 87.1 86.8 86.1 85.1 92.3 7.1 0.6 5.3 10.8

3 86.5 86.7 86.0 84.6 92.1 7.2 0.7 5.6 10.6

1 68.5 76.1 69.3 65.3 80.7 16.5 2.8 12.2 26.0
TBA 2 38.9 73.8 55.1 50.5 70.2 26.6 3.2 31.3 30.8

3 56.0 75.0 64.3 59.2 76.7 19.8 3.5 20.8 27.5

1 93.1 94.2 97.2 96.7 98.0 1.9 0.2 4.9 4.0
OP3 2 92.7 93.4 96.9 96.3 97.8 2.0 0.2 5.1 4.3

3 89.4 93.3 96.2 95.8 97.6 2.2 0.2 8.3 4.6

1 75.7 88.1 69.4 68.3 79.8 19.4 0.8 4.0 13.9
SCALOR 2 72.7 87.2 66.7 65.6 77.6 21.6 0.8 4.9 14.2

3 73.7 87.6 67.5 66.2 77.9 21.2 0.9 4.2 14.0

texVMDS

1 -99.5 76.4 25.4 24.3 30.3 69.2 0.5 129.8 -
k-Means 2 -99.5 76.4 25.3 24.4 30.4 69.2 0.5 129.9 -

3 -99.5 76.4 25.3 24.3 30.3 69.2 0.5 129.8 -

1 -70.8 67.1 15.5 13.4 24.9 73.9 1.2 95.7 203.0
MONet 2 -68.1 69.2 20.4 15.4 30.4 66.5 3.1 98.6 192.5

3 -80.9 66.7 12.1 8.1 18.9 78.9 2.2 99.8 205.9

1 -88.2 68.3 24.2 23.8 35.5 64.2 0.3 123.7 174.6
ViMON 2 -86.6 69.0 22.6 22.0 32.4 67.4 0.3 119.0 172.7

3 -81.6 69.8 25.8 25.4 36.3 63.4 0.3 117.9 166.9

1 -105.6 71.5 20.6 20.4 28.3 71.6 0.2 133.9 113.6
OP3 2 -116.0 70.1 9.4 9.2 13.6 86.3 0.1 129.6 153.2

3 -109.7 70.3 19.5 19.0 26.9 72.8 0.3 136.6 131.8

1 -84.8 73.3 6.4 6.3 12.5 87.3 0.2 97.3 149.5
SCALOR 2 -99.5 74.4 7.3 7.0 12.7 87.1 0.3 112.1 125.0

3 -113.4 74.4 5.8 5.6 11.8 88.0 0.3 125.2 126.7

Table E.2: Analysis of SOTA object-centric representation learning models for MOT. Results
for three runs with different random training seeds.
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Figure E.1: Distribution of failure cases dependent on number of objects in VMDS videos
split by failure class. Mean of three training runs. Error bars: SD.
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Figure E.2: Distribution of failure cases dependent on number of objects in VMDS videos
for each model. Mean of three training runs.

Results are shown as the mean and standard deviation of three training runs with different
random seed per model.

E.1 Out-of-distribution test sets

To test whether the models can in principle learn additional object transformations as
featured in the VMDS o.o.d. sets, we additionally train the models on a new training set
that includes size and color changes as well as rotation of objects.

ViMON, OP3 and SCALOR are able to learn additional property changes of the objects
when they are part of the training data while TBA fails to learn tracking on this more
challenging data set (Fig. E.3; for absolute values Table E.4).

E.2 Stability of training and runtime

To assess runtime in a fair way despite the models being trained on different hardware,
we report the training progress of all models after one hour of training on a single GPU
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Figure E.3: Performance on out-of-distribution sets relative to VMDS test set (100%). *
indicates that models were trained on a data set that included color, size and orientation
changes of objects.
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Figure E.4: Comparison of MONet and ViMON on VMDS. Example sequence of data set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the attention masks. Color-coded segmentation maps in third row
signify slot-assignment. Note how the object-slot assignment changes for consecutive frames
(3rd row) for MONet, while ViMON maintains a consistent slot assignment throughout the
video.

(Table E.5). In addition, we quantify inference time on the full VMDS test set using a batch
size of one.

E.3 ViMON Ablations

Removing the GRU or the mask conditioning of the attention network reduces tracking
performance (MOTA on VMDS from 86.8% to 70.6% and 81.4%, respectively; Table E.6)

E.4 Impact of IoU Threshold for Matching

To examine whether the IoU threshold used for matching object predictions to ground truth
impacts the ordering of the models, we compute all metrics with regard to the thresholds
[0.1 .. 0.9] in steps of 0.1 on the VMDS test set. The ordering of the models with regard
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Occlusion Same Color Small Objects Large Objects

Model MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT

ViMON 67.1 ± 0.4 82.5 ± 0.0 63.0 ± 0.1 72.2 ± 0.1 83.6 ± 0.1 70.4 ± 0.3 86.3 ± 0.2 83.3 ± 0.2 83.4 ± 0.4 70.7 ± 0.5 85.1 ± 0.1 76.1 ± 0.7

TBA 37.5 ± 10.4 72.8 ± 0.8 38.3 ± 4.6 47.2 ± 9.4 73.0 ± 0.7 45.2 ± 3.9 74.3 ± 0.7 71.9 ± 0.4 65.3 ± 1.6 25.6 ± 15.0 73.4 ± 0.9 44.7 ± 6.7

OP3 85.3 ± 1.0 91.6 ± 0.4 89.6 ± 0.9 51.5 ± 1.3 86.5 ± 0.3 66.3 ± 1.3 93.3 ± 1.6 93.0 ± 0.4 97.0 ± 0.2 83.8 ± 2.0 92.2 ± 0.4 93.5 ± 0.4

SCALOR 58.8 ± 1.0 86.6 ± 0.4 46.8 ± 1.2 53.7 ± 1.1 83.4 ± 0.3 46.2 ± 1.1 74.4 ± 0.7 86.1 ± 0.4 67.6 ± 1.3 66.1 ± 1.9 86.6 ± 0.5 62.4 ± 1.4

t=1 t=4

Occlusion

t=7 t=10 t=1 t=4

Same Color

t=7 t=10 t=1 t=4

Small Objects

t=7 t=10 t=1 t=4

Large Objects

t=7 t=10

Table E.3: Performance on VMDS challenge sets. Results shown as mean ± standard
deviation for three runs with different random training seeds. Examples sequences for each
challenge set shown below.

Size Color Rotation

Model MOTA MOTP MD MT MOTA MOTP MD MT MOTA MOTP MD MT

ViMON 61.4 ± 2.5 78.0 ± 0.3 71.3 ± 2.1 66.8 ± 1.9 87.4 ± 0.4 86.2 ± 0.2 86.4 ± 0.1 85.0 ± 0.2 -10.4 ± 4.0 70.5 ± 0.4 39.5 ± 2.6 29.8 ± 1.0

ViMON* 80.3 ± 0.9 82.1 ± 0.5 82.5 ± 0.4 79.8 ± 0.5 84.5 ± 0.6 84.6 ± 0.5 83.4 ± 0.5 81.8 ± 0.3 78.7 ± 1.6 82.0 ± 0.6 79.2 ± 0.4 76.4 ± 0.6

TBA 52.3 ± 8.7 73.3 ± 0.7 59.8 ± 4.9 51.8 ± 4.9 56.1 ± 11.4 75.1 ± 0.9 63.7 ± 5.4 59.0 ± 5.2 52.4 ± 9.9 73.6 ± 0.8 59.3 ± 6.2 49.8 ± 5.5

TBA* 1.3 ± 7.8 68.4 ± 1.9 30.6 ± 4.5 24.8 ± 3.4 -16.5 ± 8.1 69.6 ± 1.5 29.1 ± 3.8 25.4 ± 3.3 -7.5 ± 7.9 69.4 ± 1.4 26.6 ± 4.0 20.6 ± 3.4

OP3 87.0 ± 1.9 90.8 ± 0.4 96.4 ± 0.1 95.3 ± 0.1 90.8 ± 1.2 93.5 ± 0.5 97.3 ± 0.1 95.8 ± 0.1 54.7 ± 5.7 84.2 ± 0.7 87.1 ± 1.7 80.5 ± 2.5

OP3* 84.0 ± 2.8 91.2 ± 1.0 95.9 ± 0.8 94.5 ± 1.2 83.6 ± 3.7 91.6 ± 1.3 95.5 ± 0.5 92.9 ± 1.6 74.5 ± 2.2 89.8 ± 0.7 94.8 ± 0.6 93.3 ± 0.8

SCALOR 68.1 ± 1.7 84.9 ± 0.4 63.3 ± 1.7 60.0 ± 2.0 75.5 ± 1.1 89.9 ± 0.5 67.0 ± 1.4 65.7 ± 1.6 46.5 ± 1.8 82.1 ± 0.5 41.9 ± 1.7 37.1 ± 1.3

SCALOR* 67.5 ± 1.2 85.2 ± 0.6 61.2 ± 1.2 57.1 ± 0.7 73.3 ± 0.7 89.8 ± 0.5 64.8 ± 1.1 63.0 ± 0.9 61.6 ± 1.4 83.5 ± 0.4 53.4 ± 1.5 50.2 ± 1.1

* Models trained on a data set that featured color, size and orientation changes of objects during the sequence.

t=1 t=3 t=5

Size

t=7 t=9 t=1 t=3 t=5

Color

t=7 t=9 t=1 t=3 t=5

Rotation

t=7 t=9

Table E.4: Performance on VMDS OOD test sets. Results shown as mean ± standard
deviation for three runs with different random training seeds. Examples sequences for each
o.o.d. set shown below.

to their MOTA is consistent over all matching thresholds, but the performance difference
between the models increases with higher thresholds (Fig. E.6). For low thresholds (0.1 –
0.3) TBA outperforms SCALOR in MD, MT, Matches and Misses but has a significantly
lower segmentation performance as measured by MOTP.
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Figure E.5: Failure cases of OP3 on VOR. Example sequences of VOR test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure E.6: Results of ViMON, TBA, OP3 and SCALOR on the VMDS test set using
different IoU thresholds for matching ground truth objects to model predictions.
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Training Inference

Model Resolution No. Param. Batch Size Memory [MiB] No. Iters Epochs Memory [MiB] Avg. runtime / batch Total runtime

ViMON 64×64 714,900 18 10,860 3687 6.63 910 0.28 s/it 4min 39s
TBA 128×128 3,884,644* 64 10,564 4421 28.29 972 0.24 s/it 4min 05s
OP3 64×64 876,305 10 10,874 2204 2.20 4092 0.54 s/it 9min 04s
SCALOR 64×64 2,763,526 48 10,942 2547 12.23 930 0.29 s/it 4min 48s

* The TBA parameter count scales with the feature resolution, which is kept fixed using adaptive pooling. This
makes the parameter count independent of input resolution.

Table E.5: Runtime analysis (using a single RTX 2080 Ti GPU). Training: models trained
on VMDS for one hour. Inference: models evaluated on VMDS test set with batch size=1
(10 frames).

Model MOTA ↑ MOTP ↑ MD ↑ MT ↑ Match ↑ Miss ↓ ID S. ↓ FPs ↓ MSE ↓

ViMON w/o Mask conditioning 70.6 87.8 75.7 66.0 81.4 13.4 5.2 10.8 16.9
ViMON w/o GRU 81.4 86.9 79.8 77.3 88.2 10.3 1.4 6.8 18.9

Table E.6: Ablation experiments for ViMON on VMDS.

Appendix F. Supplementary Figures

See figures F.5 – F.13 for additional, randomly picked examples of reconstruction and
segmentation for k-Means, ViMON, TBA, OP3 and SCALOR on the four data sets
(VMDS, SpMOT, VOR and texVMDS).
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Figure F.1: Results of k-Means on VMDS. Random example sequences of VMDS test
set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.2: Results of k-Means on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.3: Results of k-Means on VOR. Random example sequences of VOR test set shown
with corresponding outputs of the model. Note that k-Means does not give a reconstruction
of the input.
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Figure F.4: Results of k-Means on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Note that k-Means does not give a
reconstruction of the input.
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Figure F.5: Results of ViMON on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.6: Results of ViMON on SpMOT. Random example sequences of SpMOT test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.7: Results of ViMON on VOR. Random example sequences of VOR test set
shown with corresponding outputs of the model. Reconstruction shows sum of components
from all slots, weighted by the reconstructed masks from the VAE. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.8: Results of ViMON on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Reconstruction shows sum of
components from all slots, weighted by the reconstructed masks from the VAE. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.9: Results of TBA on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment. Note that background subtraction is performed in the
preprocessing of TBA, hence the black background in the reconstructions.
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Figure F.10: Results of TBA on SpMOT. Random example sequences of SpMOT test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.
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Figure F.11: Results of OP3 on VMDS. Random example sequences of VMDS test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.12: Results of OP3 on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model after final refinement step. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.13: Results of OP3 on VOR. Random example sequences of VOR test set shown
with corresponding outputs of the model after final refinement step. Binarized color-coded
segmentation maps in third row signify slot-assignment.
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Figure F.14: Results of OP3 on texVMDS. Random example sequences of texVMDS test
set shown with corresponding outputs of the model after final refinement step. Binarized
color-coded segmentation maps in third row signify slot-assignment.
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Figure F.15: Results of SCALOR on VMDS. Random example sequences of VMDS test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.
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Figure F.16: Results of SCALOR on SpMOT. Random example sequences of SpMOT test
set shown with corresponding outputs of the model. Binarized color-coded segmentation
maps in third row signify slot-assignment.
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Figure F.17: Results of SCALOR on VOR. Random example sequences of VOR test set
shown with corresponding outputs of the model. Binarized color-coded segmentation maps
in third row signify slot-assignment.
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Figure F.18: Results of SCALOR on texVMDS. Random example sequences of texVMDS
test set shown with corresponding outputs of the model. Binarized color-coded segmentation
maps in third row signify slot-assignment.
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