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Abstract
Poverty	 is	 a	 multidimensional	 concept	 often	 compris-
ing	a	monetary	outcome	and	other	welfare	dimensions	
such	as	education,	subjective	well-	being	or	health	that	
are	measured	on	an	ordinal	scale.	In	applied	research,	
multidimensional	 poverty	 is	 ubiquitously	 assessed	 by	
studying	 each	 poverty	 dimension	 independently	 in	
univariate	 regression	 models	 or	 by	 combining	 several	
poverty	dimensions	 into	a	scalar	 index.	This	approach	
inhibits	 a	 thorough	 analysis	 of	 the	 potentially	 vary-
ing	 interdependence	between	 the	poverty	dimensions.	
We	propose	a	multivariate	copula	generalized	additive	
model	 for	 location,	 scale	 and	 shape	 (copula	 GAMLSS	
or	distributional	copula	model)	to	tackle	this	challenge.	
By	relating	the	copula	parameter	to	covariates,	we	spe-
cifically	 examine	 if	 certain	 factors	 determine	 the	 de-
pendence	 between	 poverty	 dimensions.	 Furthermore,	
specifying	 the	 full	 conditional	 bivariate	 distribution	
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1 |  INTRODUCTION

Although	 poverty	 is	 widely	 regarded	 a	 multidimensional	 phenomenon	 and	 poverty	 measures	
moving	 beyond	 a	 single	 monetary	 dimension—	such	 as	 the	 Multidimensional	 Poverty	 Index	
(MPI,	Alkire	et al.,	2012)—	have	emerged,	little	progress	has	been	made	on	analysing	poverty	as	
a	multidimensional	concept.	To	study	poverty	at	the	micro	level,	univariate	linear	regression	is	
the	standard	tool	of	the	empirical	economist.	Despite	their	widespread	use,	however,	univariate	
models	for	poverty	analyses	require	either	studying	each	poverty	dimension	separately	in	differ-
ent	equations,	or	using	as	response	variable	an	index	that	subsumes	all	dimensions	in	a	single	
number	(e.g.	Alkire	&	Fang,	2019).	Both	approaches	neglect	the	interdependence	between	pov-
erty	dimensions	and	ignore	that	the	dependence	itself	should	be	part	of	the	analysis.	In	fact,	the	
level	of	poverty	and	well-	being	depends	on	the	strength	of	the	dependence	(Duclos	et al.,	2006):	
for	example,	lower	tail	dependence	can	explain	persisting	poverty,	where	performing	low	in	one	
dimension	is	strongly	associated	with	a	low	outcome	in	the	other	dimensions.

To	overcome	such	limitations,	multivariate	regression	models	can	be	used	to	tackle	multidi-
mensionality	in	poverty	analyses.	The	relationship	between	two	or	more	outcomes	can	also	be	
modelled	using	copulas	which	have	been	proven	to	be	useful	and	flexible	tools	in	this	regard	(see	
Nelsen,	2006,	for	an	introduction	to	copula	theory).	A	second	issue	in	poverty	analysis	concerns	
distributional	aspects.	Especially	for	program	targeting	and	risk	factor	analysis,	it	is	important	
that	poverty	studies	move	beyond	the	simple	mean	effects.	 In	fact,	concepts	 like	vulnerability	
to	 poverty—	a	 forward-	looking	 measure	 of	 individuals’	 exposure	 to	 poverty—	encompass	 both	
the	 location	 and	 the	 scale	 of	 the	 target	 distribution.	 Previous	 studies	 on	 vulnerability	 to	 pov-
erty	used	a	step-	wise	procedure	to	explicitly	make	the	scale	parameter	dependent	on	covariates	
(see	Calvo	&	Dercon,	2013;	Günther	&	Harttgen,	2009;	Thi	Nguyen	et al.,	2015;	Zereyesus	et al.,	
2017,	 for	recent	works).	Another	example	is	 inequality,	which	has	become	growingly	relevant	
for	both	the	political	agenda	and	for	projects	implemented	in	developing	countries.	The	World	

allows	us	to	derive	several	features	such	as	poverty	risks	
and	dependence	measures	coherently	 from	one	model	
for	different	individuals.	We	demonstrate	the	approach	
by	studying	two	important	poverty	dimensions:	income	
and	education.	Since	the	level	of	education	is	measured	
on	an	ordinal	scale	while	income	is	continuous,	we	ex-
tend	the	bivariate	copula	GAMLSS	to	the	case	of	mixed	
ordered-	continuous	outcomes.	The	new	model	 is	 inte-
grated	into	the	GJRM	package	in	R	and	applied	to	data	
from	Indonesia.	Particular	emphasis	is	given	to	the	spa-
tial	variation	of	the	income–	education	dependence	and	
groups	 of	 individuals	 at	 risk	 of	 being	 simultaneously	
poor	in	both	education	and	income	dimensions.
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bivariate	distributional	regression,	copula	regression,	GAMLSS,	
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Bank,	for	example,	centres	its	shared	prosperity	initiative	around	the	goal	to	reduce	inequality	
(World	Bank,	2018).	Hence,	it	is	necessary	to	analyse	not	only	effects	on	the	mean	but	also	on	the	
other	parameters	characterizing	the	distribution	of	the	outcomes	of	interest.	Generalized	addi-
tive	models	for	location,	scale	and	shape	(GAMLSS,	Rigby	&	Stasinopoulos,	2005)	are	able	to	cap-
ture	the	effects	of	covariates	on	the	whole	conditional	distribution	of	a	single	poverty	dimension.

Both	issues	of	multidimensionality	and	distributional	aspects	can	be	addressed	with	a	com-
bination	of	GAMLSS	and	multivariate	copula	models,	also	referred	to	as	copula	GAMLSS.	These	
models	are	implemented	in	the	R	package	GJRM	(Marra	&	Radice,	2019)	and	comprise	a	wide	
range	 of	 potential	 marginal	 distributions	 (continuous,	 binary	 and	 discrete)	 and	 copulas.	 A	
Bayesian	version	of	this	model	class	is	implemented	in	the	software	BayesX	(Belitz	et al.,	2015)	
while	Klein	and	Kneib	(2016)	provide	the	related	literature.	The	advantage	of	embedding	copula	
regression	into	GAMLSS	is	that	each	parameter	of	the	marginals	and	the	copula	association	pa-
rameter	can	be	modelled	to	depend	flexibly	on	covariates.	This	allows	us	to	not	only	measure	the	
strength	of	the	dependence,	which	has	been	the	focus	of	previous	literature	on	interrelated	pov-
erty	dimensions,	but	also	to	analyse	which	factors	related	to	household	location	and	composition	
drive	this	dependence.	This	latter	aspect	has	not	been	previously	considered	in	poverty	studies.

When	studying	poverty,	it	often	occurs	that	one	dimension	is	reported	in	ordered	categories	
whereas	the	other	is	reported	as	continuous.	For	example,	two	possible	dimensions	of	interest	
could	be	income	(measured	on	the	continuous	scale)	and	the	highest	level	of	education,	which	
is	often	assessed	in	ordered	categories	such	as	‘no	schooling’,	‘elementary	school’,	‘high	school’	
and	‘higher	education’.	This	is	a	very	relevant	case,	especially	in	economics	and	poverty	research	
where	several	outcomes	are	measured	on	the	ordinal	scale	(health,	education,	subjective	well-	
being,	to	name	just	but	a	few).

The	aim	of	 this	paper	 is	 twofold.	First,	 to	 theoretically	extend	copula	GAMLSS	to	a	mixed	
ordered-	continuous	 case.	 Second,	 to	 practically	 demonstrate	 how	 multidimensional	 poverty	
analysis	can	benefit	from	flexible	models	that	allow	for	covariate	effects	on	the	interdependence	
between	the	poverty	dimensions.

For	the	theoretical	part,	we	rely	on	the	latent	variable	approach	that	relates	the	ordered	cat-
egories	to	an	underlying	continuous	variable.	A	similar	approach	was	used	by	de	Leon	and	Wu	
(2011)	 (albeit	not	within	a	GAMLSS	context)	who	employed	Gaussian	copulas	 to	account	 for	
the	dependence	between	the	outcomes,	but	without	relating	the	copula	parameter	to	covariates.	
More	recently,	Vatter	and	Chavez-	Demoulin	 (2015)	developed	a	 framework	 for	copula	regres-
sion	within	generalized	additive	models	 (GAM)	 for	 two	continuous	outcomes,	while	a	model	
with	two	ordinal	outcomes	was	suggested	in	Donat	and	Marra	(2018).	To	relate	all	distributional	
parameter	of	the	marginals	and	the	association	parameter	to	covariates,	we	follow	the	proposal	
of	Marra	and	Radice	(2017).	Their	approach	estimates	the	copula	dependence	and	the	marginal	
distribution	parameters	simultaneously	within	a	penalized	likelihood	framework	using	a	trust	
region	algorithm.	The	framework	developed	in	this	paper	is	also	in	line	with	Klein	et al.	(2019)	
who,	however,	studied	binary	and	continuous	outcomes.	The	new	model	is	incorporated	into	the	
R	package	GJRM	(Marra	&	Radice,	2019).

Regarding	the	application	to	multidimensional	poverty,	there	is	an	extensive	literature	deal-
ing	with	the	measurement	of	multidimensional	poverty.	Yet,	 the	methods	proposed	for	ana-
lysing	multidimensional	poverty,	 including	 its	determinants	and	poverty	profiles,	are	 rather	
limited.	For	example,	Alkire	et al.	(2004)	suggested	employing	generalized	linear	models	using	
a	single	number	index	as	the	response	variable.	To	demonstrate	how	a	more	comprehensive	
poverty	 analysis	 can	 be	 conducted	 by	 researchers,	 the	 empirical	 study	 in	 this	 paper	 applies	
copula	GAMLSS	in	this	context.	Our	application	deals	with	two	interrelated	important	poverty	
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dimensions:	 income	 and	 education.	 In	 many	 developing	 countries,	 there	 is	 potentially	 a	 vi-
cious	 cycle	 of	 poor	 education	 and	 low	 income.	This	 cycle	 is	 also	 called	 poverty	 trap	 and	 is	
a	 long-	established	 concept	 in	 economics:	 capable	 children	 stay	 under-	educated	 due	 to	 their	
parents’	 restricted	 resources	 and	 hence	 remain	 poor	 when	 grown-	up	 (Barham	 et  al.,	 1995).	
Understanding	what	determines	the	interdependence	between	poverty	dimensions	helps	de-
signing	strategies	to	interrupt	this	cycle.	To	this	end,	we	model	the	income–	education	depen-
dency	in	Indonesia	and	draw	an	in-	depth	picture	of	monetary	and	education	poverty	across	the	
population.	We	address	the	following	questions:	(1)	Which	factors	determine	the	distributions	
of	household	income	per	capita	and	individual	education	and	their	interdependence?	(2)	How	
does	this	dependence	differ	spatially	across	Indonesia?	(3)	What	are	the	probabilities	of	being	
poorly	educated	and	income	poor	for	different	population's	sub-	groups?	We	will	answer	these	
questions	using	a	rich	dataset	from	Indonesia	which	is	made	publicly	available	by	the	RAND	
corporation	(RAND,	2017).

The	dependencies	between	different	poverty	dimensions	have	been	widely	addressed	in	the	
economics	 literature	during	 the	 last	 two	decades.	However,	 the	 literature	on	using	copulas	 to	
model	multidimensional	poverty	 is	scarce	and,	 to	 the	best	of	our	knowledge,	restricted	to	the	
measurement	of	the	strength	of	such	dependence.	Existing	approaches	do	not	place	the	model	
into	a	regression	framework	and	hence	neither	relate	the	copula	association	parameter	nor	the	
other	parameters	 characterizing	 the	marginal	distributions	 to	 covariates.	For	example,	Quinn	
(2007)	quantified	the	dependence	between	income	and	an	ordinal	health	measure	in	four	indus-
trial	countries.	Decancq	(2014)	used	copula	models	to	measure	dependence	over	time	between	
income,	health	and	schooling	(all	assumed	to	be	continuous)	in	Russia.	A	similar	approach	was	
used	by	Perez	and	Prieto	(2015)	to	study	the	dependence	between	income,	material	needs	and	
work	intensity	in	Spain.	Kobus	and	Kurek	(2018)	analysed	the	distributions	of	health	and	edu-
cation.	In	contrast	to	Quinn	(2007)	and	this	paper,	that	make	use	of	a	latent	variable	approach	to	
represent	the	ordered	categories	of	education,	Kobus	and	Kurek	(2018)	overcame	the	unidentifi-
ability	issue	when	using	copulas	with	discrete	marginals	by	concordance	ordering.	In	a	Bayesian	
context,	Tan	et al.	(2018)	re-	constructed	the	MPI	using	a	one-	factor	copula	model	and	data	from	
East-	Timur.	These	examples	emphasize	once	more	the	importance	of	extending	copula	GAMLSS	
also	to	the	case	of	mixed	ordered-	continuous	outcomes	when	these	models	are	applied	to	poverty	
analyses.

The	remainder	of	the	paper	is	organized	as	follows:	Section	2	introduces	a	bivariate	copula	
GAMLSS	for	mixed	ordered-	continuous	outcomes.	Section	3	presents	the	estimation	procedure.	
Finally,	Section	4	studies	poverty	dimensions	with	copula	GAMLSS	using	data	from	Indonesia	
and	discusses	practical	approaches	to	model	selection.	Section	5	concludes	the	paper.

2 |  MODEL DEFINITION

2.1 | Bivariate mixed ordered- continuous model

The	 model	 considered	 in	 this	 paper	 deals	 with	 a	 pair	 of	 random	 variables,	 (Y1,  Y2)′,	 with	
support	 × ℝ,	 where	(, ⪯ )	 is	 a	 totally	 ordered	 set	 under	 the	 ordering	 relation	 ⪯.	 The	 el-
ements	 of		 are	 denoted	 by	 r	 and	 represent	 the	 levels	 of	 the	 categorical	 variable	 Y1,	 namely	
 := {1, …, r, …, R + 1}	with	R + 1 < ∞.	The	variable	Y2	is	assumed	to	be	continuous.	In	the	
case	study	of	Section	4,	response	Y2	will	represent	the	income	and	Y1	the	highest	level	of	educa-
tion	attained	by	each	individual	surveyed.
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We	are	interested	in	building	up	a	statistical	model	for	the	joint	distribution	of	the	response	
variables	(Y1, Y2)′	where	their	dependence	structure	is	represented	by	means	of	a	copula	specifi-
cation.	The	bivariate	cumulative	distribution	function	can	then	be	written	as

where	the	copula	is	the	map	 : [0, 1]2 ⟶ [0, 1],	with	F1(r) := ℙ(Y1 ⪯ r)	and	F2(y2) := ℙ(Y2 ≤ y2)			
being	 the	 marginal	 distributions.	 A	 significant	 advantage	 of	 the	 copula	 representation	 is	 that	 it	
decomposes	the	joint	distribution	into	two	marginals	distributions,	that	may	come	from	different	
families,	and	a	copula	function		that	binds	them	together.	The	dependence	structure	of	the	two	
marginals	is	captured	by	an	association	parameter	γ	that	is	specific	to	the	copula	employed	as	de-
scribed	below.

If	both	F1	and	F2	are	continuous,	Sklar's	theorem	ensures	that	the	copula	function	is	uniquely	
determined	(Sklar,	1959).	However,	since	Y1	is	categorical	in	our	case,	the	uniqueness	of	the	cop-
ula	does	not	apply	directly.	We	address	this	limitation	by	representing	the	ordinal	outcome	as	a	
coarse	version	of	a	latent	continuous	random	variable.

Let	Y ∗
1
∈ ℝ	denote	the	unobserved	(or	latent)	continuous	variable	that	drives	the	decision	for	

the	observed	categories	in	.	This	continuous	latent	variable	can	be	modelled	as

where	�1	is	a	vector	of	regression	coefficients,	x1	is	a	vector	of	covariates	and	ε1	is	an	error	term	with	
density	 f ∗

1
	and	cumulative	distribution	function	(CDF)	F∗

1
.	Later	on,	the	latent	variable	in	Equation	

(2)	will	be	placed	into	the	more	sophisticated	GAMLSS	framework,	but	this	model	formulation	with	
only	linear	effects	shall	serve	as	a	starting	point.	In	line	with	McKelvey	and	Zavoina	(1975),	the	fol-
lowing	observation	rule	linking	the	latent	to	the	observed	variable	is	applied:

where	θr	 is	a	cut	point	on	the	latent	continuum	related	to	the	level	r	of	Y1.	We	observe	category	
r	 if	 the	 latent	 variable	 is	 between	 the	 cut-	offs	 θr−1	 and	 θr.	 There	 is	 a	 total	 of	 R  +  2	 cut	 points:	
−∞ = 𝜃0 < 𝜃1 < … < 𝜃R+1 = ∞.	However,	only	R	of	them	are	estimable,	namely	{θ1, … , θR}.

To	guarantee	the	monotonicity	of	the	cut	points,	we	apply	the	transformation	�∗1 := �1	and	
�r = (�∗r )

2 + �r−1	for	any	r > 1	(Donat	&	Marra,	2017).	This	implies	that	θr ≥ θr−1	for	any	r ∈ 	
and	�r ∈ ℝ.	However,	the	equality	θr = θr−1	can	be	problematic	in	practice	because	it	results	in	
estimated	parameters	at	the	boundary	of	the	parameter	space.	This	happens,	for	example,	wher-
ever	a	given	level	of	Y1	has	no	observations	in	the	sample	(Haberman,	1980).

From	Equations	(2)	and	(3),	we	derive	the	cumulative	link	model

where	η1r	is	the	predictor	associated	with	the	ordinal	categorical	response	in	the	model.	It	depends	
on	the	observed	level	r	of	Y1	through	cut	point	θr.	In	Section	2.2	the	predictor	η1r	will	be	replaced	
with	a	generalized	additive	form.	With	this	information	in	hand,	Equation	(1)	can	be	equivalently	
written	as

(1)F12(r, y2) = (F1(r),F2(y2)) ∈ [0, 1],

(2)Y ∗
1 = x�1�1 + �1,

(3){Y1 = r}⟺ {𝜃r−1 < Y ∗
1 ≤ 𝜃r}, r = 1,…,R + 1,

(4)
ℙ(Y1 ⪯ r) = ℙ(Y ∗

1 ≤ �r) = ℙ(�1 ≤ �r − x�1�1) := F∗
1 ( �r − x�1�1

⏟⏞⏞⏟⏞⏞⏟
:=�1r

),
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Since	both	marginals	are	now	continuous,	the	applicability	of	Sklar's	theorem	in	ensured	for	the	
latent	model	formulation.	Note,	however,	that	this	is	only	but	one	possibility	to	deal	with	the	non-	
identifiability	of	 the	copula	 function	and	that	various	underlying	continuous	models	can	lead	to	
exactly	the	same	copula	for	the	observed	data.

Finally,	deriving	the	analytical	form	of	the	density	function	 f ∗
12

	yields

This	will	form	the	basis	for	the	derivation	of	the	penalized	log-	likelihood	function	in	Section	3.2.

2.2 | Copula GAMLSS

The	 bivariate	 copula	 model	 in	 Equation	 (1)	 is	 embedded	 into	 the	 distributional	 regression	
framework	to	model	flexibly	both	the	dependence	parameter	and	the	marginal	distributions.	
To	 this	end,	 the	response	vector	 yi = (y∗

1i
, y2i)

�,	 i = 1, …, n,	 is	assumed	to	 follow	a	paramet-
ric	distribution	where	potentially	all	parameters,	except	of	the	cut-	points,	are	related	to	a	re-
gression	 predictor	 and	 consequently	 to	 covariates.	 We	 write	 the	 joint	 conditional	 density	 as	
f ∗
12
(�1i, …, �Ki |�i)	,	where	the	vector	�i	collects	any	covariates	associated	with	the	parameters	

ϑki,	k = 1, …, K,	of	density	 f ∗
12

.	Accordingly,	the	parameter	vector	�i = (�∗1, …, �∗R, �1i, …, �Ki)
�	

includes	the	transformed	cut-	points	{�∗r },	the	location	parameter	of	the	first	marginal	distribu-
tion,	all	other	distributional	parameters	 related	 to	 the	second	marginal	distribution,	and	 the	
copula	parameter	γi.	The	subscript	i	attached	to	the	parameters	is	made	explicit	to	stress	their	
potential	 dependence	 on	 individual-	level	 covariates.	 For	 the	 ordinal	 response,	 the	 logit	 and	
probit	 link	functions	can	be	applied,	while	 the	scale	parameter	 for	density	 f1	 is	set	 to	one	 in	
order	to	achieve	model	identification.	The	second	marginal	distribution	can	be	selected	from	a	
wide	range	of	options	that	are	available	in	GJRM	and	listed	in	Marra	and	Radice	(2017).	At	the	
current	stage,	some	of	them	are	not	implemented	for	the	mixed	ordered-	continuous	case,	but	
will	be	made	available	in	the	near	future.	In	this	paper	we	only	consider	one-	parameter	copu-
las;	some	available	options	are	summarized	in	the	supplementary	file	(Appendix	A)	although	
rotated	versions	are	also	implemented	in	GJRM.	Since	the	copula	parameter	γi	 is	not	directly	
comparable	over	different	models,	we	relate	it	to	the	Kendall's	τ	which	can	be	used	for	inter-
preting	the	dependence.	It	has	a	one-	to-	one	relationship	to	the	copula	parameter	for	most	one-	
parameter	copulas.	For	optimization	and	modelling	purposes,	an	appropriate	transformation	of	
the	copula	parameter,	�∗

i
,	is	used	in	the	estimation	algorithm	as	highlighted	in	the	last	column	

of	Table	A.1	in	the	supplementary	file.
In	the	spirit	of	the	GAMLSS	approach,	each	distributional	parameter	of	the	continuous	mar-

ginal	distribution	and	the	copula	parameter	is	related	to	an	additive	predictor	via

(5)F12(r, y2) = F∗
12(�1r , y2) = (F1(r),F2(y2)) = (F∗

1 (�1r),F2(y2)).

f ∗12(𝜂1r , y2)=

⎧
⎪⎪⎨⎪⎪⎩

𝜕(F∗
1
(𝜂1r),F2(y2))f2(y2)

𝜕F2(y2)
for r=1

�
𝜕(F∗

1
(𝜂1r),F2(y2))

𝜕F2(y2)
−
𝜕(F∗

1
(𝜂1r−1),F2(y2))

𝜕F2(y2)

�
f2(y2) for 1< r≤R+1.

(6)�ki = hk(�
�k
i
) and �

�k
i

= gk(�ki),
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where	��k
i

∈ ℝ	is	the	predictor	associated	with	distributional	parameter	ϑki,	and	hk = g−1
k

	is	a	re-
sponse	function	mapping	the	real	line	into	the	domain	of	ϑki.	The	choice	of	the	link	functions	gk	de-
pends	on	the	distribution	of	the	continuous	marginal.	For	example,	the	lognormal	distribution	has	
location	parameter	�2	and	scale	parameter	�2,	with	the	index	denoting	that	they	belong	to	the	second	
marginal.	Both	parameters	are	connected	via	a	log	link	to	the	predictor.	For	the	copula	parameter,	
the	link	function	depends	on	the	choice	of	the	copula	(see	Table	A.1	in	the	supplementary	file).	For	
example,	the	inverse	hyperbolic	tangent	is	applied	for	the	Gaussian	copula.	For	the	ordinal	response,	
the	predictor	η1ri	in	Equation	(4)	can	now	be	represented	as	��1

ri
= �r − �

�1
i

,	where	��1
i

	is	specified	as	
in	Equation	(6)	using	a	logit	or	probit	link.

The	 general	 predictor	��k
i

,	 for	 each	 parameter	 of	 the	 marginals	 and	 the	 copula	 parameter,	
takes	on	the	additive	form

where	functions	s�k
j
(�i), j = 1, …, Jk,	can	be	chosen	to	model	a	range	of	different	effects	of	(a	sub-

set)	of	explanatory	variables	�i.	In	particular:

•	 Linear	effects	are	represented	by	setting	s�k
j
(�i) = �

�k
ji
�
�k
j

,	where	��k
ji

	is	a	singleton	element	of	�i	and	
�
�k
j

	a	regression	coefficient	to	be	estimated.	For	the	second	marginal,	an	intercept	term	is	also	included	
to	represent	the	overall	level	of	the	predictor;	this	obtained	via	s�k

j
(�i) = �

�k
0

.	For	the	ordinal	equation	
the	intercept	is	not	estimated	separately	because	it	is	already	accounted	for	by	the	cut-	point	θr.

•	 For	continuous	covariates,	nonlinear	effects	are	achieved	by	including	smooth	functions	s�k
j
(�i)	

represented	by	penalized	regression	splines.	Ruppert	et al.	 (2003)	and	Wood	(2017)	provide	
various	definitions	and	options	for	computing	basis	functions	and	related	penalties.

•	 An	underlying	spatial	pattern	can	be	accounted	for	by	specifying	spatial	information	such	as	
geographical	coordinates	or	administrative	units	in	�i.	Smoothing	penalties	can	account	for	the	
neighbourhood	structure	and	ensure	that	effects	are	similar	for	adjacent	regions.	Rue	and	Held	
(2005)	interpret	this	penalty	as	the	assumption	that	the	vector	of	spatial	effects	for	all	regions	
follows	a	Gaussian	Markov	random	field.

•	 If	the	data	are	clustered,	random	effects	can	be	included	in	the	model	specification	by	setting	
s
�k
j
(�i) = �

�k
jci

,	with	ci	denoting	the	cluster	the	observations	are	grouped	into.

In	Section	4,	we	state	explicitly	what	the	predictors	for	each	parameter	look	like	in	the	context	of	our	
application.

3 |  ESTIMATION

3.1 | Maximum penalized likelihood

From	the	analytical	expression	of	the	bivariate	density	 f ∗
12

	given	in	Section	2.1,	the	model's	log-	
likelihood	function	is	derived	as

�
�k
i

=

Jk∑
j=1

s
�k
j
(�i),

(7)�(�) =

n∑
i=1

( ∑
r∈

�{y1i=r}

(
log{F12.2(�1ri, y2i) − F12.2(�1r−1i, y2i)}

)
+ log{f2(y2i)}

)
,
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where	�{⋅}	is	a	Boolean	operator	that	takes	on	value	1	if	condition	{·}	is	verified,	and	0	otherwise.	We	
define

The	log-	likelihood	function	is	maximized	with	respect	to	the	complete	vector	of	regression	coeffi-
cients	� = (�∗1, …, �∗R, �

�1 , …, ��K )�.	Each	vector	of	regression	coefficients	��k	includes	the	coeffi-
cients	for	one	parameter	�k.

Embedding	the	model	into	the	distributional	regression	framework	with	highly	flexible	pre-
dictors,	including	regression	spline	components,	typically	requires	penalization	to	avoid	overfit-
ting.	The	penalized	log-	likelihood	�p(�)	with	ridge-	type	penalty	can	be	written	as

where	S�	is	a	block	diagonal	matrix	consisting	of	the	penalties	associated	with	each	model	parame-
ter.	For	un-	penalized	parameters	(like	the	cut	points	or	categorical	covariates)	the	corresponding	
block	of	S�	is	set	to	0.	Penalty	matrices	are	associated	with	smoothing	parameters	� = (�

�1
1
, …, �

�K
JK
)�	.

3.2 | Parameter estimation using the trust region algorithm

Marra	and	Radice	(2017)	proposed	maximizing	the	penalized	likelihood	in	Equation	(8)	using	
a	trust	region	algorithm	with	integrated	automatic	selection	of	the	smoothing	parameters.	The	
trust	region	algorithm	is	more	stable	and	faster	than	line	search	methods;	it	also	performs	bet-
ter	when	a	function	exhibits	long	plateaus	and	the	current	iterate	�[a]	is	in	that	region	(Marra	&	
Radice,	2017).	The	problem	with	plateaus	is	that	line	search	methods	may	search	the	next	step	
�[a+1]	far	away	from	the	current	iterate	hence	reducing	the	efficiency	of	the	algorithm.	It	can	also	
happen	that	the	search	is	so	far	away	from	the	current	iterate	that	the	evaluation	of	the	objec-
tive	function	is	indefinite	or	not	finite.	In	a	trust	region	algorithm,	this	is	avoided	by	resolving	
sub-	problem	(9)	before	evaluating	the	penalized	likelihood	(8).	Therefore,	if	a	problem	arises	for	
a	given	iterate	�[a+1],	the	proposed	step	p[a+1]	is	rejected,	the	radius	of	the	trust	region	adjusted	
automatically	and	the	optimization	computed	again.

As	 in	Radice	et al.	 (2016),	Marra	and	Radice	(2017)	and	Klein	et al.	 (2019),	 the	estimation	
proceeds	in	two	steps:

Step 1.	At	iteration	a,	Equation	(8)	is	maximized	for	a	given	parameter	vector	�[a]	holding	�[a]	
fixed	at	a	vector	of	values.	A	trust	region	algorithm	is	applied	as	follows

F12.2(�1ri, y2i) :=
�(F∗

1
(�1ri),F2(y2i))

�F2(y2i)
with F12.2(�1,1−1,i, y2i) = 0.

(8)�p(�) = �(�) −
1

2
��S��,

(9)

�[a+1]=�[a]+ argmin
p:‖p‖≤Δ[a]

�̆p(�
[a])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
:=p[a+1]

,

�̆p(�
[a]):= −{�p(�

[a])+p�g[a]p +
1

2
p�H [a]

p p},



   | 1373HOHBERG et al.

where	the	Euclidean	norm	is	denoted	by	‖·‖	and	Δ[a]	is	the	radius	of	the	trust	region.	The	radius	is	ad-
justed	 in	 each	 iteration	 (see	 Geyer,	 2015,	 for	 details).	 The	 gradient	 vector	 at	 iteration	 a	 is	 given	 by	
g[a]p = g[a] − S��

[a]	and	H [a]
p = H [a] − S�	is	the	Hessian	matrix.	They	are	both	penalized	by	matrix	S�.

The	vector	g[a]	consists	of

and	the	elements	of	the	Hessian	matrix	are

The	second-	order	partial	derivatives	of	 the	 log-	likelihood	with	respect	 to	cut	points	�∗1, …, �∗R	
are	derived	similarly.	At	each	iteration	step,	the	minimization	of	Equation	(9)	uses	a	quadratic	
approximation	of	�p(�[a]),	and	the	solution	p[a+1]	is	chosen	such	that	it	falls	within	a	trust	region	
with	centre	�[a]	and	radius	Δ[a].

Step 2.	Holding	the	parameter	vector	value	fixed	at	�[a+1],	the	following	problem	is	solved

where,	after	defining	[a+1] = − H [a+1],	the	key	quantities	are

tr(A[a+1])	is	the	number	of	effective	degrees	of	freedom	(edf)	of	the	penalized	model	while	K	is	
the	number	of	penalized	parameters	in	vector	ϑ.	The	expression	in	Equation	(10)	is	solved	using	
the	method	proposed	by	Wood	(2004).	The	gradient	vector	g	and	the	Hessian	H	are	obtained	as	a	
side	product	in	step	1.	Both	are	analytically	derived	in	a	modular	fashion	for	each	parameter,	see	
the	supplementary	file	(Appendix	C)	for	details.

Steps	1	and	2	are	iterated	until	they	no	longer	improve	the	objective	function,	that	is	until	the	
following	criterion	is	met:

To	obtain	the	starting	values	for	the	parameter	vector,	a	generalized	additive	model	is	fitted	
using	gam()	(Wood,	2017)	or	a	GAMLSS	using	the	gamlss()	function	within	the	GJRM	pack-
age.	A	transformed	Kendall's	τ	between	the	responses	is	used	as	a	starting	value	for	the	copula	pa-
rameter.	Further	details	on	the	trust	region	algorithm	and	smoothing	parameter	selection	can	be	
found	in	the	supplementary	file	(Appendix	B)	while	asymptotic	considerations	on	the	proposed	
maximum	penalized	likelihood	estimator	are	reported	in	Appendix	D.

g[a] =
⎛⎜⎜⎝
��(�)

��∗1

������∗
1
=�∗[a]

1

,…,
��(�)

��∗R

������∗
R
=�∗[a]

R

,
��(�)

���1

�������1=�
�
[a]
1

,…,
��(�)

���K

�������K =�
�
[a]
K

⎞⎟⎟⎠

�

H [a]l,m =
�2�(�)

�� l��m�

|||||� l=� l[a],�m=�m[a]
, l,m = �1,…,�K .

(10)�[a+1] = argmin
�

‖M [a+1]−A[a+1]M [a+1]‖2 − Kn + 2 tr(A[a+1]),

M [a+1]=
√
[a+1]�[a+1]+

√
[a+1]

−1
g[a+1],

A[a+1]=
√
[a+1]([a+1]+S�)

−1
√
[a+1],

|�(�[a+1]) − �(�[a]) |
0.1 + |�(�[a+1]) | < 1e−0.7.
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3.3 | Confidence intervals

At	convergence,	reliable	point-	wise	confidence	intervals	are	constructed	based	on	Bayesian	large	
sample	approximation	as	shown	in	Wood	(2017)	for	generalized	additive	models	(GAM):

The	result	for	the	Bayesian	covariance	matrix	V � = −H−1
p 	is	an	alternative	to	the	frequentist	cova-

riance	matrix	V
�̂
= −H−1

p HH−1
p .	For	unpenalized	models,	the	two	matrices	are	equal.	The	appli-

cation	of	the	Bayesian	framework	to	the	GAM	or	copula	GAMLSS	context	follows	the	notion	that	
penalization	in	the	estimation	implicitly	assumes	certain	prior	beliefs	about	 the	model's	 features	
(Wahba,	 1978).	 In	 this	 view,	 a	 normal	 prior	 for	 the	 parameter	 vector	β,	 f� ∝ exp( − 1∕2��S��),			
means	 that	wiggly	models	are	 less	 likely	 to	occur	 than	smoother	ones	 (Wood,	2006).	Marra	and	
Wood	(2012)	give	a	full	justification	for	using	V �	and	show	that	it	gives	close	to	across-	the-	function	
frequentist	coverage	probabilities.	In	fact,	it	includes	both	bias	and	variance	components	in	a	fre-
quentist	sense,	which	is	not	the	case	for	V �̂.

To	obtain	 intervals	 for	non-	linear	 functions	of	 the	model	parameters	 (e.g.	 the	Kendall's	τ),	
Radice	et al.	(2016)	propose	to	simulate	from	the	posterior	distribution	of	β	using	the	following	
procedure:

Step 1	Draw	M	random	vectors	�̃m, m = 1, …, M,	from	 (�̂, V̂ �).
Step 2	Calculate	M	realizations	of	the	function	under	consideration,	say	R( ̃�m).
Step 3	Calculate	the	(ζ/2)th	and	(1 − ζ/2)th	quantile	of	the	realizations	where	ζ	is	typically	set	to	

0.05.	The	confidence	interval	is	then	constructed	as	CI1−� = [R(�̃m)�∕2,R(�̃m))1−�∕2].

A	value	of	M	equal	to	100	typically	produces	reliable	results	although	it	can	be	increased	if	more	
precision	is	required.

3.4 | Simulation study

To	evaluate	the	effectiveness	and	implementation	of	the	proposed	methodology,	we	conducted	
a	simulation	study	with	four	scenarios	that	differ	in	terms	of	the	continuous	marginal	distribu-
tion	and	the	copula	specification.	All	four	scenarios	are	assessed	using	sample	sizes	of	n = 1000,	
3000	 and	 10,000.	 Data	 generating	 process	 and	 detailed	 results	 are	 both	 reported	 in	 the	 sup-
plementary	file	(Appendix	E).	The	results	show	that	our	approach	is	able	to	capture	the	effect	
of	 both	 linear	 and	 non-	linear	 covariates	 fairly	 well,	 and	 that	 the	 performance	 improves	 sig-
nificantly	as	the	sample	size	increases.	In	addition	to	recovering	the	simulated	coefficients,	we	
calculated	the	Akaike's	information	criterion	(AIC)	for	every	simulation	of	the	bivariate	model	
and	the	corresponding	independence	model.	The	share	of	runs	in	which	the	bivariate	model	
had	a	smaller	AIC	was	1.	This	provides	further	evidence	of	the	ability	of	our	model	to	identify	
dependence	between	the	responses,	if	this	is	indeed	required	by	the	data	generating	process.	We	
refrained	from	running	detailed	simulations	regarding	the	selection	of	marginal	distributions	
and/or	copulas	since	these	have	been	considered	before	in	the	literature	on	copula	GAMLSS,	
albeit	limited	to	the	case	of	two	continuous	marginal	distributions	(e.g.	Marra	&	Radice,	2017;	
Radice	et al.,	2016).

�̂
a
∼ N(�, −Hp(�̂)

−1).
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4 |  MULTIDIMENSIONAL POVERTY IN INDONESIA

4.1 | The IFLS dataset

In	this	section	we	analyse	poverty	dimensions	in	a	bivariate	copula	model	and	we	identify	(1)	
the	determinants	of	the	income–	education	relation,	(2)	its	spatial	distribution	and	(3)	groups	at	
risk	of	being	both	consumption	and	education	poor.	To	do	so,	we	rely	on	the	most	recent	wave	
(IFLS	5)	of	the	Indonesian	Family	Life	Survey	(IFLS).	The	IFLS	is	a	publicly	available,	longitu-
dinal	survey	on	individual,	household	and	community	level	that	is	designed	to	study	the	health	
and	socioeconomic	situation	of	Indonesia's	population.	The	first	wave	was	implemented	in	1993	
and	covered	individuals	from	7224	households	representing	83%	of	the	population	from	13	of	27	
Indonesian	provinces	(Strauss	et al.,	2016).	The	sample	was	drawn	by	stratifying	the	population	
on	provinces	and	urban/rural	areas	before	 randomly	selecting	enumeration	areas	and	house-
holds	within	 the	strata.	Due	 to	a	 large	number	of	 split-	off	households	 the	sample	grew	up	 to	
16,204	households	interviewed	in	IFLS	5.

In	 the	 IFLS,	 individuals	 of	 an	 IFLS-	household	 older	 than	 15	 years	 were	 asked	 to	 fill	 in	
an	‘adult	individual	book’	containing	questionnaires	on	subjects	such	as	income,	education,	
employment	and	subjective	health.	We	use	the	level	of	education	as	the	ordinal	response	vari-
able,	and	income	as	the	continuous	response.	Education	is	proxied	by	the	highest	educational	
institution	attended	and	can	take	on	five	different	levels:	1	‘no	schooling’,	2	‘primary	school’,	
3	‘middle	school’,	4	‘high	school’	and	5	‘tertiary	education’.	In	analyses	for	developing	coun-
tries,	income	is	often	proxied	by	expenditures	for	consumption.	Expenditures	are	calculated	
at	the	household	level	and	then	divided	by	the	number	of	household	members.	Our	income	
variable	is	thus	precisely	expenditures	per	capita.	Due	to	different	price	levels	in	the	provinces,	
we	used	the	province	specific	minimum	wage	to	adjust	expenditures	across	provinces.	Data	
on	 the	 individuals	 from	 the	 ‘adult	 individual	book’	are	extracted	and	merged	with	 relevant	
information	on	the	household	head,	such	as	gender	and	education,	and	complemented	with	
information	on	the	household's	location,	such	as	province	or	whether	the	household	lives	in	
an	urban	area.	We	only	included	complete	cases	and	individuals	from	the	age	of	18	as	most	of	
them	already	attained	or	are	studying	towards	their	highest	education	level.	The	final	dataset	
contains	32,884	individuals.

4.2 | Model building

Applying	flexible	bivariate	copula	GAMLSS	requires	the	researcher	to	decide	on	the	specification	
of	multiple	parameters,	on	the	form	of	the	continuous	marginal	distribution	and	of	the	copula.

4.2.1	 |	 Continuous	marginal	distribution

In	 line	with,	Klein	et al.	 (2015)	and	Marra	and	Radice	 (2017),	we	propose	 to	use	normalized	
quantile	residuals	for	selecting	the	continuous	marginal.	This	allows	us	to	assess	graphically	the	
appropriateness	of	the	chosen	distribution	by	examining	separate	univariate	models.	A	normal-
ized	quantile	residual	q̂mi,	m = 1, 2,	for	the	second	(continuous)	marginal	is	defined	as:

q̂2i = Φ−1{F̂2(y2i)} for i = 1,…,n,
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where	 F̂2( ⋅ )	 is	the	estimated	marginal	CDF	for	the	continuous	response	component,	and	Φ−1(·)	
is	the	quantile	function	of	a	standard	normal	distribution.	If	F̂2	is	close	to	the	true	distribution,	q̂2i	
approximately	follows	the	standard	normal	distribution.	Quantile	residuals	are	fairly	robust	to	the	
specification	of	the	distribution	parameters	(Klein	et al.,	2015;	Marra	&	Radice,	2017).

We	fit	univariate	models	and	select	the	model	by	inspecting	the	corresponding	QQ-	plots.	Good	
distribution	candidates	for	income	and	expenditure	are	generally	the	lognormal	distribution,	the	
Singh–	Maddala	distribution	and	the	Dagum	distribution	(e.g.	Kleiber	&	Kotz,	2003).	Figure	1	
shows	the	QQ-	plots	for	the	univariate	income	model	and	all	potential	covariates	using	the	log-
normal	and	 the	Dagum	distributions.	Fitting	 the	model	with	 the	Singh–	Maddala	distribution	
leads	to	convergence	failure,	which	may	signal	an	inappropriate	choice	of	the	marginal	distribu-
tion.	The	QQ-	plots	suggest	an	appropriate	fit	for	the	lognormal	distribution.	We	will	therefore	
use	this	distribution	as	first	building	block	of	the	model	specification.	Note	that	once	the	final	
bivariate	model	 is	built,	 the	QQ-	plot	 for	 the	continuous	margin	 is	 re-	examined.	However,	we	
find	that	the	plot	(shown	in	the	supplementary	file,	Appendix	F)	looks	almost	identical	to	Figure	
1	(left	panel).	This	indicates	that	a	good	fit	 for	the	continuous	margin	of	the	proposed	copula	
model	has	been	obtained.

4.2.2	 |	 Variable	selection

For	the	specification	of	the	link	function	of	the	ordinal	response,	as	well	as	for	the	variable	se-
lection	in	the	bivariate	model	and	the	choice	of	the	copula	function,	the	AIC	and	the	Bayesian	
information	criterion	(BIC)	can	be	used.	These	are	defined	as

AIC:= −2�(�̂)+2edf,

BIC:= −2�(�̂)+ log(n)edf,

F I G U R E  1 	 Normal	QQ-	plots	for	the	univariate	income	model	and	different	distributions	with	95%	reference	
bands	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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where	�(�̂)	is	the	log-	likelihood	of	the	bivariate	model	evaluated	at	the	penalized	parameter	estimate	
and	edf = tr(Â)	as	defined	in	Section	3.2.	Theoretical	knowledge	about	the	problem	at	hand	facili-
tates	the	variable	selection	procedure	by	pre-	selecting	candidate	predictors.	Radice	et al.	(2016)	also	
suggest	to	start	with	a	model	specification	where	all	distributional	and	the	association	parameter	
depend	on	all	covariates.	In	case	the	algorithm	does	not	converge,	an	instance	that	often	indicates	
that	the	sample	size	is	too	small	for	the	model's	complexity,	they	recommend	trying	out	a	series	of	
more	parsimonious	specifications.	To	test	smooth	components	for	equality	to	zero,	we	have	adapted	
the	results	of	Wood	(2017)	to	the	current	context.

To	fit	the	bivariate	model,	we	specify	an	equation	for	each	distributional	and	the	copula	pa-
rameter	as	 follows.	We	start	with	a	set	of	variables	selected	according	to	economic	reasoning.	
Note	that	in	income	or	expenditure	equations,	household	size	is	often	used	as	a	covariate	in	ad-
dition	to	number	of	children	and	elderly.	However,	we	do	not	wish	to	separate	the	child	effect	in	
a	‘pure’	child	effect	and	children	as	additional	household	member	effect.	Moreover,	the	outcome	
variable	is	already	adjusted	for	household	size.	Religion	is	included	because	it	defines	minority	
groups.	While	education	at	individual	level	is	part	of	the	response	vector,	the	level	of	education	
of	the	household	head	is	included	as	a	control	in	the	predictor	for	capita	income.	For	the	bivar-
iate	model,	we	fit	a	full	specification	for	the	location	parameter	of	each	marginal	distribution,	
namely	μ1 educ	and	μ2 inc,	and	perform	variable	selection	using	the	AIC	for	the	scale	parameter	of	
the	second	marginal,	σ2 inc,	and	for	the	copula	parameter,	γ.	The	copula	parameter	is	linked	via	
the	inverse	hyperbolic	tangent	to	the	predictor.	A	backwards	selection	procedure	is	applied	for	
σ2 inc	given	a	full	specification	for	γ,	and	subsequently	a	second	backwards	selection	is	performed	
on	γ	given	the	reduced	model	for	σ2 inc.	This	excludes	only	four	variables	for	the	scale	predictor	
and	 two	 variables	 for	 the	 copula	 parameter	 specification.	We	 therefore	 write	 the	 final	 model	
specification	as:

Continuous	variables	enter	the	equations	with	smooth	non-	parametric	effects	s()	represented	via	
thin	plate	regression	splines	with	10	bases	and	second-	order	derivative	penalties.	Spatial	effects	of	
the	 provinces	 and	 their	 neighbourhood	 structure	 are	 modelled	 using	 Gaussian	 Markov	 random	
fields.	We	choose	to	model	the	spatial	effect	at	the	province	level	since	minimum	wages	are	set	by	
each	province;	this	affects	individual	wages	and	thus	the	expenditure	measure	as	well	(Hohberg	&	
Lay,	2015).	Table	F.1	in	the	supplementary	file	displays	full	names	and	levels	of	the	selected	variables.

4.2.3	 |	 Ordinal	model

The	ordinal	outcome	education	is	fitted	using	an	ordered	model.	Table	1	compares	the	AIC	and	
BIC	between	a	probit	and	a	logit	link	of	the	bivariate	model	using	the	lognormal	as	the	continuous	
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marginal	and	a	Gaussian	copula.	Both	AIC	and	BIC	favour	the	logit	model	for	the	first	marginal.	
This	choice	is	mostly	stable	over	the	range	of	tested	copulas.

4.2.4	 |	 Choice	of	the	copula

For	the	copula	selection,	a	good	starting	point	would	be	the	use	of	a	Gaussian	copula	and	then	
consider	all	consistent	alternatives	depending	on	the	direction	of	the	dependence	(Klein	et al.,	
2019;	 Radice	 et  al.,	 2016).	 Again,	 AIC	 and	 BIC	 can	 help	 choosing	 among	 several	 candidate	
copulas.

Starting	off	with	the	Gaussian	copula,	we	obtain	an	average	value	for	the	copula	parameter	
(with	95%	confidence	interval	in	brackets)	of	γ = 0.163	(0.103, 0.223).	Building	on	this	finding,	
we	test	a	range	of	suitable	alternative	candidates.	After	checking	convergence,	we	can	only	elim-
inate	the	un-	rotated	Joe	and	Clayton	copula.	The	remaining	candidates	are	compared	using	the	
AIC	and	BIC;	see	Table	2	for	the	results.	The	AIC	and	BIC	indicate	that	a	Gaussian	copula	should	
be	used	for	our	model,	and	all	copula	models	should	be	favoured	over	the	independence	model.	

T A B L E  1 	 AIC	and	BIC	of	bivariate	ordered-	continuous	model	using	the	logit	and	probit	links

AIC BIC

Logit 1,076,985 1,078,081

Probit 1,077,371 1,078,466

T A B L E  2 	 AIC	and	BIC	for	different	copula	specifications

AIC BIC

Gaussian 1,076,985 1,078,081

F 1,077,003 1,078,109

FGM 1,077,039 1,078,140

PL 1,076,997 1,078,101

AMH 1,077,054 1,078,160

C0 1,077,192 1,078,296

C180 1,077,094 1,078,142

J0 1,077,171 1,078,161

J180 1,077,246 1,078,348

G0 1,077,052 1,078,107

G180 1,077,095 1,078,173

T3 1,078,531 1,079,634

T5 1,077,608 1,078,711

T10 1,077,147 1,078,248

Independence 1,077,585 1,078,390

Note:	Abbreviations	correspond	to	Frank,	Farlie-	Gumbel-	Morgenstern,	Plackett,	Ali-	Mikhail-	Haq,	Clayton,	rotated	Clayton	
(180	degrees),	Joe,	rotated	Joe	(180	degrees),	Gumbel,	rotated	Gumbel	(180	degrees),	Student's	t	with	3,	5,	and	10	degrees	of	
freedom,	respectively.
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Using	the	Gaussian	copula	suggests	that	the	dependence	between	per	capita	expenditures	and	
education	is	symmetric	with	asymptotically	independent	extremes.

4.3 | Model evaluation

After	deciding	on	the	marginal	distributions,	the	copula	and	the	covariates	by	comparing	differ-
ent	candidates,	we	check	the	final	bivariate	model.	To	this	end,	we	use	a	multivariate	generaliza-
tion	of	the	quantile	residuals	introduced	in	Section	4.2	that	was	proposed	by	Kalliovirta	(2008).

Multivariate	quantile	residuals	for	two	continuous	responses	are	defined	as

where	F̂2|1	is	the	(estimated)	conditional	CDF	of	Y2	given	Y1.	In	our	case,	the	first	marginal	is	dis-
crete	 such	 that	we	 resort	 to	 randomized	quantile	 residuals	where	uniformly	distributed	 random	
variables	on	the	interval	corresponding	to	cumulated	probabilities	are	plugged	into	Φ−1(·).	If	 the	
model	is	correctly	specified,	then	q̂i	approximately	follows	a	bivariate	standard	normal	distribution.	
This	approximation	follows	from	the	consistency	of	the	parameter	vector	�̂	(Radice	et al.,	2016,	and	
the	supplementary	file).

The	contour	plot	for	the	bivariate	model	in	Figure	2(a)	shows	the	density	of	the	quantile	resid-
uals	q̂i	by	means	of	a	multivariate	kernel	density	estimator.	This	estimated	density	is	compared	
to	the	density	of	the	standard	normal	distribution.	The	contour	lines	of	both	densities	are	close	
to	each	other	indicating	a	good	fit	of	the	bivariate	copula	model.

q̂i =

(
q̂1i
q̂2i

)
=

(
Φ−1(F̂1(y1i))

Φ−1(F̂2|1(y2i|y1i)),

)

F I G U R E  2 	 Multivariate	quantile	residuals	of	the	bivariate	model	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

(a) (b)

https://onlinelibrary.wiley.com/
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In	Figure	2(b),	the	sum	of	the	squared	elements	of	the	multivariate	quantile	residuals	is	con-
sidered,	that	is	q̂�i q̂i = q̂

2
1i + q̂

2
2i,	where	q̂i	is	the	multivariate	quantile	residual	for	the	ith	individ-

ual.	Since	q̂1i
a
∼  (0, 1)	and	q̂2i

a
∼  (0, 1),	it	follows	that	q̂�i q̂i

a
∼ �2(2)	which	is	assessed	in	the	

QQ-	plot	in	Figure	2(b).	The	reference	bands	are	obtained	by	repeatedly	simulating	from	a	χ2(2)	
distribution.	We	draw	100	samples	for	each	individual	and	compute	the	2.5%	and	97.5%	quantiles	
across	the	sorted	samples.	The	plot	supports	our	model	choice.

4.4 | Results

This	section	demonstrates	the	results	that	poverty	researchers	can	derive	from	fitting	a	copula	
GAMLSS	model	for	the	joint	analysis	of	two	inter-	related	poverty	dimensions.	We	summarize	
briefly	the	covariate	effects	on	the	marginals	before	taking	a	closer	look	at	the	dependence	struc-
ture	and	risk	groups.	In	this	way,	we	are	able	to	answer	questions	on	how	dependence	and	risk	
are	affected	by	a	household's	location	or	composition.

4.4.1	 |	 Effects	of	covariates	on	the	marginal	distributions

The	full	list	of	effects	on	each	parameter	of	the	marginals	and	on	the	copula	parameter	is	included	
in	the	supplementary	file	(Appendix	F).	It	should	be	stressed	that	the	effects	are	subject	to	a	ce-
teris paribus	interpretation.	For	example,	more	schooling	is	associated	with	more	income,	with	
tertiary	education	having	the	highest	effect.	Households	with	more	children	or	elderly	people	
living	in	the	household	have	on	average	a	lower	income	per	capita	and	less	education	(except	for	
the	effect	of	two	or	three	elderly	on	education	which	is	positive).	Urban	households	are	associ-
ated	with	both	better	income	and	better	education.	A	little	surprising	is	that	living	in	a	household	
where	the	head	is	married	is	correlated	with	a	reduction	in	income	and	education	compared	to	
not	(yet)	married	households	(Table	F.3	and	F.2	in	the	supplementary	file).	One	possible	expla-
nation	is	that	non-	married	households	compared	to	married	households	include	a	larger	share	
of	young,	single	persons	that	do	not	need	to	share	their	income	and	have	a	comparatively	higher	
level	of	education.	Non-	Muslim	households	are	associated	with	higher	income	per	capita	and	
more	education	(only	Christians)	although	they	represent	a	minority	in	Indonesia.	For	a	male	
household	head,	the	effects	are	not	as	expected	since	it	is	negative	for	income	but	positive	for	
education.	For	the	second	parameter	of	the	continuous	margin,	that	is	the	scale	parameter	for	
the	income	equation,	the	number	of	children	and	a	marital	status	other	than	not	married	have	
negative	effects	while	the	effects	of	elderly	and	other	religions	compared	to	Islam	are	positive.	All	
of	the	covariates,	except	of	the	dummies	for	a	male	household	head	and	belonging	to	the	Hindu	
religion,	have	a	positive	effect	on	the	copula	parameter	although	not	all	effects	are	significant.

Age	is	modelled	in	a	non-	linear	way	and	Figure	3	displays	the	smooth	effects	of	age	on	each	
parameter.	Education	attainments	are	lower	for	higher	ages	which	can	be	explained	by	the	edu-
cation	expansion	that	Indonesia	has	undergone	since	the	1970s	and	younger	individuals	bene-
fited	from.	For	example,	between	1974	and	1978	over	61,000	primary	schools	were	built.	In	1984,	
compulsory	education	was	set	 to	6	years	which	was	extended	to	9	years	 in	1994	(Akita,	2017;	
Duflo,	2004).	The	effect	of	income	on	the	location	parameter	is	inverted	u-	shaped	until	the	age	
of	60	with	a	peak	around	the	age	of	40.	After	80,	the	confidence	intervals	become	very	wide	due	
to	a	lower	number	of	observations	in	this	age	span	and	the	effect	is	thus	less	clear.	The	effects	on	
the	scale	parameter	are	around	zero.	For	the	copula	parameter,	the	age	effect	indicates	that	the	
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dependence	is	decreasing	for	individuals	up	to	their	mid	30s	and	stays	around	zero	afterwards	
until	it	decreases	again	after	the	age	of	60.

Figure	4	shows	the	effect	of	the	underlying	spatial	pattern	on	the	parameters	�2	and	�2	of	the	
continuous	response,	and	on	the	copula	parameter	γ.	Households	located	in	provinces	of	Java	
seem	to	have	higher	income	per	capita	compared	to	the	observed	provinces	in	Sumatra,	Borneo	
and	Sulawesi.	Provinces	with	a	negative	effect	on	the	location	parameter	have	higher	effects	on	
the	scale	parameter	except	for	Borneo	whose	scale	effect	is	negative.

4.4.2	 |	 Dependence	structure

Dependence	structure	can	be	represented	via	contour	plots	for	specific	covariate	combinations.	
For	example,	we	focus	here	on	the	location	of	the	household	(urban/rural	and	province)	as	they	
are	the	significant	drivers	of	the	copula	parameter,	while	the	remaining	plots	can	be	found	in	

F I G U R E  3 	 Estimated	smooth	functions	of	age	and	respective	point-	wise	95%	confidence	intervals
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the	supplementary	file	(Appendix	F).	For	comparison	purposes,	we	include	provinces	with	the	
highest	 frequencies	 in	the	dataset	but	select	only	one	of	Java's	provinces.	To	compare	the	de-
pendence	structure	across	different	locations,	we	create	an	example	of	typical	individual	whose	

F I G U R E  4 	 Spatial	effects	of	the	provinces	on	the	distribution	parameters	of	income	and	on	the	copula	parameter	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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characteristics,	other	than	the	one	under	consideration,	are	set	to	their	mean	value	or	to	their	
most	 frequent	observation.	The	only	exception	 is	 the	education	of	 the	household	head	which	
is	set	to	the	second	most	frequent	observation.	In	fact,	for	a	household	head	with	‘high	school’	
degree	the	dependence	is	a	bit	more	pronounced,	hence	we	selected	this	 level	 for	demonstra-
tion	purposes.	This	 is	 the	covariates’	 combination	 that	we	 refer	 to	as	an	 ‘example	 individual’	
henceforward.

Figure	5(a)	shows	 that	 the	dependence	 is	 stronger	 for	 individuals	 in	urban	households	
compared	to	rural	households.	One	reason	might	be	that	average	education	levels	are	lower	in	
rural	areas	(horizontal	axis)	while,	at	the	same	time,	high	paid	job	opportunities	are	limited	
in	a	rural	environment,	resulting	in	more	equal	incomes	compared	to	an	urban	environment.	
Figure	5(b)	compares	the	dependence	structure	across	selected	provinces.	The	dependence	
seems	weakest	in	the	province	of	Nusa	Tenggara	Barat,	which	is	one	of	the	poorest	provinces	
in	 Indonesia.	 It	 is	 surprising	 that	 the	average	per	capita	consumption	 (horizontal	 straight	
line)	of	Jakarta	 is	about	 the	same	level	 than	that	one	of	Nusa	Tenggara	Barat.	Most	 likely	
this	is	due	to	the	high	price	level	in	Jakarta	and	the	deflation	measure	applied	which	scaled	
down	 our	 expenditure	 measure.	 Although	 the	 copula	 coefficient	 for	 Jakarta	 is	 similar	 to	
Jawa	Timur,	the	latter	has	more	variation	in	incomes	and	the	contour	levels	lie	further	apart.	
Considering	all—	and	not	just	the	selected	provinces—	the	value	of	the	copula	parameter	for	
the	example	individual	ranges	from	0.16	for	Kalimantan	Timur	and	Kalimantan	Selatan	up	
to	0.27	for	Yogyakarta.

A	policy	maker	might	be	interested	to	know	in	which	locations	each	individual	in	the	dataset,	
and	not	the	example	individual,	have	higher	dependencies	in	order	to	efficiently	design	policy	
strategies.	Although	the	lower	panel	of	Figure	4	shows	the	effect	of	the	provinces	on	the	copula	
parameter,	it	might	be	more	helpful	for	interpretation	to	transform	it	into	the	Kendall's	τ,	an	asso-
ciation	measure	that	takes	on	values	in	the	interval	[−1, 1].	Each	individual	with	his/her	specific	
covariates’	combination	is	related	to	an	individual-	specific	τ.	One	way	to	present	the	differences	
across	provinces	is	to	average	the	τ	over	all	individuals	in	a	particular	province.	This	is	shown	
in	Figure	6.	The	Kalimantan	Selatan	(South	Borneo)	is	the	province	with	the	lowest	average	of	
Kendall's	τ	with	a	value	of	0.0468	and	Kepulauan	Riau	(Riau	Islands,	northwest	of	Borneo)	has	
a	value	of	0.1467	which	is	the	highest	average	value	that	also	indicates	spatial	heterogeneity	in	
the	strength	of	the	dependence.	The	provinces	of	Sumatra	seem	to	have	higher	dependence	be-
tween	income	and	education	than	provinces	in	Borneo	or	Sulawesi.	Interestingly,	for	Java	and	its	
neighbouring	smaller	islands	on	the	east,	the	dependence	seems	to	decrease	from	west	to	east.	
It	is	worth	noting	that	Figure	6	shows	the	association	between	the	latent	education	variable	and	
the	continuous	income	outcome.	We	also	checked	the	association	on	the	ordinal	level	of	edu-
cation	attained	via	a	simulation-	based	approach.	To	this	end,	we	first	simulated	1000	response	
pairs	for	each	individual	from	its	estimated	covariate-	specific	latent	bivariate	distribution.	Using	
the	estimated	cut-	points,	the	simulated	latent	response	is	transformed	into	the	ordinal	category.	
Kendall's	tau	is	then	calculated	between	the	ordinal	category	and	the	simulated	continuous	out-
come	and	averaged	over	provinces.	The	resulting	map	is	almost	identical	map	and	therefore	not	
included	here.

4.4.3	 |	 Joint	probabilities

Other	results	 that	we	can	derive	 from	a	copula	GAMLSS	model	are	 the	 joint	probabilities	 for	
different	sub-	groups	of	individuals.	In	particular,	we	calculate	the	probability	for	the	example	
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(a)

(b)
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individual	of	being	poor	in	both	the	education	and	income	dimensions.	As	an	example,	we	focus	
here	on	household	location	and	household	composition.	To	define	poverty,	we	classify	individu-
als	that	have	attained	at	most	primary	education	as	education	poor,	and	we	set	a	relative	poverty	
line	of	60%	of	the	median	of	the	per	capita	expenditures’	unique	values.	Note	that	Indonesia	also	
has	a	national	absolute	poverty	line	that	is,	however,	based	on	a	different	expenditure	measure	
than	the	one	we	constructed	from	the	IFLS	data.	This	motivated	us	to	use	a	relative	poverty	line	
as	defined	above.	An	individual	that	is	poor	in	both	dimensions	has	expected	values	below	each	
of	these	thresholds.

One	of	the	sub-	groups	is	set	as	the	base	category	and	the	other	sub-	groups	are	compared	to	
this	base	category.	Figure	7	shows	that	the	probability	for	being	poor	in	both	dimensions	is	two	
times	higher	for	the	example	individual	in	a	rural	household	compared	to	the	same	individual	
in	an	urban	household.	Compared	to	Jawa	Timur	the	joint	probabilities	of	Jakarta	Raya,	Nusa	
Tenggara	Barat	and	Sumatera	Utara	are	about	eight	times,	six	times	and	four	times	higher	respec-
tively.	Not	surprisingly,	the	risk	of	being	poor	in	both	dimensions	increases	with	the	number	of	
children	and	elderly	in	the	household.

4.4.4	 |	 Vulnerability	to	poverty

The	higher	the	dependence	between	education	and	income,	the	higher	the	chances	that	we	miss	
some	individuals	at	risk	by	looking	only	at	the	marginal	distributions	of	each	poverty	dimension.	
To	identify	the	individuals	at	risk,	we	calculate	the	probabilities	of	being	poor	in	the	two	dimen-
sions	for	each	individual	in	the	dataset,	first	using	the	baseline	independence	model	and	then	

F I G U R E  5 	 Contour	plots	for	(education,	income)’	and	a	Gaussian	copula	by	households’	location.	Contour	
lines	of	densities	are	at	levels	from	0.00000005	to	0.00000025	in	0.00000001	steps.	The	vertical	straight	lines	
represents	the	cut-	off	values	for	the	education	categories,	horizontal	straight	lines	are	the	consumption	average,	
and	dashed	horizontal	line	are	at	two	standard	deviations	around	this	average

F I G U R E  6 	 Kendall's	τ	for	each	individual	averaged	within	provinces	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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using	the	preferred	copula	model.	A	vulnerability	threshold	is	arbitrarily	set	at	a	probability	of	0.1	
for	simplicity.	All	individuals	with	a	probability	of	being	poor	above	this	threshold	are	declared	
as	vulnerable.	We	then	compare	the	individuals	that	are	identified	as	vulnerable	by	the	copula	
and	the	independence	models	to	their	actual	poverty	status,	and	we	calculate	the	sensitivity	or	
true	positive	 rate.	Results	are	displayed	 in	Table	3.	We	 find	 that	 the	copula	model	has	better	
specificity	for	two-	dimensional	poverty	than	the	independence	model	although	the	difference	is	
fairly	small.

F I G U R E  7 	 Relative	joint	poverty	risks	of	an	example	individual	differentiated	by	household	location	and	
household	composition.	Baseline	categories	are	urban,	Jawa	Timur,	one	child	and	one	elderly,	respectively,	and	
are	set	to	one.	The	abbreviation	NTB	denotes	the	province	of	Nusa	Tenggara	Barat
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T A B L E  3 	 Sensitivity	of	the	copula	and	independence	models

Copula Independence

Income	dimension 0.88 0.88

Both	dimensions 0.66 0.63

Note:	Individuals	that	are	declared	vulnerable	are	compared	to	their	actual	poverty	status.
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4.4.5	 |	 Discussion	of	the	results

The	main	advantage	of	applying	a	copula	GAMLSS	 in	 the	context	poverty	analysis	 is	 that	we	
are	able	to	analyse	the	dependence	between	poverty	dimensions	in	greater	details	compared	to	
studies	that	are	limited	to	the	measurement	of	such	dependence.	Even	though	the	estimated	de-
pendence	is	not	very	strong,	once	we	control	for	covariates	in	the	marginals,	we	consider	this	as	
an	interesting	outcome.	We	could	further	identify	heterogeneities	in	the	strength	of	the	depend-
ence	between	income	and	education,	and	poverty	risk	with	respect	to	a	household's	location.	For	
instance,	an	example	individual	in	a	rural	household	exhibits	lower	dependencies	compared	to	
the	same	individual	in	an	urban	household.	One	explanation	might	be	that	opportunities	in	rural	
areas	are	limited	and	thus	the	individual's	education	level	has	a	smaller	influence	on	per	capita	
expenditures.

There	 is	 also	 a	 strong	 spatial	 heterogeneity	 between	 provinces.	 High	 dependencies	 can	 be	
found	in	the	north-	west	of	the	country	while	the	values	decrease	for	the	more	central	provinces.	
The	argument	that	such	low	dependence	is	due	to	limited	opportunities	could	also	apply	to	the	
province	of	Nusa	Tenggara	Barat	in	which	an	example	individual	showed	little	average	depen-
dence	and	lower	dependence	compared	to	other	provinces.	Nusa	Tenggara	Bararat	is	one	of	the	
poorest	provinces	of	the	country,	with	a	low	GDP	per	capita	and	in	which	agriculture	and	fishery	
are	the	most	important	industries.	On	the	other	hand,	provinces	such	as	Jakarta	and	Kalimantan	
Timur,	that	have	the	highest	per	capita	GDP	out	of	all	the	provinces	in	Indonesia,	have	higher	
probabilities	of	being	poor	in	both	dimensions	compared	to	most	other	provinces.	These	proba-
bilities	are	calculated	for	an	example	individual	that	has	average	characteristics	and	a	high	school	
degree.	Possible	reasons	 for	 the	discrepancy	between	rich	provinces	and	high	relative	poverty	
risks	might	be	that	in	Jakarta	income	and	consumption	are	very	unequally	distributed,	whereas	
in	East	Kalimantan	the	high	GDP	is	a	result	of	high	natural	resource	exploitation	which	yields	
little	benefit	for	the	population.	For	example,	Bhattacharyya	and	Resosudarmo	(2015)	found	that	
growth	in	the	mining	sector	has	had	no	effect	on	poverty	and	inequality	in	Indonesia.

5 |  CONCLUSION

Although	poverty	is	conventionally	regarded	a	multidimensional	phenomenon,	regression	anal-
yses	 in	 this	 research	areas	either	examine	each	poverty	dimensions	separately	or	use	a	scalar	
index,	such	as	the	Multidimensional	Poverty	Index,	as	response	variable.	Both	approaches	ne-
glect	the	dependence	between	poverty	dimensions.	This	paper	presented	an	alternative	statistical	
model	for	an	in-	depth	poverty	study	that	accounts	explicitly	for	this	dependence	and	its	determi-
nants.	This	is	an	important	feature	of	the	model	because	it	is	critical	to	understand	what	drives	
the	dependence	between	poverty	dimensions:	high	dependencies	can	in	fact	explain	persisting	
poverty.

For	this	kind	of	poverty	analysis,	we	proposed	a	bivariate	copula	GAMLSS	which	relates	each	
distributional	parameter	of	the	marginals	and	of	the	copula	parameter	to	flexible	covariate	ef-
fects.	Since	poverty	analyses	often	include	one	monetary	measure,	such	as	income	or	consump-
tion,	and	some	ordinal	measure,	such	as	education	level	or	health	status,	we	extended	the	class	
of	copula	GAMLSS	to	incorporate	ordinal	responses.	This	extension	has	been	incorporated	in	the	
R-	package	GJRM.

We	used	data	from	Indonesia	to	show	how	copula	GAMLSS	can	be	applied	to	a	poverty	analy-
sis.	The	model	identified	the	number	of	elderly	people	and	children	in	the	household,	the	highest	
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education	attained	by	the	household	head,	and	the	household's	location	as	risk	factors	for	low	
income	or	poor	education,	or	both.	The	gender	of	the	household	head,	whether	or	not	he/she	
belongs	to	a	minority	religion	and	is	widowed	or	separated,	has	shown	less	(or	opposite)	influ-
ence	than	expected.	We	did	not	find	evidence	for	strong	tail	dependencies	between	education	and	
expenditures	after	conditioning	on	the	covariates	in	the	marginals	and	in	the	copula	parameter.

Focusing	more	on	the	household's	location,	we	found	that	an	example	individual	in	a	rural	
household	exhibits	lower	dependencies	compared	to	the	same	individual	in	an	urban	household.	
This	is	potentially	due	to	limited	employment	opportunities	for	highly	educated	individuals	in	
rural	areas.	We	identified	a	strong	spatial	heterogeneity	regarding	poverty	risk	and	the	strength	
of	the	dependence.	In	particular,	high	dependencies	were	found	in	the	north-	west	of	Indonesia,	
while	in	central	provinces	we	reported	lower	dependencies.	For	Jakarta	and	Kalimantan	Timur	
we	found	a	discrepancy	between	being	rich	in	terms	of	GDP	and	exhibiting	high	relative	poverty	
risks;	this	may	potentially	indicate	unequally	distributed	economic	gains.

Thanks	 to	 the	 flexibility	of	our	approach,	 the	analysis	of	 the	dependence	between	poverty	
dimensions	and	the	other	results	documented	in	this	paper	can	be	derived	consistently	by	es-
timating	only	one	model.	We	advocate	therefore	to	include	a	copula	GAMLSS	in	the	toolbox	of	
poverty	 researchers	 alongside	 the	 other	 statistical	 strategies.	 Further	 applications	 in	 the	 con-
text	of	poverty	may	comprise	analysing	the	drivers	and	the	spatial	patterns	of	inter-	generational	
poverty	persistence	or	upward	social	mobility.	On	the	methodological	side,	future	research	can	
be	directed	at	combining	copula	GAMLSS	with	experimental	or	quasi-	experimental	methods	to	
evaluate	Indonesia's	poverty	policies	at	the	micro	level.	Extensions	beyond	the	bivariate	case	are	
linked	to	the	computational	aspects	of	multivariate	copula	functions.	As	the	dimension	increases,	
the	implementation	of	these	models	becomes	more	numerically	and	technically	demanding	and	
the	interpretation	of	the	results	will	be	challenging.
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