
1. Introduction
The oxygen isotope composition of cave carbonates (δ18Occ) is a common tool to reconstruct terrestrial cli-
mate (Comas-Bru et al., 2020; Fairchild & Baker, 2012). In particular, speleothems are the primary source 
of information on Quaternary climatic variability of the Great Basin, southwestern United States (Coplen 
et al., 1994; Lachniet et al., 2011, 2014; 2020; Moseley et al., 2016; Quirk et al., 2020; Shakun et al., 2011; 
Wendt et al., 2018; Winograd et al., 1988, 1992, 2006). Subaqueously formed folia-free mammillary calcites 
from the Devils Hole groundwater system (Figure 1) provide a unique, uninterrupted δ18Occ record between 
4.5 and 570 ka (Winograd et al., 1988, 1992, 2006). In thermodynamic equilibrium, the δ18Occ value is only 
a function of the carbonate precipitation temperature and the groundwater oxygen isotope composition 
(δ18Ogw). Assuming that the aquifer's temperature did not vary with time and that carbonate growth oc-
curred close to isotope equilibrium, the reconstructed Devils Hole δ18Ogw time series is thought to reflect 
changes in meteoric precipitation.

The well-dated Devils Hole record, while showing an excellent agreement with California Current's sea sur-
face temperatures (Herbert et al., 2001; Winograd et al., 2006), displays transitions to interglacial periods ca. 
10,000 years before orbital forcing would predict (Ludwig et al., 1992, 1988, 1992, 2006). This age discrepan-
cy is not reproduced in other speleothem records from the Great Basin (Lachniet et al., 2011, 2014; 2020). A 
revised chronology of the Devils Hole δ18O time series—based on newly recovered material—suggests that 
excess 230Th in the water column, originating from the radioactive decay of 234U, leads to uranium-series 
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ages that are too old (Moseley et al., 2016). Alternatively, variations in the temperature of the subaqueous 
environment and the kinetics of carbonate mineralization could result in a δ18Occ record that does not accu-
rately represent changes in δ18Ogw and, thus, could contribute to the apparent age discrepancy.

Multiple lines of indirect evidence suggest both a stable subaqueous temperature and close to equilibri-
um calcite precipitation conditions for most of the Devils Hole record (Coplen,  2007). The Devils Hole 
caves formed tectonically at the Ash Meadows groundwater aquifer's fault-controlled discharge area (Riggs 
et al., 1994) (Figure 1). The partially submerged caverns provided an isolated carbonate growth environ-
ment. When the caves opened to the surface, mammillary calcite formation ceased (Plummer et al., 2000). 
Based on the large size of the Ash Meadows aquifer (>12,000 km2), the groundwater temperature has been 
postulated to remain constant on longer timescales. Kinetic isotope fractionation in most speleothems is 
related to the degassing of CO2 (aq) from the groundwater (Affek et al., 2008; Affek & Zaarur, 2014; Daëron 
et al., 2011; El-Shenawy et al., 2020; Fairchild & Baker, 2012; Guo & Zhou, 2019; Hansen et al., 2013; Hen-
dy, 1971; Kluge & Affek, 2012; Kluge et al., 2014). The mammillary calcites in the Devils Hole caves exhibit 
growth rates below 1.5 mm kyr−1 (Winograd et al., 2006), orders of magnitude slower than growth rates of 
subaerial speleothems. Due to these slow growth rates, the DIC-H2O-CaCO3 system (dissolved inorgan-
ic carbon (DIC)) may have had sufficient time to attain isotope equilibrium (Dreybrodt & Scholz, 2011; 
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Figure 1. Location of the Devils Hole caves in southern Nevada. The map shows the Ash Meadows groundwater 
aquifer (dashed line) and approximate groundwater flow directions (blue arrows) (Thomas et al., 1996) over the region's 
generalized geology (Denny & Drewes, 1965; Horton et al., 2017).
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Winograd et al., 1992). Previous clumped isotope measurements (∆47) from Devils Hole Cave 2 hinted at 
a stable (30.6 ± 2.6°C) groundwater temperature between 65 and 180 ka (Kluge et al., 2014), corroborat-
ing that δ18Occ values predominantly record variations in δ18Ogw values. However, like their oxygen isotope 
composition, the clumped isotope composition of carbonates can also be affected by kinetic fractionation 
(Bajnai et al., 2020; Daëron et al., 2011, 2019; Guo & Zhou, 2019). The ∆47 and δ18Occ measurements alone 
do not allow one to resolve potential kinetic effects in carbonate formation temperatures, especially in ter-
restrial environments where the δ18O values of the parent fluid are highly variable. Without independent 
evidence for insignificant contributions of reaction kinetics to the clumped and oxygen isotope record, the 
inferred temperature stability remains uncertain.

Recent developments in mass spectrometry enable simultaneous, high-precision analysis of the mass-48 
CO2 isotopologue (mostly 12C18O18O; ∆48) and the mass-47 CO2 isotopologue (mostly 13C18O16O; ∆47), derived 
from carbonate minerals (Fiebig et al., 2019). In ∆47 versus ∆48 space, thermodynamic equilibrium at any 
given temperature is represented by a single point. Deviations from thermodynamic isotope equilibrium 
related to temporal variations in reaction kinetics proceed along trajectories specific to the underlying reac-
tion mechanisms, for example, CO2 (aq) degassing (Guo, 2020; Guo & Zhou, 2019). Simultaneous ∆48 and ∆47 
measurements on a single carbonate phase, termed dual clumped isotope thermometry, enable identifying 
the nature and extent of kinetics involved in carbonate mineralization (Bajnai et al., 2020).

In this study, we analyzed the ∆47 and ∆48 values of 10 mammillary calcites from the Devils Hole caves span-
ning the last half million years. We investigated the potential relevance of kinetically induced variations 
on δ18Occ values and whether variable reaction kinetics and crystallization temperatures could affect the 
accuracy of the time series.

2. Materials and Methods
2.1. Study Area and Materials

We investigated mammillary calcites from the Devils Hole (36.425355°N, 116.291447°W) and the Devils 
Hole Cave 2 (36.427122°N, 116.291166°W) subaqueous caves, situated in the Amargosa Desert, Nevada, 
USA (Figure 1). Both caves formed tectonically in Cambrian carbonates and dolomites (Riggs et al., 1994; 
Winograd & Thordarson,  1975). The aquifer recharges from two sources: Over 60% of the groundwater 
originates from the nearby Spring Mountains, ca. 80 km to the northeast, and up to 40% of the groundwater 
comes from the Pahranagat Valley, ca. 140 km to the north (Thomas et al., 1996). Based on 14C ages, the 
groundwater travel time is estimated to be 2,200 years and 5,900 years, respectively (Thomas et al., 1996). 
The primary source of recharged water in the Spring Mountains is snowmelt (Winograd et al., 1998). The 
δ18O values of modern winter meteoric precipitation in southern Nevada range from −12.5‰ to −14.5‰ 
(Ingraham et al., 1991).

Material for this study was cut from the three cores studied by Coplen (2007); Winograd et al. (1988), (1992), 
(2006). These cores were explicitly chosen as they pertain to the original Devils Hole time series. Core 
DH-11 is from Devils Hole, and cores DHC2-8 and DHC2-3 are from Devils Hole Cave 2. There are no 
measurable differences between the two caves, neither in modern groundwater temperature nor in contem-
poraneous δ18Occ values (Winograd et al., 2006). The three cores were retrieved from 60 to 20 m below the 
present water level. The water level in the caves dropped by ca. 9 m since the last glacial period, which has 
been linked to changes in regional moisture availability (Szabo et al., 1994; Wendt et al., 2018). However, in 
the cores studied here, there are no folia and there is no evidence for dissolution, recrystallization, or any 
depositional hiatus (Kolesar & Riggs, 2004), indicating that they were continuously submerged since the 
middle Pleistocene. For clarification, we note here that Kluge et al. (2014) and Moseley et al. (2016) inves-
tigated cores containing interlayered folia and mammillary calcite from Devils Hole Cave 2, which were 
collected at or above the modern water table; they are different from those studied here, which were formed 
more than 20 m below the modern water table. The calcite slabs, taken from the cores, were first cleaned in 
an ultrasonic bath using de-ionized water, dried in a vacuum oven at 30°C, and finally homogenized using 
an agate mortar and pestle.
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2.2. Dual Clumped Isotope Thermometry

Clumped isotope analyses were performed on a Thermo Scientific 253 Plus gas source isotope ratio mass 
spectrometer connected directly to a fully automated carbonate acid digestion system (90°C) and CO2 pu-
rification line, detailed in Fiebig et al.  (2019). The samples were measured along with carbonate stand-
ards (ETH-1, ETH-2, and ETH-3) in two sessions between September 2019 and June 2020. To complement 
the measurements in this study, we included five replicate analyses of sample DHC2-8 reported in Bajnai 
et al. (2020), thus, all samples were measured in 9–23 replicates. The clumped isotope values were calculat-
ed using the IUPAC isotope parameters (Brand et al., 2010; Daëron et al., 2016) and are reported on the car-
bon dioxide equilibrium scale at 90°C (indicated by subscript “CDES90”). Data correction of the carbonate 
samples for all measurement periods consisted of three steps, that is, correction for non-linearity, correction 
for scale compression, and correction for variation in the acid reaction environment, similarly as described 
in Bajnai et al. (2020). An extended description of the data processing steps is provided in the supporting in-
formation. All data of the analyses of both samples and reference materials are provided in Datasets S1–S2.

3. Results
The ∆47 (CDES90) and ∆48 (CDES90) values of the 10 investigated Devils Hole samples are listed in Table 1. There 
is no covariation between the ∆47 (CDES90) and ∆48 (CDES90) values of the samples (N = 10, R2 < 0.1, p >> 0.05). 
Moreover, all samples have ∆47 (CDES90) and ∆48 (CDES90) values indistinguishable within their 95% confidence 
intervals (Figure 2). The mean ∆47 (CDES90) and ∆48 (CDES90) values of the 10 samples are 0.574(±0.003)‰ and 
0.221(±0.007)‰, respectively (Figure 2, Table 1).

4. Discussion
The groundwater temperature in the caves has been remarkably invariant in the last 80 years. For March 
1985, the most precise measurement published up to date reports 33.7(±0.2)°C in the main chamber of 
Devils Hole at depths between 5 and 37.5  m below water level (Plummer et  al.,  2000). This value is in 
good agreement with temperatures reported for November 1954, ranging from 33.9°C to 34.0°C (at 2–29 m 
below the modern water table), and for April 1961, ranging from 34.0°C to 34.3°C (at 1.3–27 m below the 
water table) (Hoffman, 1988). Earlier studies reported similar temperatures, that is, 32.8°C–33.9°C for the 
1930–1947 period (Miller, 1948), and 33.5°C for December 1966 (Dudley & Larson, 1974). Furthermore, the 
covariation of fluid inclusion δ2H and δ18Occ values hint at constant temperatures through the penultimate 
full glacial and peak interglacial (Winograd et al., 1992). Specifically, the difference in the δ2H values of 
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Sample Cave Age interval (ka) Replicates ∆47 (CDES90) (‰) ∆48 (CDES90) (‰)

DHC2-8 Devils Hole Cave 2 4.5–16.9 14 0.573 (±0.003) 0.237 (±0. 016)

DHC2-3 Devils Hole Cave 2 32.2–39.8 9 0.575 (±0.007) 0.227 (±0.019)

DH-11 19.7 Devils Hole 86.4–94.3 9 0.572 (±0.003) 0.229 (±0.020)

DH-11 44.5 Devils Hole 121.8–123.7 12 0.581 (±0.005) 0.210 (±0.018)

DH-11 73.0 Devils Hole 176.1–184.8 9 0.575 (±0.006) 0.225 (±0.017)

DH-11 109.4 Devils Hole 232.8–240.5 23 0.575 (±0.003) 0.208 (±0.011)

DH-11 141.6 Devils Hole 291.3–299.0 9 0.570 (±0.005) 0.208 (±0.022)

DH-11 189.9 Devils Hole 353.0–358.3 14 0.574 (±0.005) 0.217 (±0.014)

DH-11 201.3 Devils Hole 371.7–388.4 9 0.568 (±0.007) 0.226 (±0.022)

DH-11 296.6 Devils Hole 485.5–507.8 8 0.575 (±0.005) 0.222 (±0.022)

Average 0.574 (±0.003) 0.221 (±0.007)

Note. The age intervals of the samples analyzed in this study correspond to the chronology of Winograd et al. (2006) 
(see also Landwehr et al. (2011)). The uncertainties represent 95% confidence intervals (Fernandez et al., 2017).

Table 1 
Results of Dual Clumped Isotope Thermometry on Devils Hole Calcites
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water trapped in 130 and 160 ka old mammillary calcites, respectively, is 14(±2)‰ (Winograd et al., 1992). 
According to the local winter meteoric water line (δ2H = 7.47 × δ18O + 2.84 (Lachniet et al., 2020)), such 
difference in δ2H values can fully explain the corresponding 1.65(±0.07)‰ change in δ18Occ values solely 
related to δ18Ogw at a constant carbonate growth temperature (Coplen, 2007; Winograd et al., 1992). During 
the deposition of the most recent sample DHC2-8 (4.5–16.9 ka), the δ18Occ values remained constant (within 
±0.1‰), and the calcite growth rate did not exceed 0.2 mm kyr−1 (Coplen, 2007; Winograd et al., 2006). The 
groundwater's temperature when DHC2-8 precipitated is thought to be identical to its modern temperature 
(33.7°C) (Coplen,  2007). Overall, the clumped and oxygen isotope compositions of DHC2-8 are consid-
ered to best represent equilibrium values at 33.7°C among Earth-surface carbonates (Coplen, 2007; Daëron 
et al., 2019; Tripati et al., 2015; Wostbrock et al., 2020).

The precipitation temperature and the potential importance of kinetics can be independently investigat-
ed using dual clumped isotope thermometry (Bajnai et  al.,  2020; Fiebig et  al.,  2019; Guo,  2020; Guo & 
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Figure 2. ∆48 (CDES90) and ∆47 (CDES90) values of subaqueous vein calcites from the Devils Hole caves. There is no 
correlation among the data. The sample values are indistinguishable from each other, providing direct evidence for a 
kinetically and thermally invariable precipitation environment. The brown shaded area depicts the uncertainty of the 
theoretical clumped isotope calibration. The pink arrow shows the trajectory (slope: −1.261) of the approximately linear 
early departure from apparent equilibrium ∆48 (CDES90) and ∆47 (CDES90) values at 33.7°C (brown star) introduced by CO2 (aq) 
degassing (Bajnai et al., 2020; Guo & Zhou, 2019). The colored error bars indicate the 95% confidence interval of the 
replicate measurements. The gray cross indicates the mean value of all Devils Hole samples and the corresponding 95% 
confidence interval.
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Zhou, 2019). A robust ∆47 (CDES90) versus temperature calibration was obtained by reprocessing ∆47 data from 
multiple experimental studies using a unique set of isotope parameters required for data evaluation (Pe-
tersen et al., 2019). An experimental temperature calibration is not yet available for ∆48 (CDES90) values. To 
obtain a first estimate of the equilibrium temperature dependence of ∆48 (CDES90), one can combine theo-
retically computed equilibrium ∆64 values of calcite (Hill et al., 2014) with the experimentally determined 
calcite-CO2 acid fractionation factor of 0.138(±0.005)‰ (Bajnai et al., 2020). A corresponding theoretical 
∆47 versus temperature relationship is obtained similarly by adding the experimentally determined cal-
cite-CO2 acid fractionation factor of 0.194 (±0.002)‰ (Bajnai et al., 2020) to the theoretical ∆63 values (Hill 
et al., 2014).

Figure  2 compares the measured ∆47  (CDES90) and ∆48  (CDES90) values with the corresponding theoret-
ical and experimental equilibrium values at 33.7°C. Notably, the measured ∆47  (CDES90) value of DHC2-8 
(0.573 ± 0.003‰) falls into a boundary range defined by the experimental (0.580‰; the error of the cali-
bration is <0.001‰) (Petersen et al., 2019) and the theoretical (0.565 ± 0.002‰) (Bajnai et al., 2020; Hill 
et al., 2014) equilibrium values at 33.7°C (Figure 2). Similarly, the theoretical equilibrium ∆48 (CDES90) value 
at 33.7°C (0.248 ± 0.005‰) is within the confidence interval of the measured ∆48 (CDES90) value of DHC2-8 
(0.237 ± 0.019‰). These observations support the hypothesis that DHC2-8 precipitated in or close to ther-
modynamic equilibrium at 33.7°C.

However, it needs to be considered that the exact position of equilibrium in ∆47 (CDES90) versus ∆48 (CDES90) 
space is not yet known with confidence, as the discrepancy between the theoretical and the experimen-
tal equilibrium ∆47 (CDES90) values at 33.7°C indicate. Within their 95% confidence interval, the measured 
∆48 (CDES90) and ∆47 (CDES90) values of most samples from the Devils Hole caves are indistinguishable from the 
corresponding values of sample DHC2-8 (Figure 2; although sample DH-11 109.4 shows a 0.002‰ differ-
ence in its ∆48 (CDES90) value from the value of DHC2-8, this minor difference is likely a result of statistical 
uncertainty, that is, arising from the 5% probability that both samples have indistinguishable ∆48 (CDES90), es-
pecially because the ∆47 (CDES90) values of these two samples are indistinguishable from each other; Figure 2). 
However, unlike DHC2-8, all other samples plot slightly above the theoretical ∆47 (CDES90) versus ∆48 (CDES90) 
equilibrium line (Figure 2). If kinetics prevailed, these would be associated with CO2 (aq) degassing from 
the groundwater rather than CO2 absorption (Kluge et al., 2014). Theoretical modeling and experimental 
results indicate that CO2 (aq) degassing simultaneously shifts ∆47 values toward lower and ∆48 values toward 
higher values with increasing growth rates (Bajnai et al., 2020; Guo, 2020; Guo & Zhou, 2019). Therefore, if 
involved, CO2 (aq) degassing kinetics should cause departures below the equilibrium line, contrary to what is 
observed (Figure 2). This conundrum implies that the theoretical calibration overestimates the equilibrium 
∆48 (CDES90) values. Unless the thermodynamic equilibrium ∆47 (CDES90) and ∆48 (CDES90) values at 33.7°C are 
accurately determined, it is impossible to provide definitive evidence that DHC2-8 and all other samples 
attained full internal equilibrium at 33.7°C.

If temperature variations have occurred in the Devils Hole caves, one could expect them between peak 
glacial and interglacial periods. For this reason, we investigated samples DH-11 44.5 and DH-11 189.9, 
representing the maximum and the minimum of the Devils Hole δ18Occ time series, that is, periods of inter-
glacial and glacial maxima, respectively (Figure 3a). Despite the presumably maximum surface temperature 
spread, the ∆47 (CDES90) and the ∆48 (CDES90) values of these two samples remain indistinguishable (Figure 2, 
Table 1). The lack of systematic variation in the measured ∆48 (CDES90) and ∆47 (CDES90) values, together with 
the observation that all samples are indistinguishable from each other in ∆47 (CDES90) versus ∆48 (CDES90) space, 
strongly implies that reaction kinetics related to CO2 (aq) degassing—if having been effective at all—were 
invariant during the formation of the half-million-year-long Devils Hole record. An alternative scenario 
would require that temperature and kinetic effects compensated each other. Considering the effects of tem-
perature and CO2 (aq) degassing kinetics on ∆47  (CDES90), ∆48 (CDES90), and δ18Occ, one can demonstrate that such 
a scenario is unreasonable. For example, a 2°C decrease in temperature, that is, from 34°C to 32°C, would 
correspond with shifts of +0.005‰ in ∆47 (CDES90) and +0.002‰ in ∆48 (CDES90) based on the theoretical cali-
bration (Bajnai et al., 2020; Hill et al., 2014), and with a shift of +0.38‰ in δ18Occ based on Coplen (2007). 
Because the temperature sensitivity of the ∆47 and δ18O versus temperature calibrations, respectively, are 
roughly consistent, the choice of calibrations has only a minimal effect (on the order of 0.01‰ for δ18O and 
0.001‰ for ∆47) on the calculated values. To fully compensate the temperature-related positive ∆47 (CDES90) 
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Figure 3. Dual clumped isotope thermometry reveals stable calcite precipitation temperatures in the Devils Hole 
caves. (a) Carbonate δ18O record from Devils Hole and Devils Hole Cave 2 (Winograd et al., 2006). The colored sections 
correspond to the age range of the samples in this study (Table 1). The range of the δ18Occ values in the sampled 
intervals is less than 0.35‰. The analytical uncertainty of the δ18Occ measurements is ±0.07‰ (shaded area). (b) 
Differences in the ∆47-derived calcite precipitation temperatures (Petersen et al., 2019) between DHC2-8 (33.7°C) and 
older samples. The shaded area encloses the 95% confidence interval of the mean ∆47 (CDES90) value of all samples, which 
corresponds to ±1°C. Error bars represent the 95% confidence intervals of the measurements. (c) Groundwater δ18O 
values, reconstructed using the δ18Occ values from panel A and 33.7 (±1)°C (Coplen, 2007). The timing of Termination 
II, that is, the penultimate glacial/interglacial transition, occurs at 142 ka in Devils Hole δ18Occ record (black arrow) 
(Winograd et al., 2006) and at 130 ka in the LR04 benthic δ18O stack (red arrow) (Lisiecki & Raymo, 2005).
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shift with an opposing negative ∆47 (CDES90) shift, CO2 (aq) degassing kinetics must become more pronounced. 
Modeling of the DIC-H2O-CaCO3 system indicates that during the early stages of CO2 (aq) degassing, car-
bonate ∆47 (CDES90) and ∆48 (CDES90) values and ∆47 (CDES90) and δ18Occ values depart from equilibrium along line-
ar trajectories (Guo, 2020; Guo & Zhou, 2019). These modeled trajectories were confirmed by experimental 
data for ∆47 versus δ18O (Guo, 2020) and ∆47 versus ∆48 (Bajnai et al., 2020). Based on the environmental con-
ditions of the Devils Hole caves (T = 33.7°C, pH = 7.4, (DIC) = 5.35 (Plummer et al., 2000)), the correspond-
ing slopes are −0.027 for ∆47 versus δ18O and −1.261 for ∆47 versus ∆48 (Guo, 2020; Guo & Zhou, 2019) (Fig-
ure 2). Accordingly, a counterbalancing −0.005‰ shift in ∆47 (CDES90) would cause additional changes in both 
∆48 (CDES90) and δ18Occ by +0.004‰ and +0.19‰, respectively. The coupled effect of +0.006‰ on ∆48 (CDES90) 
is below the analytical precision, but a kinetic compensation of a 2°C cooling would shift δ18Occ by a total 
of +0.57‰. Equivalently, the full kinetic compensation of a 2°C warming would affect δ18Occ by −0.57‰. 
Consequently, compensation of temperature variations by kinetic effects—if it occurred—would have sig-
nificantly contributed to the observed δ18Occ variations, which only span a total range of 2.70‰. However, 
covariations in fluid-inclusion δ2H values and corresponding δ18Occ values in the Devils Hole record have 
been observed to satisfactorily fit the local meteoric water line (Coplen, 2007; Winograd et al., 1992).

Because all data points are indistinguishable, one can determine the 95% confidence interval of the mean 
∆47 (CDES90) values of the samples: ±0.003‰. This ∆47 (CDES90) uncertainty translates into a maximum tem-
perature variability of ±1°C around 33.7°C, independent if the experimental (Petersen et al., 2019) or the 
theoretical calibration (Bajnai et al., 2020; Hill et al., 2014) is used (Figure 3b). During inorganic carbonate 
precipitation, it is reasonable to expect that the clumped and the oxygen isotope compositions of the car-
bonates are affected by identical kinetic processes. In the case of Devils Hole, the constant carbonate pre-
cipitation environment suggested by the clumped isotope data implies that the δ18Occ values of the samples 
are similarly not affected by kinetic variations. The analytical uncertainty of the δ18Occ measurements of the 
Devils Hole record is ±0.07‰ (Winograd et al., 2006), and the temperature sensitivity of the oxygen isotope 
fractionation between calcite and water is 0.19‰°C−1 around 30°C, independent of the calibration of choice 
(Coplen, 2007). Consequently, the observed constant temperatures attest to an extremely stable subaque-
ous environment and that δ18Occ variations exceeding 0.20‰ (as represented by the root of the square sum 
of the analytical reproducibility and temperature sensitivity) reflect changes in δ18Ogw, not temperature 
(Figure 3c).

This enables one to examine if the maximum possible variability in the groundwater temperature, that is, 
±1°C, could contribute to a debated feature of the Devils Hole record, namely that it shows ice-age ter-
minations preceding other archives by ca. 10 ka (Moseley et al., 2016; Winograd et al., 1988, 1992, 2006). 
Specifically, Termination II occurs at 142 ka in the Devils Hole record (Winograd et al., 1992, 2006) and at 
130 ka in the LR04 composite benthic δ18O record (Lisiecki & Raymo, 2005), which is primarily a proxy of 
global (deep) seawater temperature and ice volume. The reconstructed Devils Hole δ18Ogw value at 142 ka 
is −13.55 (±0.20)‰ and at 130 ka is −12.55 (±0.20)‰ (Figure 3c). The observed change in δ18Ogw between 
these two dates, that is, 1.00‰, significantly exceeds the total uncertainty of 0.40‰ associated with δ18Ogw 
determinations. Therefore, variations in kinetic fractionation or groundwater temperature cannot be the 
reason for the particular timing of the ice-age termination shown by the Devils Hole record.

In conclusion, we have demonstrated using dual clumped isotope thermometry that neither variations in 
temperatures nor variations in reaction kinetics influenced the Devils Hole calcite δ18O time series to any 
significant degree. Combined ∆47 and ∆48 measurements enable the characterization of the carbonate pre-
cipitation environments for speleothems and other climate archives and, therefore, strengthen the interpre-
tation of the recorded climatic information. Slowly precipitating subaqueous calcites may accurately record 
changes in groundwater isotope compositions even during glacial-interglacial cycles.

Data Availability Statement
All study data are deposited at https://zenodo.org/record/4671734
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