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Abstract
As a reaction to the pandemic of the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), a multitude of clinical trials for the treatment of SARS-
CoV-2 or the resulting corona disease 2019 (COVID-19) are globally at various
stages from planning to completion. Although some attempts weremade to stan-
dardize study designs, this was hindered by the ferocity of the pandemic and the
need to set up clinical trials quickly. We take the view that a successful treatment
of COVID-19 patients (i) increases the probability of a recovery or improvement
within a certain time interval, say 28 days; (ii) aims to expedite favorable events
within this time frame; and (iii) does not increasemortality over this time period.
On this background, we discuss the choice of endpoint and its analysis. Further-
more, we consider consequences of this choice for other design aspects including
sample size and power and provide some guidance on the application of adaptive
designs in this particular context.
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1 INTRODUCTION

At the time of writing, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing. As a
reaction to the pandemic, a multitude of clinical trials on the treatment of SARS-CoV-2 or the resulting corona disease
2019 (COVID-19) are globally in planning, were recently initiated or already completed. Although some attempts were
made to standardize study designs, this was hindered by the ferocity of the pandemic and the need to set up clinical trials
quickly.
For randomized controlled trials evaluating the safety and efficacy of COVID-19 treatments, the choice of appropriate

outcomes has received considerable attention in the meanwhile. For instance, WHO (2020) suggests an eight-point ordi-
nal scale as part of their master protocol while Dodd et al. (2020) discuss the use of survival methodology to investigate

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

440 www.biometrical-journal.com Biometrical Journal. 2022;64:440–460.

https://orcid.org/0000-0002-3793-4611
https://orcid.org/0000-0001-5347-7441
https://orcid.org/0000-0001-5610-9425
mailto:tim.friede@med.uni-goettingen.de
http://creativecommons.org/licenses/by/4.0/
http://www.biometrical-journal.com


BEYERSMANN ET AL. 441

both an increase of the event probability of a favourable outcome such as improvement or recovery and its timing. Sim-
ilar to McCaw et al. (2020b), Dodd et al. stress that such outcomes are subject to competing risks or competing events,
because patients may die without having achieved the favourable outcome. The authors argue that these patients must
not be censored at their time of death but, say, at day 28 after treatment, if the trial investigates a 28-day-follow-up. The
authors continue to advocate investigating hazard ratios based on such data (called improvement or recovery rate ratio
by the authors, because the outcome is not hazardous to health, but favourable). We will use improvement and recovery
interchangeably from amethodological perspective as examples for favorable events (although clinically they are of course
different). Furthermore, Benkeser et al. (2020), an early methodological publication on COVID-19, consider time-to-event
outcomes in a paper advocating covariate adjustment in randomized trials, but do not consider competing events. Rather,
the authors consider a composite of intubation and death, thereby avoiding the need to model competing events. This
composite combines two unfavourable outcomes, but for outcomes recovery or improvement, such a composite endpoint
that also includes death is not meaningful.
One aim of our paper is to provide an in-depth treatment of why one typically needs to account for competing events in a

time-to-improvement or time-to-recovery analysis of COVID-19 treatment trials. Here, we will start with a clear definition
of the target parameters rather than with censoring rules and connect them with the aims of a successful treatment of
COVID-19 patients. To begin, the role of censoring here is subtle: Dodd et al. (2020) state that the improvement or recovery
rate ratio approach coincides with the subdistribution hazard ratio approach of Fine and Gray (1999), if there is additional,
“usual” censoring as a consequence of staggered study entry. McCaw et al. (2020b), on the other hand, characterize the
approach to censor previous deaths at day 28, still assuming a 28-day-follow-up, as “unusual” and warn against the use of
oneminus Kaplan–Meier, if there is additional censoring before day 28, say, because of staggered entry. In our presentation
of motivating examples in Section 2, we will see that both Kaplan–Meier estimates censoring at the time of death and
Kaplan–Meier estimates censoring at day 28 are being used in COVID-19 trials.
Recently, Kahan et al. (2020) discussed outcomes in the light of the estimand framework. Another important aim of our

paper is to clarify and provide guidance with respect to the target parameters when using survival methodology to investi-
gate both an increase of the event probability of a favourable outcome and its timing. To this end, we will demonstrate that
censoring deaths on day 28 in a trial with a 28-day-follow-up conceptually corresponds to formalizing time to improvement
or recovery via improper failure times, whichwewill call subdistribution times, with probabilitymass at infinity. The latter
corresponds to the probability of death during 28-day or, more generally, 𝜏-day-follow-up. This has various consequences:
It allows to formalize mean and median times to improvement (recovery). The Kaplan–Meier estimator based on death-
censored-on-day-𝜏-data will coincide with the Aalen–Johansen estimator of the cumulative event probability considering
the competing event death, provided that there is no additional censoring. The hazard ratio at hand will be a subdistribu-
tion hazard ratio as a consequence of using subdistribution times, but not as a consequence of additional censoring.
In this article, we take the view that a successful treatment of COVID-19 patients (i) increases the probability of a

recovery or improvement within a certain time interval, say 28 days; (ii) aims to expedite recovery or improvement within
this time frame; and (iii) does not increase mortality over this time period (see, e.g., Wilt et al., 2020). This should be
reflected in the main outcomes of a COVID-19 treatment trial. The choice of outcomes has also some implications for
the trial design. First, even in traditional designs the sample size calculation might be complicated by the presence of
competing events. Second, novel trial designs including platform trials and adaptive group-sequential designs are more
frequently applied than usual in COVID-19 treatment trials. Stallard et al. (2020) provide an overview over such designs,
discuss their utility in COVID-19 trials, and make some recommendations. In the light of the outcome discussion, we
provide some comments on the application of such outcomes in adaptive designs. While our paper has a clear focus
on COVID-19 treatment trials, the considerations apply more generally if time-to-event is of interest, where “time” is
measured within a rather restricted fashion such as 28 days, but “event” is subject to competing risks. As a rule of thumb,
for instance, hospital outcomes in severely ill patients will generally fit this pattern.
The article is organized as follows. In Section 2, background on some example trials is provided to motivate the investi-

gations presented here. In Section 3, outcomes, their analysis, and interpretation are considered before some guidance is
provided on planning such trials in Section 4. We close with a discussion in Section 5.

2 MOTIVATING EXAMPLES

Our starting point is that a successful treatment of COVID-19 patients (i) increases the proportion of recoveries within a
time interval [0, 𝜏], say, 𝜏 = 28 days; (ii) aims to expedite recovery on [0, 𝜏]; and (iii) does not increase mortality at time 𝜏.
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Aim (i) is obviously desirable both from a patient’s perspective and from a public health perspective. The rationale behind
aim (ii) is that two different treatments that lead to comparable recovery proportions at time 𝜏may differ in the timing of
recoveries. Here, faster recovery is not only desirable from a public health perspective with respect to available resources,
but faster recovery from ventilation will also benefit the individual patient. Finally, the requirement (iii) reflects that a
treatment that increases both the proportion of recoveries and the proportion of deaths at time 𝜏 benefits some patients
and harms others.
We will argue that aims (i)–(iii) cast COVID-19 trials into a competing events (or competing risks) setting, although

this is not necessarily or not explicitly recognized. For example, the primary clinical endpoint of Wang et al. (2020) was
time for clinical improvement within 28 days after randomization, addressing aims (i) and (ii). Within 𝜏 = 28 days, 13%
of the patients in the placebo group and 14% in the treatment (Remdisivir) group died. The authors aimed to address
such competing mortality before clinical improvement by right-censoring time to clinical improvement at 𝜏 for patients
dying before 𝜏. The authors then used the usual machinery of Kaplan–Meier, log-rank, and Cox proportional hazards
regression.However, aswewill see below, their analysis amounts to using theAalen–Johansen estimator of the cumulative
event probability (instead of Kaplan–Meier), Gray’s test for comparing cumulative event probabilities (or subdistributions)
between groups (instead of the common log-rank test) and Fine and Gray’s proportional subdistribution hazards model
(instead of the usual Cox model) (Beyersmann et al., 2012).
Other recent examples are Beigel et al. (2020) who consider time to recovery on days [0, 28] and Cao et al. (2020) whose

primary outcome is time to clinical improvement until day 28. Beigel et al. also censor previous deaths “on the last obser-
vation day” (see the Appendix of Beigel et al.) and use Kaplan–Meier (here, actually, Aalen–Johansen) and log-rank test
(here, actually, Gray’s test) to analyze these data. Cao et al. censor both “failure to reach clinical improvement or death
before day 28” on day 28 and use Kaplan–Meier, log-rank, and the Coxmodel (here, actually, Fine and Gray). Interestingly,
Cao et al. comment that “right-censoring occurs when an event may have occurred after the last time a person was under
observation, but the specific timing of the event is unknown,” although this is clearly not the case for patients censored
at day 28 following the death before that time.
To be precise, let 𝜗 be the time to clinical improvement, using the example of Wang et al. Time to improvement is, in

general, not well defined for patients dying prior to improvement. To address this, the subdistribution time is defined as
𝜗 = ∞ for the latter patients, that is,

𝜗

{
< ∞ if the outcome is reached,
= ∞ if death occurs before the outcome is reached.

The interpretation of the improper random variable 𝜗 is that it equals the actual time of improvement when 𝜗 < ∞.
However, patients who die before improvement will never experience this primary outcome and, hence, 𝜗 = ∞. The
censored subdistribution time in the paper of Wang et al. becomes

�̃� = min(𝜗, 𝜏).

It is instructive to reexpress matters in standard competing risks notation with time-to-first-event 𝑇 and type-of-first-
event 𝜀. Recall that we are assuming that censored patients are either censored because of death before day 𝜏 or because
they have neither reached the outcome event nor have died on [0, 𝜏]. This situation is a special case of “censoring complete”
data (Fine & Gray, 1999), which means that the potential censoring time is known for all patients.
We will investigate the consequences of competing events in the following sections, including alternatives to the sub-

distribution framework, the need to still analyze competing mortality, and possible strategies to account for death after
recovery. Here, we stress that the aim to account for our items (i)–(iii) above has led authors to implicitly employ a compet-
ing event analysis, although this is not explicitly acknowledged. One worry is that the subdistribution hazards framework
has repeatedly been reexamined, questioning the interpretability of a hazard belonging to an improper random variable
(Andersen & Keiding, 2012). The key issue here is that patients are still kept “at risk” after death and until censoring at 𝜏,
although, of course, no further events will be observed for these patients.
There are further examples of the presence of competing events in COVID-19 studies. For instance, Grein et al. (2020)

use Kaplan–Meier for time-to-clinical improvement at day 28. These authors report a Kaplan–Meier estimate of 84% for
the cumulative improvement probability at 𝜏 = 28, although the improvement was only observed for 36 (68%) out of 53
patients. Letters to the Editor and a Reply by Grein et al. reveal that the original Kaplan–Meier analysis had censored
deaths before improvement at the time of death, but not at 𝜏. It is well known that such an analysis is subject to “competing
risks bias” and must inevitably overestimate cumulative event probabilities (Beyersmann et al., 2012).
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F IGURE 1 Competing events model (solid arrows only) and
illness–death model without recovery (solid and dashed arrows)
for outcomes improvement or recovery in the presence of the
competing event death

As the last example of this section, we consider ventilator-free days (VFDs) (see Schoenfeld et al., 2002 and Yehya
et al., 2019), which is the primary or secondary outcome in a number of ongoing trials (trial identifiers NCT04360876,
NCT04315948, NCT04348656, NCT04357730, NCT03042143, NCT04372628, NCT04389580 at clinicaltrials.gov, and
DRKS00021238 at clinicaltrialsregister.eu). Yehya et al. provide an applied tutorial on using VFDs as an outcome
measure in respiratory medicine. Similar to our aims (i)–(iii) above, they argue in favor of using VFDs, because they
“penalize nonsurvivors,” that using time as an outcome “provide[s] greater statistical power to detect a treatment effect
than the binary outcome measure” and that time is relevant in that “shortened ventilator duration is clinically and
economically meaningful.” Again, censored subdistribution times are present, although this is not made explicit in the
definition of VFDs. Choosing once more a time horizon of 𝜏 = 28 days, VFDs are defined as 28 − 𝑥 if ventilation stops on
day 𝑥, but are defined as 0 if the patient either dies while being ventilated or is still alive and ventilated after [0, 28]. Inter-
preting the subdistribution time 𝜗 as the day when ventilation is stopped while alive (and not as a consequence of death),
we get

VFDs = 28 − �̃�.

Consequently, Yehya et al. also suggest the proportional subdistribution hazards model as one possible statistical
analysis.

3 OUTCOMES, THEIR ANALYSIS AND INTERPRETATION

Consider a stochastic process (𝑋(𝑡))𝑡∈[0,𝜏] with state space {0, 1, 2}, right-continuous sample paths and initial state 0,
𝑃(𝑋(0) = 0) = 1 (see Figure 1). Patients alive with COVID-19, randomized to treatment arms, are in state 0 of the figure
at time 0.
Our main model will be the competing events model in Section 3.1, considering only the solid arrows in Figure 1.

Improvement or recovery is modeled by a 0 → 1 transition, death without prior improvement (or recovery) is modeled
by a 0 → 2 transition. In practice, for example, improvement is typically defined as improving by one or two categories
on the eight-point ordinal scale for clinical improvement proposed in the master protocol of the WHO (2020) ; hence, a
0 → 1 transition occurs at the time of such improvement.
Later, in Section 3.4, we will briefly consider an extension of this model to an illness–death model without recovery by

also considering 1 → 2 transitions, that is, death after improvement events. This is illustrated in Figure 1 by the dashed
arrow. Note that “illness–death without recovery” does not mean that recovery may not be modeled, but that 1 → 0 tran-
sitions are not considered. In terms of outcomes, 𝑋(𝑡) = 1 in the competing events model means that improvement has
occurred on [0, 𝑡], but in the illness–death model, 𝑋(𝑡) = 1 means that improvement has occurred and that the patient
is still alive. The distinction may be relevant for trials in patients where possible subsequent death on [0, 𝜏] is a concern;
see Sommer et al. (2018) for a discussion of death after clinical cure in treatment trials for severe infectious diseases. An
extension of such a multistate model would also allow to model transitions between categories such as those of the WHO
blueprint scale for clinical improvement.
Returning to the goals of a successful treatment of COVID-19 patients mentioned earlier, goal (i) is reflected by an

increased state occupation probability for state 1 in Figure 1, that is, an increased probability of recovery or improvement.
Goals (ii) and (iii), earlier recovery and no increased mortality, are reflected by faster 0 → 1 transitions and no increased
state occupation probability for state 2. Below, goal (ii) to expedite favorable events will be reflected using hazards.
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3.1 Competing events: Time to and type of first event

Both in the competing events and, later, in the illness–death model, time-to-first-event is

𝑇 = inf {𝑡 ∶ 𝑋(𝑡) ≠ 0}, (1)

the waiting time in state 0 of Figure 1, with type-of-first-event 𝜖 = 𝑋(𝑇),

𝑋(𝑇) ∈ {1, 2}, (2)

the state the process enters upon leaving the initial state. The tupel (𝑇, 𝑋(𝑇)) defines a competing events situation. Note
that competing events are characterized by time-to-first-event and type-of-first-event; it is not assumed that there are no
further events after a first event. However, the analysis of subsequent events requires more complex models such as an
illness–death model.
The stochastic process for time and type of the first event is regulated by the event- (or cause-) specific hazards

𝛼0𝑗(𝑡) = lim
Δ𝑡↘0

𝑃(𝑇 ∈ [𝑡, 𝑡 + Δ𝑡), 𝑋(𝑇) = 𝑗 |𝑇 ≥ 𝑡)

Δ𝑡
, 𝑗 ∈ {1, 2}, 𝑡 ∈ [0, 𝜏], (3)

which we assume to exist. Their sum

𝛼0⋅(𝑡) = 𝛼01(𝑡) + 𝛼02(𝑡)

is the usual all-events hazard of time 𝑇 with survival function

𝑃(𝑇 > 𝑡) = exp

(
−∫

𝑡

0

𝛼0⋅(𝑢) 𝑑𝑢

)
.

Note that 𝑇 is the time until a composite of improvement or death, whatever comes first, which is not a meaningful
outcome in the present setting, combining an endpoint that benefits the patient with one that harms the patient. Rather,
as discussed above, authors consider the cumulative improvement probability

𝐹1(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝑋(𝑇) = 1) = ∫
𝑡

0

𝑃(𝑇 ≥ 𝑢)𝛼01(𝑢) 𝑑𝑢 (4)

= 1 − 𝑃(𝜗 > 𝑡), (5)

with subdistribution time 𝜗 until improvement defined as

𝜗 =

{
𝑇 if 𝑋(𝑇) = 1

∞ if 𝑋(𝑇) = 2.

Later, Equations (4) and (5) will resurface in that we will find that one minus Kaplan–Meier estimation of 5 will coincide
with the standard Aalen–Johansen estimator of 4 for “censoring complete” data as described earlier.
A binary outcome, say improvement status at time 𝜏, is covered by this framework,

𝟏(𝑇 ≤ 𝜏, 𝑋(𝑇) = 1) ∈ {0, 1},

with indicator function 𝟏(⋅) and improvement probability (at time 𝜏) 𝑃(𝑇 ≤ 𝜏, 𝑋(𝑇) = 1). However, viewing quantities (4)
as a function of time allows to detect earlier improvement with possibly comparable improvement probabilities at 𝜏. The
expected proportion of deaths at 𝜏 without prior improvement is 𝑃(𝑇 ≤ 𝜏, 𝑋(𝑇) = 2).
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Key quantities of the competing events model are time and type of first event, (𝑇, 𝑋(𝑇)) and the event-specific hazards
(𝛼01(𝑡), 𝛼02(𝑡)). The subdistribution time 𝜗 appears to be little more than an afterthought of (4). However, its relevance is
closely connected to the subdistribution hazard which equals neither any of the event-specific hazards nor the all-events
hazard. It also reappears in the context of “average” improvement or recovery times, see Section 3.3.
The subdistribution hazard 𝜆(𝑡) is the hazard “attached” to (4) by requiring

𝑃(𝑇 ≤ 𝑡, 𝑋(𝑇) = 1) = 1 − exp

(
−∫

𝑡

0

𝜆(𝑢) 𝑑𝑢

)
, (6)

leading (Beyersmann et al., 2012) to

𝜆(𝑡) =

(
1 +

𝑃(𝑇 ≤ 𝑡, 𝑋(𝑇) = 2)

𝑃(𝑇 > 𝑡)

)−1

𝛼01(𝑡), (7)

which illustrates why interpretation of the subdistribution hazard as a hazard has been subject of debate (Andersen &
Keiding, 2012). The event-specific hazards 𝛼0𝑗(𝑡) have the interpretation of an instantaneous “risk” of a type 𝑗 event at
time 𝑡 given one still is in state 0 just prior to time 𝑡. They may be visualized (Beyersmann et al., 2012) as forces moving
along the solid arrows in Figure 1. There is no such interpretation for the subdistribution hazard. The above display also
illustrates that a competing subdistribution hazard, “attached” to𝑃(𝑇 ≤ 𝑡, 𝑋(𝑇) = 2), may not be chosen ormodeled freely.
This is in contrast to the event-specific hazards.
The rationale of the subdistribution hazard is that it re-establishes a one-to-one correspondence between (subdistri-

bution) hazard and cumulative event probability (4), which otherwise is a function of both event-specific hazards 𝛼01(𝑡)
and 𝛼02(𝑡). The subdistribution hazard approach may also be viewed via a transformation model for (4) using the link
𝑥 ↦ log(− log(1 − 𝑥)) as in a Cox model for the all-events hazard, but still without a common hazard interpretation. Sev-
eral authors have argued in favor of link functions which are more amenable to interpretation such as a logistic link.
(See also Section 4.1 on study planning with respect to odds ratios.) Against the background of the motivating examples
in Section 2, we will put a certain emphasis on the former link but also note that it is not uncommon that results from
either link function coincide from a practical point of view (Beyersmann & Scheike, 2014). In the absence of competing
events, this has been well documented for studies with short follow-up and low cumulative event probability (Annesi
et al., 1989). In the present setting, trials will aim at increasing cumulative improvement or recovery probabilities but
“competing” mortality implies that these probabilities must be below one, which distinguishes competing events from
the all-events framework.

3.2 Statistical approaches

We will assume that follow-up data are complete in that improvement status and vital status is known for all patients
on [0, 𝜏]. In most of the motivating examples of Section 2, both patients alive but without improvement up to day 𝜏 and
patients who had died were censored at 𝜏. Although censored at this maximal time point, both improvement status and
vital status are known for these patients on [0, 𝜏]. Survival methodology discussed below will allow for right censoring
of patients alive where further follow-up information ceases at the time of censoring, but we assume that this is a minor
problem when, for example, 𝜏 = 28 days.
Assuming data to be complete in this sense, the Kaplan–Meier estimator of 𝑃(𝑇 > 𝑡) is

�̂�(𝑇 > 𝑡) =
∏
𝑢≤𝑡

(
1 −

Δ𝑁(𝑢)

𝑌(𝑢)

)
= 1 −

𝑁(𝑡)

𝑛
,

where the product in the above display is over all unique event times,𝑁(𝑡) is the “all-events” number of composite events
(transitions out of the initial state in Figure 1) on (0, 𝑡], Δ𝑁(𝑡) is the number of events at time 𝑡, 𝑌(𝑡) is the number at risk
just prior time 𝑡 and 𝑛 is the sample size. Because of complete follow-up on [0, 𝜏], �̂�(𝑇 > 𝑡) equals the empirical event-free
fraction (𝑛 − 𝑁(𝑡))∕𝑛.
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Introducing

𝑁01(𝑡) = Number of 0 → 1 transitions on (0, 𝑡],

𝑁02(𝑡) = Number of 0 → 2 transitions on (0, 𝑡],

𝑁(𝑡) = 𝑁01(𝑡) + 𝑁02(𝑡),

with Δ𝑁0𝑗(𝑡) type 𝑗 events precisely at time 𝑡, the Aalen–Johansen estimators are

�̂�(𝑇 ≤ 𝑡, 𝑋(𝑇) = 𝑗) =
∑
𝑢≤𝑡

�̂�(𝑇 ≥ 𝑢)
Δ𝑁0𝑗(𝑡)

𝑌(𝑡)
=

𝑁0𝑗(𝑡)

𝑛
, 𝑗 ∈ {1, 2},

which also equal the usual empirical proportions assuming complete follow-up. Here, one easily sees that

�̂�(𝑇 > 𝑡) + �̂�(𝑇 ≤ 𝑡, 𝑋(𝑇) = 1) + �̂�(𝑇 ≤ 𝑡, 𝑋(𝑇) = 2) = 1,

a natural balance equation which is maintained even in the presence of censoring, but violated if one were to use

1 −
∏
𝑢≤𝑡

(
1 −

Δ𝑁01(𝑢)

𝑌(𝑢)

)
(8)

to estimate the cumulative probability of a type 1 event (see themotivating examples of Section 2). This Kaplan–Meier-type
estimator inevitably overestimates, the reason being that oneminusKaplan–Meier approximates an empirical distribution
function, but the cumulative probability of a type 1 event is bounded from above by 𝑃(𝑋(𝑇) = 1). To this end, note that
our notation always entails that �̂�(𝑇 > 𝑡) is the Kaplan–Meier estimator of the proper event time 𝑇, 𝑇 < ∞, and �̂�(𝑇 ≤
𝑡, 𝑋(𝑇) = 𝑗) always is its generalization to the Aalen–Johansen estimator of the cumulative type 𝑗 probability.
However, the Kaplan–Meier estimator predominantly used in the motivating examples of Section 2 is based on subdis-

tribution times with censoring time 𝜏 leading to

�̃�01(𝑡) =

𝑛∑
𝑖

𝟏(𝜗𝑖 ≤ 𝑡),

�̃�(𝑡) = 𝑌(𝑡) +

𝑛∑
𝑖

𝟏(𝑇𝑖 < 𝑡, 𝑋(𝑇𝑖) = 2), 𝑡 ≤ 𝜏,

where index 𝑖 signals patient 𝑖, 𝑖 ∈ {1, … 𝑛}. Because

𝟏(𝜗𝑖 ≤ 𝑡) = 𝟏(𝑇𝑖 ≤ 𝑡, 𝑋(𝑇𝑖) = 1),

we have �̃�01(𝑡) = 𝑁01(𝑡), but �̃�(𝑡) ≥ 𝑌(𝑡), because censoring dead patients at 𝜏 enlarges the risk set by the number of
previous deaths. In the current setting, it is easy to demonstrate that the standard Aalen–Johansen estimator of the cumu-
lative improvement probability accounting for the competing risk death equals one minus the Kaplan–Meier estimator
based on the censored subdistribution times, that is,

�̂�(𝑇 ≤ 𝑡, 𝑋(𝑇) = 𝑗) = 1 −
∏
𝑢≤𝑡

(
1 −

Δ𝑁01(𝑢)

�̃�(𝑢)

)
, (9)

(see the Appendix). Note that the difference between the right-hand side of (9) and the biased Kaplan–Meier-type estima-
tor (8) lies in the use of a different risk set.
Any regression model for hazards may be fit to the event-specific hazards, the most common choice being Cox models,

𝛼0𝑗(𝑡; 𝑍) = 𝛼0𝑗;0(𝑡) ⋅ exp
(
𝛽⊤
0𝑗
𝑍
)
, 𝑗 ∈ {1, 2},
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with event-specific baseline hazards 𝛼0𝑗;0(𝑡), event-specific 𝑝 × 1 vectors of regression coefficients 𝛽0𝑗 , and a 𝑝 × 1 vector
of baseline covariates 𝑍. Technically, an event-specific Cox model for the type 1 hazard, say, may be fit by only counting
type 1 events as events and by additionally censoring type 2 events at the time of the type 2 event. Roles reverse fitting an
event-specific Cox model for the type 2 hazard. For the interpretation, this has arguably been a source of confusion, since
the biased Kaplan–Meier-type estimator (8) also only counts type 1 events as events and additionally censors type 2 events.
The difference between fitting an event-specific Coxmodel and theKaplan–Meier-type estimator (8) is that hazardmodels
allow for quite general censoring processes including censoring by a competing event. However, probabilities depend on
all event-specific hazards, which is why we have formulated Cox models for all event types above. It is, however, not
uncommon to only see results from one event-specific Cox model being reported; see Goldman et al. (2020) and Spinner
et al. (2020) for two recent examples from COVID-19 treatment trials.
In contrast to, for example, these two studies, event-specific Coxmodels have not been used in themotivating examples

above. Rather a Cox-type model, the Fine and Gray model, for the subdistribution hazard has been employed,

𝜆(𝑡; 𝑍) = 𝜆0(𝑡) ⋅ exp
(
𝛾⊤𝑍

)
.

If the cumulative improvement probabilities follow the Fine and Gray model, a subdistribution hazard ratio larger than
one for treatment signals both an increase of the expected improvement proportion at 𝜏 and earlier improvement.
It has been repeatedly argued that any competing events analysis should consider all competing events at hand. For

the event-specific hazards, we have therefore formulated two Cox models. For the Fine and Gray approach, postulating a
Cox-type model for the “competing” subdistribution hazard is complicated by (7). However, delayed death on [0, 𝜏] does
not benefit the patient if 𝜏 = 28 days. Hence, in the present setting, it will suffice to consider the probability 𝑃(𝑋(𝑇) = 2)

of “competing” probability by common methods for proportions.

3.3 “Average” improvement or recovery times

The subdistribution time𝜗 is also useful for formalizing “average” improvement or recovery times. Assuming “competing”
mortality, that is, 𝑃(𝑇 ≤ 𝜏, 𝑋(𝑇) = 2) > 0, it is easy to see that

E(𝜗) = ∞,

because 𝑃(𝜗 = ∞) = 𝑃(𝑋(𝑇) = 2). Consequently, the expected or mean time to improvement (recovery) is not a useful
parameter. It is well known that in standard survival analysis (time-to-all-causes-death), expected survival time is typically
not investigated, but for a different reason. For the latter, expected survival time is a finite number, but it is usually not
identifiable, at least not in a nonparametric way, because of limited follow-up. Both in this and in the present context,
two possible solutions for investigating “average” times-to-event are restricted means and median times. For the former,
Andersen (2013) considers

E(min(𝜗, 𝜏)) = 𝜏 − ∫
𝜏

0

𝐹1(𝑢) 𝑑𝑢. (10)

If the competing events are different causes of death, Andersen interprets 𝜏 minus (10) as the mean time span lost before
time 𝜏 and “due to cause 1.” The area under the cumulative event probability

[0, 𝜏] ∋ 𝑡 ↦ 𝐹1(𝑡)

mayhence be interpreted as themean time from improvement (recovery) to time 𝜏. ForCOVID-19 trials, this parameter has
recently been suggested by McCaw et al. (2020a), however, without giving formulae or making the link to subdistribution
times explicit. This is also related to the ventilator free days discussed in Section 2. A recent example of using (10) is Hao
et al. (2020) who considered influenza-attributable life years lost before the age of 90.
Alternatively, one may consider the median time to improvement,

inf {𝑡 ∶ 𝐹1(𝑡) ≥ 0.5}. (11)
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Again, there is a conceptual difference to median survival time in that the latter always is a finite number (denying the
possibility of immortality), but quantity (11) will be defined as infinity, if the eventual improvement probability does
not reach 50%. However, if its Aalen–Johansen estimator does reach 50% on [0, 𝜏], the median time-to-improvement
can be estimated in a nonparametric fashion by plugging the Aalen–Johansen estimator into (11), see Beyersmann and
Schumacher (2008) for technical details. Use of (11) as an end point in COVID-19 treatment trials accounting for compet-
ing events has recently been considered byMcCaw et al. (2020b). Study planning of some recent randomized clinical trials
on treatment of COVID-19 was also based on assumptions on median times to clinical improvement (Cao et al., 2020; Li
et al., 2020). This will be discussed in Section 4.1.

3.4 Death after improvement or recovery: Illness–death model

For instance, McCaw et al. (2020b) broach the issue of longer follow-up in future COVID-19 treatment trials and its impact
onmeaningful outcomes including time to death. Here, one aspect is that prolonged survival on [0, 𝜏], where, for example,
𝜏 is 28 days, does not benefit patients (Tan, 2020). The aim of the present subsection is to briefly outline how the competing
events framework may be extended to also handle death events possibly after improvement or recovery during a longer
follow-up. To this end, define for finite times 𝑡 the transition hazard

𝛼12(𝑡; 𝜗) = lim
Δ𝑡↘0

𝑃(𝑋(𝑡 + Δ𝑡) = 2 |𝑋(𝑡−) = 1, 𝜗 < 𝑡, 𝜗)

Δ𝑡
, (12)

where we now also model 1 → 2 transitions along the dashed arrow in Figure 1. The model has recently been used to
jointly model time-to-progression (not a favorable outcome, of course) or progression-free-survival and overall survival by
Meller et al. (2019). Themodel is time-inhomogeneousMarkov, if𝛼12(𝑡; 𝜗) does not depend on the finite value of 𝜗. Again a
proportional hazardmodelmay be fit to the transition hazard, possibly alsomodeling departures from theMarkov assump-
tion, but the interpretation of probabilities arguably is more accessible. One possible outcome could be the probability to
be alive after recovery, that is, 𝑃(𝑋(𝑡) = 1) over relevant time regions. In the context of clinical trials such outcomes have
recently been advocated by Sommer et al. (2018) for treatment trials for severe infectious diseases and by Bluhmki et al.
(2020) for patients after stem cell transplantation whose health statuses may switch between favorable and less favorable.
Schmidt et al. (2020) have recently used such a multistate model in a retrospective cohort study on COVID-19 patients,
modeling oxygenation and intensive care statuses. For the statistical analysis, the authors used both Cox models of the
transition hazards and reported estimated state occupation probabilities and “average” occupation times.

4 SOME DESIGN CONSIDERATIONS

Following on from the consideration of the choice of outcomes, their analysis, and interpretation in COVID-19 trials, we
now look into the consequences a particular choice of outcome has for the design of the trial. We start with sample size
considerations and then comment on the use of adaptive designs, in particular sample size recalculation.

4.1 Power and sample size considerations

For a randomized controlled trial investigating the effect of a COVID-19 treatment on clinical improvement or recovery of
patients (addressing features (i) and (ii) of a successful treatment mentioned above) or death (addressing feature (iii) of a
successful treatment), various approaches are conceivable. As described above, the time horizon 𝜏 considered is usually
short, often 28 days. Therefore, it can reasonably be assumed that the recording of outcomes of interest such as hospital-
ization, ventilation, clinical symptoms, and death is complete. In this situation, an ordered categorical endpoint as the
eight-point ordinal scale proposed in the master protocol of the WHO (2020) and, for example, used in a seven-point ver-
sion in the trial by Goldman et al. (2020) at a prespecified time point (e.g., 28 days) or a simpler binary endpoint, as for
example, death or clinical recovery as defined by a dichotomized version of the ordinal scale can be used as, for instance, in
Lee et al. (2020). Endpoints captured at a prespecified time point would address above mentioned features (i) and (iii) of a
successful treatment, but would not focus on feature (ii) of expediting recovery. An ordered categorical endpoint might be
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analyzed, under the proportional odds assumption, with a proportional odds model, for which sample size planning can
be based on the formula proposed byWhitehead (1993). Under more general assumptions, the treatment groups might be
compared with respect to an ordinal outcome by a nonparametric rank-based approach using, for example, the Wilcoxon
rank sum test and the so-called probabilistic index or relative effect as effect measure (Kieser et al., 2013). The sample
size can then be calculated using the formula provided by Noether (1987) or subsequent refinements using the variance
under the alternative (Vollandt & Horn, 1997) or extensions to a variety of alternative hypotheses (Happ et al., 2019). A
binary endpoint would commonly be analyzed using a logistic regression model and sample size planning can be based
on formula (2) in Hsieh et al. (1998).
Even if the recording of the endpoints of interest can be assumed to be complete, it may be desirable to analyze not

just the occurrence of the endpoint within the specified time period, but the time to the occurrence of the endpoint.
This is mainly for three reasons. First, as described in Section 2, a time-to-event analysis captures not only a difference
between treatments with respect to the proportion of patients for whom the event had occurred (addressing feature (i) of a
successful treatment) but also a difference between treatments with respect to the time of occurrence (addressing feature
(ii) of a successful treatment). This can be relevant even on a short time interval when the endpoint is, for example, time
under mechanical ventilation, which has more severe adverse effects on patients health the longer it is required. Second,
even if completeness of data over the time period 𝜏 is assumed, individual patients might be lost to follow-up, which can
be handled by a time-to-event analysis being able to include censored observations. Third, if interim analyses have to be
conducted, which may often be the case in COVID-19 trials, data of all patients can be included by censoring observations
of patients with incomplete follow-up appropriately in time-to-event analyses (Dodd et al., 2020).
In time-to-event analyses, we canmodel the effect of a treatment on the (event-specific) hazard (3) or on the cumulative

event probability (4) of experiencing the event of interest. In the presence of competing events, the cumulative event
probability (4) depends on the event-specific hazard for the event of interest and that one for the competing event as
outlined in Section 3.1. As a consequence, the following conclusions can be drawn (Beyersmann et al., 2012). If treatment
as compared to control leads to a decrease (or increase) in the cumulative probability of the event of interest, this could
be for two reasons. It can be due to a direct (e.g., physiological) effect of treatment on the event-specific hazard of the
event of interest, or due to an effect on the event-specific hazard of the competing event. Based on the analysis of the
cumulative probability of the event of interest alone, it is difficult to capture the treatment mechanism resulting in a
difference in event probabilities between treatment and control groups, since various treatment mechanisms can lead to
the same difference in event probabilities. As a consequence, it is usually recommended to conduct three analyses for a
complete understanding of treatment mechanisms, namely comparisons between treatment and control with respect to
the event-specific hazard of the event of interest, the event-specific hazard of the competing event, and the cumulative
event probability of the event of interest (Latouche et al., 2013).
In the planning of a clinical trial, one usually has to prespecify one treatment effect to be analyzed by one primary

analysis (Baayen et al., 2019). In the following, we discuss the different approaches of focusing on the event-specific hazard
or on the cumulative event probability for the situation of our competing events model in Figure 1 where the event of
interest is recovery from COVID-19 and the competing event is death without prior recovery.
For a comparison of treatment groups with respect to the event-specific hazards, the parameter of interest is the event-

specific hazard ratio

𝜃𝐸𝑆 = 𝛼
01

(𝑡)∕𝛼
01

(𝑡)

with 𝛼
01

(𝑡) denoting the event-specific hazard of the treatment group and 𝛼
01

(𝑡) denoting the event-specific hazard
of the control group. Here, we are using Sütterlin script of the letters T and C to denote treatment and control to avoid
confusion with event time 𝑇 and censoring time 𝐶. For a comparison of treatment groups with respect to the cumulative
probability of the event of interest, the parameter of interest is the subdistribution hazard ratio

𝜃𝑆𝐷 = log(1 − 𝐹
1
(𝑡))∕ log(1 − 𝐹

1
(𝑡)),

which follows from (6) under the assumption of proportional subdistribution hazard functions, with 𝐹
1
(𝑡) and 𝐹

1
(𝑡),

denoting the cumulative probability of the event of interest in the treatment group and control group, respectively. In the
situation considered, where the event of interest is a favorable event such as recovery, for both quantities 𝜃𝐸𝑆 and 𝜃𝑆𝐷
superiority of treatment versus control is represented by a value larger than 1.
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Whatever the planned analysis, that is, analysis of the event-specific hazard ratio 𝜃𝐸𝑆 or analysis of the subdistribution
hazard ratio 𝜃𝑆𝐷 , sample size planning for a two-sided level 𝛼 test with power 1 − 𝛽 under an assumed hazard ratio 𝜃

is typically based on the Schoenfeld formula (Latouche et al., 2004; Ohneberg & Schumacher, 2014; Schoenfeld, 1981;
Schoenfeld, 1983; Tai et al., 2018) for the total number of required recovery events

𝐸 = (𝑢1−𝛼∕2 + 𝑢1−𝛽)
2∕[𝑝(1 − 𝑝)(log 𝜃)2] (13)

with 𝑝 denoting the probability of being in treatment group T, and 𝑢1−𝛾 denoting the (1 − 𝛾)-quantile of the standard
normal distribution. The total number of patients to be randomized can then be calculated as𝑁 = 𝐸∕Ψ, whereΨ denotes
the probability of observing a recovery event. In the absence of censoring, as assumed in our situation of a short planned
trial duration of say 28 days, Ψ can be calculated as

Ψ = 𝑝𝐹
1
(28) + (1 − 𝑝)𝐹

1
(28). (14)

Although for the analysis of the event-specific hazard ratio and the analysis of the subdistribution hazard ratio, the same
formula for sample size calculation is often used, sample size planning, statistical analyses, and interpretation of results
are different, as 𝜃𝐸𝑆 and 𝜃𝑆𝐷 represent different parameters as described above. Another issue is that Schoenfeld’s formula
assumes identical censoring distributions in the treatment groups; see Schoenfeld (1981). This assumption is well justified
for time to an all-encompassing endpoint and, technically, it lends itself to a particularly simple approximation of the
covariation process of the log-rank statistic underlying Schoenfeld’s formula. It does, however, have further implications
in the presence of competing events.
We will illustrate this for the simplistic assumption of constant event-specific hazards of experiencing a recovery as the

event of interest in treatment and control groups, 𝛼
01

and 𝛼
01

, and of experiencing the competing event death without
prior recovery in treatment and control groups, 𝛼

02
and 𝛼

02
. Hence, the event-specific hazard ratios of recovery and of

deathwithout prior recovery are then given by 𝜃𝐸𝑆 = 𝛼
01

∕𝛼
01

and 𝜃𝐸𝑆−𝐶𝐸 = 𝛼
02

∕𝛼
02

, respectively. Under the constant
hazards assumption, the cumulative probability of recovery in treatment group 𝑘, 𝑘 = 𝒯,𝒞, at time 𝑡 is given by

𝐹1𝑘(𝑡) =
𝛼01𝑘

𝛼01𝑘 + 𝛼02𝑘
[1 − exp (−(𝛼01𝑘 + 𝛼02𝑘)𝑡)], (15)

and the cumulative probability of death without prior recovery in treatment group 𝑘, 𝑘 = 𝒯,𝒞, at time t is given by

𝐹2𝑘(𝑡) =
𝛼02𝑘

𝛼01𝑘 + 𝛼02𝑘
[1 − exp (−(𝛼01𝑘 + 𝛼02𝑘)𝑡)]. (16)

The above formulae are special cases of (4). Under the assumption of constant event-specific hazards, the limit of, for
example, 𝐹1𝑘(𝑡) for 𝑡 → ∞ is

𝛼01𝑘
𝛼01𝑘 + 𝛼02𝑘

,

the relative magnitude of the event-specific hazard of a type 1 event divided by the all-events hazard. This quotient is
multiplied with the usual formula of one minus the survival function under constant hazards.
Assuming Cox proportional hazards models for the event-specific hazards, but not necessarily constant event-specific

hazards, the cumulative probability of recovery in treatment group𝒯 is given by

𝐹
1
(𝑡) = ∫

𝑡

0

exp

(
−∫

𝑢

0

𝜃𝐸𝑆 ⋅ 𝛼01 (𝑣) + 𝜃𝐸𝑆−𝐶𝐸 ⋅ 𝛼
02

(𝑣) 𝑑𝑣

)
𝜃𝐸𝑆 ⋅ 𝛼01 (𝑢) 𝑑𝑢. (17)

This equation slightly simplifies under constant hazards to

𝐹
1
(𝑡) =

𝜃𝐸𝑆 ⋅ 𝛼01
𝜃𝐸𝑆 ⋅ 𝛼01 + 𝜃𝐸𝑆−𝐶𝐸 ⋅ 𝛼

02

[
1 − exp

(
−
(
𝜃𝐸𝑆 ⋅ 𝛼01 + 𝜃𝐸𝑆−𝐶𝐸 ⋅ 𝛼

02

)
𝑡
)]
,
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TABLE 1 Event-specific hazard ratios and the subdistribution hazard ratio at time 28 with respect to recovery for different scenarios
under the constant hazard assumption

𝜶
𝟎𝟏

𝜶
𝟎𝟏

𝜶
𝟎𝟐

𝜶
𝟎𝟐

𝜽𝑬𝑺 𝜽𝑬𝑺−𝑪𝑬 𝑭
𝟏
(𝟐𝟖) 𝑭

𝟏
(𝟐𝟖) 𝑭

𝟐
(𝟐𝟖) 𝑭

𝟐
(𝟐𝟖) 𝜽𝑺𝑫(𝟐𝟖)

0.04 0.04 0.01 0.01 1.00 1.00 0.60 0.60 0.15 0.15 1.00
0.04 0.04 0.01 0.02 1.00 0.50 0.60 0.54 0.15 0.27 1.18
0.04 0.04 0.02 0.01 1.00 2.00 0.54 0.60 0.27 0.15 0.85
0.06 0.04 0.01 0.01 1.50 1.00 0.74 0.60 0.12 0.15 1.44
0.06 0.04 0.01 0.02 1.50 0.50 0.74 0.54 0.12 0.27 1.71
0.06 0.04 0.02 0.01 1.50 2.00 0.67 0.60 0.22 0.15 1.20
0.08 0.04 0.01 0.01 2.00 1.00 0.82 0.60 0.10 0.15 1.84
0.08 0.04 0.01 0.02 2.00 0.50 0.82 0.54 0.10 0.27 2.17
0.08 0.04 0.02 0.01 2.00 2.00 0.75 0.60 0.19 0.15 1.51
0.04 0.06 0.01 0.01 0.67 1.00 0.60 0.74 0.15 0.12 0.69
0.04 0.06 0.01 0.02 0.67 0.50 0.60 0.67 0.15 0.22 0.83
0.04 0.06 0.02 0.01 0.67 2.00 0.54 0.74 0.27 0.12 0.59
0.04 0.08 0.01 0.01 0.50 1.00 0.60 0.82 0.15 0.10 0.54
0.04 0.08 0.01 0.02 0.50 0.50 0.60 0.75 0.15 0.19 0.66
0.04 0.08 0.02 0.01 0.50 2.00 0.54 0.82 0.27 0.10 0.46

which is the same as (15).
Under the constant hazards assumption, Table 1 shows for different scenarios of assumed event-specific hazards of

recovery and death in treatment and control groups and associated event-specific hazard ratios of recovery and death,
the resulting cumulative event probabilities at time point 28 days and the resulting subdistribution hazard ratios at time
point 28 days. Parameters were chosen to reflect similar scenarios as present in the recently published randomized clini-
cal trials on COVID-19 therapies, where observed probabilities of recovery were around 0.5–0.8 and observed probabilities
of mortality were around 0.15–0.25 (Beigel et al., 2020; Cao et al., 2020; Li et al., 2020; Wang et al., 2020). Scenarios are
shown under the constant hazards assumptionwith themain aim to illustrate how event probabilities and subdistribution
hazard ratios result from two event-specific hazard ratios and two baseline hazards. It can be seen that the same subdis-
tribution hazard ratio can result from different combinations of event-specific hazard ratios. Calculations for the more
general case of proportional hazards could be derived from Equation (17) using numerical integration and would lead to
similar insights.
Note that the aim of the table is to illustrate possible constellations of the situation at hand, including some for which

one would not plan a trial. To illustrate, when the event-specific recovery hazards in treatment and control are identical
(𝜃𝐸𝑆 = 1), a decreasing effect of treatment as compared to control on the event-specific death hazard (𝜃𝐸𝑆−𝐶𝐸 < 1) leads
to an increased cumulative recovery probability (𝜃𝑆𝐷(28) > 1), whereas an increasing effect of treatment as compared to
control on the event-specific death hazard (𝜃𝐸𝑆−𝐶𝐸 > 1) leads to a decreased cumulative recovery probability 𝜃𝑆𝐷(28) < 1.
Clearly, one would not plan a trial assuming the latter scenario, but it does illustrate that any competing events analysis
is incomplete without a look at the competing event.
It is tempting to compare the magnitudes of 𝜃𝐸𝑆 and 𝜃𝐸𝑆−𝐶𝐸 with that of 𝜃𝑆𝐷(28). A situation of particular interest not

just for this comparison arises when there is no treatment effect on the competing event-specific hazard ratio, 𝜃𝐸𝑆−𝐶𝐸 = 1.
To begin, recall that any event-specific hazards analysis is performed by handling observed competing events of the other
type as censoring. Hence, assuming 𝜃𝐸𝑆−𝐶𝐸 = 1 complies with the assumption of equal censoring mechanisms in the
groups for using Schoenfeld’s formula. Next, a proportional subdistribution hazards model will, in general, be misspec-
ified assuming proportional event-specific hazards as a consequence of (7). However, it has been repeatedly noted that
�̂�𝐸𝑆 ≈ �̂�𝑆𝐷 if �̂�𝐸𝑆−𝐶𝐸 ≈ 1 (Beyersmann et al., 2012; Saadati et al., 2018). This is mirrored in the table, in that scenarios
with 𝜃𝐸𝑆−𝐶𝐸 = 1 find comparable values of 𝜃𝐸𝑆 and 𝜃𝑆𝐷(28). Note, however, that �̂�𝑆𝐷 will estimate a time-averaged sub-
distribution hazard ratio, averaged over the whole time span, computation of which requires numerical approximations
(Beyersmann et al., 2012).
Equality (7) also illustrates that event-specific and subdistribution hazards operate on different scales, andmany authors

have argued that the subdistribution hazard scale is more difficult to interpret; see Andersen & Keiding (2012) for an in-
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TABLE 2 Subdistribution hazard ratio and odds ratio (OR) at time 28, and event-specific hazard ratio with respect to recovery derived
from cumulative event probabilities under the constant event-specific hazard assumption and resulting sample size when chosen as
parameter for study planning with two-sided type I error rate of 0.05 and power 0.8. Sample sizes 𝑁𝐸𝑆 and 𝑁𝑆𝐷 were calculated using
Equations (13) and (14) and 𝑁𝑂𝑅 was calculated using Equation (2) in Hsieh et al. (1998), all with 𝑝 = 0.5

𝑭
𝟏
(𝟐𝟖) 𝑭

𝟏
(𝟐𝟖) 𝑭

𝟐
(𝟐𝟖) 𝑭

𝟐
(𝟐𝟖) 𝜽𝑬𝑺 𝑵𝑬𝑺 𝜽𝑬𝑺−𝑪𝑬 𝜽𝑺𝑫(𝟐𝟖) 𝑵𝑺𝑫 OR (28) 𝑵𝑶𝑹

0.7 0.55 0.10 0.10 1.59 237 1.25 1.51 300 1.91 325
0.7 0.55 0.15 0.15 1.65 200 1.30 1.51 300 1.91 325
0.7 0.55 0.20 0.20 1.76 157 1.38 1.51 300 1.91 325
0.7 0.55 0.10 0.20 1.39 474 0.54 1.51 300 1.91 325
0.7 0.55 0.15 0.20 1.54 274 0.91 1.51 300 1.91 325

depth discussion. We therefore refrain from further comparing the magnitudes of the different effect measures and rather
continue with considering their impact on sample sizes following from Schoenfeld’s formula.
For sample size planning of clinical trials where competing events exist, assumptions are usually based on the expected

cumulative event probabilities (Baayen et al., 2019; Latouche et al., 2013; Schulgen et al., 2005; Tai et al., 2018). Under the
constant event-specific hazards assumption for both the recovery as well as the death without prior recovery hazard, the
underlying hazards can be calculated from the cumulative event probabilities via Equations (15) and (16) as proposed by
Pintilie (2002), Schulgen et al. (2005), Baayen et al. (2019) and Tai et al. (2018).
Table 2 contrasts for some scenarios of cumulative event probabilities similar to those of some recently published ran-

domized clinical trials on COVID-19 therapies the corresponding subdistribution recovery hazard ratio versus the event-
specific recovery hazard ratio calculated from the cumulative event probabilities under the constant event-specific hazards
assumption. Additionally, it is shown, which sample sizes would result if planning addresses the subdistributon recovery
hazard ratio, the event-specific recovery hazard ratio, or the odds ratio (of the binary endpoint recovery until day 28) for
a randomized clinical trial which aims to show superiority of treatment as compared to control with respect to recovery
from COVID-19 with two-sided type I error of 0.05 and power 0.8.
Table 2 deserves some discussion. To begin, we reiterate that Schoenfeld’s formula assumes identical censoring mech-

anisms in the treatment groups. This is formally fulfilled when planning an analysis of 𝜃𝐸𝑆 when 𝜃𝐸𝑆−𝐶𝐸 = 1. In this
case, a beneficial (harmful) effect on 𝜃𝐸𝑆 directly translates into a beneficial (harmful) effect on the cumulative recovery
probability. If the assumption of identical censoring mechanisms is violated, the reported sample sizes should serve as a
starting point for simulation-based sample size planning in practice. Ohneberg and Schumacher (2014) describe the use
of simulation as a means for study planning with complex time-to-event outcomes including competing events. For the
subdistribution approach, Latouche et al. (2004) find the use of Schoenfeld’s formula to be quite reliable. This is of rele-
vance for complete data on [0, 28]with 𝜏 = 28 as before and different probabilities of death 𝐹2(28) between groups. Here,
the approach to handle deaths before time 28 as censoring at day 28 would imply identical (no) censoring on [0, 28), but
different censoring at time 28.
Next, analysis and sample size planning should not be guided by the required number of patients but by the interest-

ing parameter. To this end, we reiterate that subdistributon times and, in particular, subdistributon hazards underly the
analyses of recently COVID-19 trials as outlined earlier, and Table 2 illustrates consequences of this choice. In Table 2,
the entries 𝐹

1
(28) and 𝑂𝑅(28) do not change, that is, are assumed to be the same across all scenarios, but the entries

for 𝜃𝐸𝑆 and 𝜃𝐸𝑆−𝐶𝐸 do change, reflecting different entries 𝐹2 (28) and 𝜃𝐸𝑆−𝐶𝐸 can be modeled freely, that is, independent
of each other, but, of course, the competing event probabilities do not share this property. In either case, the Table illus-
trates that careful planning requires assumptions on the event-specific hazard or on the cumulative event probability of
the competing event.
In some of the recently published randomized trials on the treatment of COVID-19 (Cao et al., 2020; Li et al., 2020),

sample size planning was performed in terms of assumed median times to clinical improvement. Both Cao et al. (2020)
and Li et al. (2020) assumed for the control group a median time to clinical improvement of 20 days and a reduction of
this time to 12 days in the active treatment group. For a two-sided significance level of 𝛼 = 0.05 with a power of 80%,
this resulted for the trial of Cao et al. (2020) to a total sample size of 160 patients under the assumption that 75% of the
patients would reach clinical improvement and for the trial of Li et al. (2020) to a total sample size of 200 patients under
the assumption that 60% of the patients would reach clinical improvement, both up to day 28. The proportions of patients
with clinical improvement by day 28were assumed to be different in both trials although identical median times to clinical
improvement had been assumed. This could be due to different assumptions regarding the expected mortality rates not
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mentioned explicitly. From these specifications, we speculate that an exponential distribution for time to clinical improve-
ment had been assumed leading to an event-specific hazard ratio of 1.66 and a required number of patients experiencing
the event clinical improvement of 120, which leads to the above-mentioned patient numbers under the assumed propor-
tions of clinical improvement by day 28. We note that in the statistical analysis of the trials, parameters were estimated
from the subdistribution time, that is, the subdistribution hazard ratio and median times to clinical improvement based
on quantity (11), being not quite consistent with the methods used for sample size calculation.
If the aim is to increase, say, the number of recoveries and to obtain these recoveries in a shorter time, the primary

analysis may target the cumulative recovery probability as a function of time. Assuming that all or almost all patients
experience one of the competing outcomes on [0, 𝜏], it will suffice to target this probability because an increase of the
recovery probability would then protect against a harmful effect on mortality. One possibility to demonstrate both an
increase of the cumulative recovery probability and a shorter time to recovery is to establish a subdistribution hazard
ratio larger than one. However, the interpretation of the subdistribution hazard is not straightforward, and an alternative
would be a transformation model of the cumulative recovery probability using a logistic link (Eriksson et al., 2015) or a
comparison of the cumulative recovery probabilities using confidence bands (Bluhmki et al., 2020).
When the cumulative recovery probability on [0, 𝜏] is the target parameter, we see in Table 2 no large difference in the

calculated sample size for the subdistribution hazard ratio based on (13) and (14) as compared to the calculated sample
size for the odds ratio of the binary endpoint based on Formula (2) in Hsieh et al. (1998). When no competing events
are present, it had been shown by Annesi et al. (1989) that the efficiency of an analysis with logistic regression is high
as compared to an analysis with the Cox regression in the situation of a low event rate. We are not aware of a similar
efficiency investigation comparing the Fine and Gray model with the logistic model in the presence of competing events.
Formula (7) indicates that the subdistribution hazard is lower than the event-specific hazard, so arguments related to low
event rates could possibly translate.
Table 2 contrasts the sample size calculation with respect to the event-specific hazard ratio, the subdistribution hazard

ratio, and the odds ratio with respect to recovery. Another option would be choosing an ordinal categorical endpoint as,
for example, the eight-point ordinal scale proposed in the master protocol of the WHO (2020) or a version with fewer
categories at a specified point in time (e.g., day 28) as target parameter for an analysis with the proportional odds model.
In general, this would imply the assumption of a constant odds ratio for each one-unit change in the ordinal scale. As an
important consequence, it would not be consistent with an assumption of the superiority of treatment versus control with
respect to the probability of recovery and the simultaneous assumption of identical probabilities of death as given in the
first three rows of Table 2. For the situation given in Table 2 (increase of the recovery probability from0.55 under control vs.
0.70 under treatment, odds ratio= 1.91), this would imply a decrease of the probability of the competing event death from
0.2 under control to 0.116 under treatment. Taking this inmind, the analysis of an ordinal endpoint would lead to a certain
decrease in sample size as compared to the binary endpoint shown in Table 2, with the amount of decrease depending on
the number of categories and the distribution of patients to the categories. As an example approximately comparable to
the fourth row in Table 2, the planning for a trial with an ordinal endpoint with four categories with assumed proportions
in control of 0.55, 0.12, 0.13, and 0.2 (with recovery as the highest category) would lead to a sample size of 300, whereas
four categories with assumed proportions in control of 0.3, 0.25, 0.2, and 0.2 (with recovery as a combination of the highest
and second highest category) would lead to a sample size of 245 (calculated using the formula by Whitehead, 1993). But
as already outlined earlier, all these endpoints address different aspects of the treatment effect, which has to be taken
into account. A summary of the different aspects of binary, ordinal and time-to-event endpoints in COVID-19 trials is also
given in Table S2 of Dodd et al. (2020) and in a similar situation in severe influenza in Peterson et al. (2019).

4.2 Sample size recalculation

As we have seen in Section 4.1, the sample size or power calculations rely on a number of assumptions. In particular, in an
epidemic situation such as the ongoing COVID-19 pandemic, there is no or very little prior knowledge regarding relevant
parameters. In the context of COVID-19 treatment trials considered here, these include treatment effects in terms of, for
example, subdistribution hazard ratios or odds ratios but also potentially a range of nuisance parameters such as event
probabilities regarding events of interest such as recovery, or competing events such as death. Sample size recalculation
procedures were suggested to deal with this type of uncertainty and to make trials more robust to parameter misspec-
ification in the planning phase (see, e.g., Mütze & Friede, 2021, for a recent overview). Generally, two broad classes of
procedures are distinguished, namely sample size recalculation based on nuisance parameters and effect-based sample
size recalculation. Below, we comment on how these could be applied in the context of COVID-19 treatment trials.
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Designs with sample size recalculation based on nuisance parameters are also known as internal pilot study designs
(Wittes & Brittain, 1990). The general procedure consists of the following steps: (i) a conventional sample size calculation
is carried out at the design stage as outlined in Section 4.1; (ii) part way through the trial the nuisance parameters are
estimated from the available data, and the sample size is recalculated based on these estimates; and (iii) in the final
analysis, the combined sample of the internal pilot study and the remaining trial are analyzed. Nuisance parameters such
as event probabilities might relate to the control group or the overall study population across the treatment groups. The
latter can obviously be estimated from noncomparative data during the ongoing trial and does not require any unblinding.
Therefore, it is often the preferred option, in particular in trials with regulatory relevance (EMA, 2007; FDA, 2018).
With a binary outcome such as recovery, the overall event probability could be considered the nuisance parameter,

which can be estimated from the overall sample combined across the treatment arms. Gould (1992) provides sample size
recalculation formulae based on the overall event probability for the odds ratio (considered above) as effect measure but
also relative risks and risk differences. The way the treatment effect is specified is crucial here since it is kept fixed in the
sample size recalculation. For instance, with the odds ratio as effect measure and event probabilities below (above) 0.5 a
lower (higher) than expected event probability results in a sample size increase, whereas with a risk difference the sample
size would be decreased.
Under the proportional odds model, the blinded procedure for binary outcomes can be extended to ordinal outcomes

such as the scale suggested in the WHOmaster protocol (WHO, 2020). Rather than estimating the event probability from
the sample pooled across the treatment arms, the distribution of the ordinal outcome across the outcome categories is
assessed in the pooled sample (Bolland et al., 1998). Then the group-specific distributions can be determined under the
proportional odds model and the assumed odds ratio for the treatment effect. Hence, the sample size can be recalculated
by plugging these estimates into the sample size formula by Whitehead (1993).
Guidance on blinded sample size recalculation procedures in time-to-event trials is provided in Friede et al. (2019) and

references therein. In designs with flexible follow-up times, the procedures would consider the recruitment, event, and
censoring processes. In the situation considered here, trials are likely to use a fixed follow-up design following all patients
up to 𝜏, say 𝜏 = 28 days. Hence, the probabilities of the event of interest and the competing event would be estimated by
the Aalen–Johansen estimator from the pooled sample in a blinded review. These findings would then be used to update
the initial sample size calculation using the formulae provided in Section 4.1. The use of the Aalen–Johansen estimator
is crucial here. Although follow-up will eventually be complete in the final analysis, administrative censoring of some
patients prior to 𝜏 is very likely at an interim time point. Therefore, the strategy of using the Kaplan–Meier estimator with
observations of patients who died being censored not at the time of death but at 𝜏 would not be appropriate here, since
the additional administrative censoring cannot be dealt with appropriately.
In the so-called internal pilot study designs, the sample size calculation is typically carried out at a single time point

during the study. Of course, the choice of the time point has implications for characteristics of the design such as the
sample size distribution and power. Given the large uncertainty especially in an epidemic situation, the recommendation
would be to consider repeated recalculations based on blinded data. Since the blinded procedure is fairly uncritical in
terms of logistics and type I error rate inflation, this would be appropriate. Actually, the nuisance parameters could even
be monitored in a blinded fashion from a certain point in time onwards, which should be rather early in situations of
great uncertainty regarding the nuisance parameters. These procedures are also known as blinded continuousmonitoring
(Friede & Miller, 2012). In fact, this is typically done in event-driven trials where the total number of events across both
treatment arms is monitored. Since this principle can be transferred to other types of outcomes (Friede et al., 2019; Mütze
et al., 2020), it would also be applicable to the type of COVID-19 treatment trials considered here.
Group sequential designs belong to the class of designs with effect-based sample size adaptation. They are used in

many disease areas including oncology as well as cardiovascular and cardiometabolic research. For binary outcomes or
ordinal outcomes under the proportional odds model, the procedures are well established (Jennison & Turnbull, 2000).
In the context of COVID-19 treatment trials, the presence of competing events would need to be accounted for. Here
we refer to Logan and Zhang (2013) for group sequential procedures in the presence of competing events. Classical group
sequential designs, however, must proceed in a prespecifiedmanner and the size of the design stagesmust not be based on
observed treatment effects unless prespecified weights for the design stages are used (Cui et al., 1999). The latter procedure
is equivalent to the inverse normal combination function by Lehmacher and Wassmer (1999). Some issues in this type
of design with time-to-event outcomes were raised (Bauer & Posch, 2004), but are not a concern in designs typical for
COVID-19 trials with a fixed follow-up time as long as the patients are stratified by design stages in the analysis with
patients belonging to the design stage they were recruited in although the observation of the outcome might extend into
subsequent stages (Friede et al., 2011; Magirr et al., 2016). For a very recent review on adaptive designs for COVID-19
intervention trials, see Stallard et al. (2020).



BEYERSMANN ET AL. 455

5 DISCUSSION

In the COVID-19 pandemic, the fast development of safe and effective treatments is of paramount importance. Severe
forms of COVID-19 require hospitalization and in some cases intensive care. In these settings, recovery, mechanical ven-
tilation, mortality, etc. are relevant outcomes. From a statistical viewpoint, different approaches to their analysis might
be meaningful. Here we argued that a successful treatment of COVID-19 patients (i) increases the probability of a recov-
ery within a certain time interval, say 28 days; (ii) aims to expedite recovery within this time frame; and (iii) does not
increase mortality over this time period. We recommend that this is reflected in the analysis approach. An implication is
that COVID-19 treatment trials are cast in a competing risks frameworkwhich, in general, requires an analysis of all event-
specific hazards and all cumulative event probabilities for a complete picture. However, as argued above, the cumulative
improvement or recovery probability over the course of time [0, 𝜏] is a natural primary endpoint, with additional control
of competing mortality at 𝜏, where 𝜏 denotes a limited number of days such as 28. Furthermore, we made recommenda-
tions regarding the design of COVID-19 trials with such outcomes. Since there is no previous experience with COVID-19,
sample size calculations have to be informed by data from related diseases. This results in considerable uncertainty which
can be mitigated by appropriate adaptive designs including blinded sample size reestimation.
Thus, a key conclusion for trials evaluating treatments of patients suffering from severe forms of COVID-19 within a

time frame of, for example, 28 days is that censoring deaths on day 28, but not on the day of death, results in a competing
risks analysis provided that there is no additional censoring.
The presence of competing outcomes raises the question of the potential need to account formultiple testing. Recall that

a successful trial would prove superiority for the favorable event and at least no effect or noninferiority for the competing
event. Parameterizing this problem using event-specific hazards, we note that the event-specific analyses are asymptoti-
cally independent.With the wish to control the probability of erroneously rejecting at least one of the two null hypotheses,
we find that we may consider the product of the single rejection probabilities. Consequently, the product is less than the
individual levels.
Vaccines against COVID-19 have become available, and it is of interest to consider how thoughts expressed in the present

paper relate to vaccination trials. As examples, we consider Baden et al. (2021) and Voysey et al. (2021) who both use
Kaplan–Meier estimation for the cumulative event probability of COVID-19 events and express vaccine efficacy using
hazards based on a Cox model (Baden et al., 2021) or Poisson regression (Voysey et al., 2021). Because vaccination is a
measure of prevention in these papers and not used therapeutically, death is an extremely rare competing the event, and
no practically relevant difference between Aalen–Johansen and Kaplan–Meier is to be expected because of competing
mortality. While death was hardly a competing event in these papers, censoring was an issue requiring the use of survival
methodology. Interestingly, Voysey et al. (2021) report an event-driven design with censoring induced by the observation
of 53 COVID-19 events, which formally leads to dependent times-to-event and times-to-censoring processes and requires
subtle martingale methods for hazards. So, compared to COVID-19 treatment trials, the focus appears to shift from com-
peting events to censoring, but it is worthwhile to note that the subtlety required for hazard-based analyses found in the
present paper is still required for vaccination trials, too. To illustrate, Baden et al. (2021) report a point estimate of vac-
cine efficacy of 94.1% which, however, has no immediate interpretation as a proportion. Rather, vaccine efficacy had been
defined as one minus the hazard ratio. Using 1 − 0.941 = 0.059 and writing 𝜃 for the true hazard ratio,

𝑃 (𝑇 ≤ 𝑡) = ∫
𝑡

0

𝑃 (𝑇 ≥ 𝑢) ⋅ 𝛼 (𝑢) 𝑑𝑢

= ∫
𝑡

0

exp

(
−∫

𝑢

0

𝛼 (𝑣) 𝑑𝑣

)
⋅ 𝛼 (𝑢) 𝑑𝑢
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𝑡

0
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𝑢

0

𝛼 (𝑣) 𝑑𝑣
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because, based on the empirical estimates in this trial, both 𝜃 and ∫ 𝑢

0
𝛼 (𝑣) 𝑑𝑣 are very small. In fact, Baden et al. (2021)

report a cumulative outcome probability in the placebo group that eventually reaches about 2.6% (see their Figure A).
Hence,

1 − exp(−∫
𝑢

0

𝛼 (𝑣) 𝑑𝑣) approximately ≤ 0.026

or, equivalently,

∫
𝑢

0

𝛼 (𝑣) 𝑑𝑣 ≤ approximately (−1) ⋅ log (1 − 0.026) ≈ 0.026,

and we note that exp(−0.059 ⋅ 0.026) ≈ 1. This also shows that the (estimated) cumulative hazard in the placebo group is
so small that it approximately equals the cumulative outcome probability, and in summary,

𝑃 (𝑇 ≤ 𝑡) ≈ 𝜃 ⋅ ∫
𝑡

0

𝛼 (𝑢) 𝑑𝑢 ≈ 𝜃 ⋅ 𝑃 (𝑇 ≤ 𝑡).

That is, with hindsight, we find that the reported vaccine efficacy may be interpreted via proportions, since both the
estimated hazard ratio and the estimated outcome probabilities are very small.
The paper’s focus is on 28-day treatment trials with a time-to-event outcome and fixed follow-up. Other design aspects

that would be of interest include, but are not limited to, longer-term effects and quality of life. In addition, we considered
trials evaluating treatments of patients suffering from severe forms of COVID-19. Of course, running trials in other disease
areas have been affected by the pandemic. The issues and potential solutions are discussed in a recent paper by Kunz et al.
(2020). Furthermore, we did not consider vaccine trials in more detail or diagnostic trials. Also, we assumed that event
times were recorded on a continuous scale. In practice, however, this is strictly speaking not the case as event times might
be reported in terms of days from randomization. In particular with shorter follow-up times, this type of discreteness could
be dealt with using appropriate models. For an overview, we defer the reader to Schmid and Berger (2020).
An illustration by applying the different approaches to analysis discussed here to a COVID-19 trial would be rather

desirable. At the time of writing, however, we did not have access to individual participant data from any COVID-19 treat-
ment trials that we could have used as an example here. We acknowledge that this is a limitation of our paper. Although
data sharing is advocated, data availability remains an issue also with recent trials.
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APPENDIX
The aim is to show that Equation (9), that is,

�̂�(𝑇 ≤ 𝑡, 𝑋(𝑇) = 𝑗) = 1 −
∏
𝑢≤𝑡

(
1 −

Δ𝑁01(𝑢)

�̃�(𝑢)

)
,

holds. In words: The previous display states that the standard Aalen–Johansen estimator of the cumulative improvement
(or recovery) probability accounting for the competing risk death equals one minus the Kaplan–Meier estimator based on
the censored subdistribution times, assuming that the latter are censored solely at 𝜏 as a consequence of death before 𝜏.
Checking the increments of any Kaplan–Meier-type estimator, we find that the right-hand side of the previous display

equals

∑
𝑢≤𝑡

{∏
𝑣<𝑢

(
1 −

Δ𝑁01(𝑣)

�̃�(𝑣)

)}
Δ𝑁01(𝑢)

�̃�(𝑢)
. (A.1)

Now, �̃� is a left-continuous “at-risk” process which includes all previous deaths. Introducing

𝑁02(𝑡−) = no. of 0 → 2 transitions on (0, 𝑡),

we find that the product in the curly braces of Equation (A.1) has factors of the form

𝑌(𝑣) + 𝑁02(𝑣−) − Δ𝑁01(𝑣)

𝑌(𝑣) + 𝑁02(𝑣−)
,

where 𝑌 is the usual at-risk process. Assuming no censoring on [0, 𝜏), we have that for two neighboring type 1 event
times 𝑣1 < 𝑣2, that is, Δ𝑁01(𝑣1) ≠ 0 ≠ Δ𝑁01(𝑣2) and 𝑁01(𝑣1) = 𝑁01(𝑣) for all 𝑣 ∈ [𝑣1, 𝑣2),

𝑌(𝑣1) + 𝑁02(𝑣1−) − Δ𝑁01(𝑣1) = 𝑌(𝑣2) + 𝑁02(𝑣2−).
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As a consequence, canceling the appropriate terms leads to

∏
𝑣<𝑢

(
1 −

Δ𝑁01(𝑣)

�̃�(𝑣)

)
=

�̃�(𝑢)

𝑛

and

1 −
∏
𝑢≤𝑡

(
1 −

Δ𝑁01(𝑢)

�̃�(𝑢)

)
=

𝑁01(𝑡)

𝑛
,

that is, the number of type 1 events on [0, 𝑡] divided by sample size. It is well known that the Aalen–Johansen estimator
also equals 𝑁01(𝑡)∕𝑛 in the absence of censoring, which completes the argument.
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