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Abstract: Malignant cells differ from benign ones in their metabolome and it is largely unknown
whether this difference is reflected in the metabolic profile of their microvesicles (MV), which are
secreted into the blood of cancer patients. Here, they are present together with MV from the
various blood and endothelial cells. Harvesting MV from 78 breast cancer patients (BC) and 30
controls, we characterized the whole blood MV metabolome using targeted and untargeted mass
spectrometry. Especially (lyso)-phosphatidylcholines and sphingomyelins were detected in a relevant
abundance. Eight metabolites showed a significant discriminatory power between BC and controls.
High concentrations of lysoPCaC26:0 and PCaaC38:5 were associated with shorter overall survival.
Comparing BC subtype-specific metabolome profiles, 24 metabolites were differentially expressed
between luminal A and luminal B. Pathway analysis revealed alterations in the glycerophospholipid
metabolism for the whole cancer cohort and in the ether lipid metabolism for the molecular subtype
luminal B. Although this mixture of blood-derived MV contains only a minor number of tumor MV,
a combination of metabolites was identified that distinguished between BC and controls as well
as between molecular subtypes, and was predictive for overall survival. This suggests that these
metabolites represent promising biomarkers and, moreover, that they may be functionally relevant
for tumor progression.

Keywords: metabolic profiling; breast cancer; extracellular vesicles; biomarker; molecular breast
cancer subtypes

1. Introduction

The communication between cancer cells and their microenvironment is an essential
mechanism supporting tumor progression, invasion and metastasis. This crosstalk is
mediated in part by secreted soluble messengers but also by extracellular vesicles (EV),
which are produced by tumor cells in high numbers. EV have recently attracted increasing
attention since they are able to regulate dynamic crosstalk between cancerous, immune and
stromal cells in establishing the tumorigenic microenvironment [1]. Apart from apoptotic
bodies (500–4000 nm), which represent products of dying cells, there are two main types
of EV: microvesicles (MV, 100–1000 nm), which are shed directly from the outer plasma
membrane, as well as the small EV (sEV, also called exosomes, 50–150 nm), which are of
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endosomal origin [2–4]. Both MV and sEV carry not only DNA, mRNA or miRNA, but
also cytosolic and membrane proteins originating from the mother cell. This cargo can
then be transferred to the recipient cells and modulate their biological characteristics [1,5].
Detection of EV in nearly all biological fluids, such as blood, urine or saliva, demonstrates
not only the advantage of isolating them from various bodily fluids, but also indicates
their crucial role supporting malignant invasion, immune escape, angiogenesis, creating a
hospital environment to support cancer growth and prompting therapy escape [6,7].

MV can easily be harvested and analyzed from cancer patients’ blood due to their large
size. They can be collected without the need for ultracentrifugation and can subsequently be
characterized by flow cytometry. The blood-derived “microvesiculome” mostly comprises
MV originating from blood and endothelial cells, while only a minor part or percentage of
these MV is tumor derived [8]. Despite this fact, we have shown that cancer patients’ MV
strongly induce tumor invasiveness in vitro, while MV from healthy controls do not [8].
This evaluation of MV as a biomarker has recently aroused broader scientific interest.

Until now, the potential of EV as biomarkers in breast cancer patients has mainly
been analyzed in small patient cohorts with regard to the proteome and miRNA content
of sEV [9,10]. However, many of the EV effects can only partially be explained by pro-
invasive proteins or (mi)RNAs. EV also contain lipids and other small metabolites, such as
sphingomyelin and ceramide signaling, known to be involved in pro-invasive signaling
cascades. So far, only few studies have focused on the metabolomic profiling of body fluids
and cancer tissue. In breast cancer patients, specific features in the lipid composition have
been demonstrated for blood plasma [11,12], tissue [13–15], saliva [16] or urine [17]. Only
two studies concentrated on the metabolome of purified EV [18,19]; however, these were
isolated from breast cancer cell lines and not from patients’ blood. Nishida-Aoki et al.
investigated the metabolite differences of sEV in two triple-negative breast cancer cell lines
and found a higher diacylglycerol content in the more metastatic cell line [18]. Roberg-
Larsen et al. described an enrichment of 27-hydroxycholesterol in sEV from estrogen-
receptor-positive cells [19]. The metabolome of sEV has also been analyzed in urine or
tissue of prostate [20–22] or blood plasma of lung [23] and pancreatic [24] cancer patients.
Together, these preliminary data clearly support the hypothesis that the metabolome of
EV mirrors the biological characteristics of the tumor cells and may yield biomarkers to
predict and follow the clinical course of the disease.

Since we have shown that MV can be easily and reliably extracted from blood plasma
of cancer patients [25], we set out to characterize the metabolomic profile of blood-derived
MV in a cohort of 78 breast cancer patients and 30 controls with complete clinical annota-
tion. Using mass spectrometry and a targeted metabolomics approach, we found that a
combination of metabolites discriminates between breast cancer patients and healthy con-
trols as well as between breast cancer molecular subtypes and, additionally, is prognostic
regarding overall survival.

2. Results
2.1. Microvesicle Harvest and Characterization

The recruited patients and controls are described in the “Section 4” and in Table 1.
Nanoparticle tracking analysis of the purified vesicles detected particles with the typical
size of MV, ranging from 200 nm to 500 nm, without any difference between patients and
controls (Figure 1a).
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Table 1. Clinical characteristics of the patients and healthy controls.

Clinical Characteristics

Age median (patients, min-max range)
Age median (healthy controls, min-max range)

63 (27–92)
39 (21–65)

Histological subtype

Invasive ductal 49
Invasive lobular 14

Invasive ductal/lobular 1
Other 3

Not defined 11

Molecular subtype

Luminal A 31
Luminal B 34
Basal-like 9

Her2-enriched 4

Metastasis

Oligometastasis (≤3 metastasis) 18
Polymetastasis (>3 metastasis) 50

Location of metastasis

Bone 48
Brain 15
Lung 25
Other 33

Stable vs. progressive disease

Progressive disease 29
Stable disease 49

Metabolic comorbidities of patients

Obesity 14/76 *
Diabetes mellitus 8/77 **

Lipometabolic disorders 6/77 **
Note: *, data for two; and **, one case not available.
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Figure 1. Characterization of plasma microvesicles (MV). MV of the controls and breast cancer patients show a similar 
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common vesicle markers; and (c) MV of patients and controls show a similar surface area per 50 µg protein: mean surface 

was 2.77 × 108 µm2 (SD ± 2.30 × 108 µm2) and of 2.55 × 108 µm2 (SD ± 1.56 × 108 µm2) for patients and healthy controls, 

respectively. CL = whole cell lysate from MCF-7 cells. 
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Figure 1. Characterization of plasma microvesicles (MV). MV of the controls and breast cancer patients show a similar
concentration and distribution in size (a); (b) representative Western blot of three independent MV patient samples for
common vesicle markers; and (c) MV of patients and controls show a similar surface area per 50 µg protein: mean surface
was 2.77 × 108 µm2 (SD ± 2.30 × 108 µm2) and of 2.55 × 108 µm2 (SD ± 1.56 × 108 µm2) for patients and healthy controls,
respectively. CL = whole cell lysate from MCF-7 cells.
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Consistently, upon Western blotting the vesicles were positive for markers typically
enriched in MV, such as beta-Actin and Rgap1 (Figure 1b). Since it has been shown that
plasma lipoproteins can be co-purified with EV, mostly those of small (<100 nm) but also
of larger size as in our case [26], we additionally stained for apolipoprotein A1. This
contaminant was only detected at higher levels in a minority of cases. In our previous
studies, we had established the protein content of the MV preparations as a reliable
reference and surrogate marker for the actual MV concentration [25]. Additionally, we did
not detect any differences in the number of particles between cancer patients and controls.
Two factors could potentially interfere with our metabolomic results: variation in particle
numbers and the MV surface area, which corresponds to the lipid-rich plasma membrane.
Both particle number and surface were validated again in the present study. In relation
to 50 µg of protein, there was no significant difference between the cancer samples and
controls (Figures 1c and A1).

2.2. Metabolomics by Mass Spectrometry Is Feasible in Blood-Derived Microvesicles

Using the Biocrates AbsoluteIDQ® p180 kit (Innsbruck, Austria), we first applied
a targeted metabolomics approach to analyze the metabolome of MV from the blood of
controls and breast cancer patients. Although generally the kit can also detect amino
acids, biogenic amines, acylcarnitines, glycerophospholipids and sphingomyelins (SM),
we only measured the relevant concentrations of the latter two substance classes in our
samples (detected metabolites are listed in Table A1). We validated the detection of these
lipid classes in parallel for 18 of the samples (13 patients, 5 controls) with an untargeted
metabolomics approach. The sample preparation was identical for both methods. Again,
we detected mainly lysophosphatidylcholines (lysoPC) and SM as already encountered in
the targeted approach. Metabolites detected by both methods are listed in Table 2. While
the targeted approach limits the number of potentially detectable metabolites to those
included in the kit, the advantage in contrast to the untargeted “open” method was its
stability and reproducibility. Therefore, we mainly used this approach for further analyses.
Taken together, here we demonstrate the feasibility of targeted as well as untargeted mass
spectrometry to analyze the lipidome of blood-derived MV.

Table 2. Metabolites identified in both targeted and untargeted mass spectrometry approaches.

Lysophosphatidylcholines

LysoPC a C16:0, LysoPC a C18:0, Lyso PC a C18:1, LysoPC a C18:2, LysoPC a C20:4, LysoPC a
C24:0

Sphingomyelins

SM (OH) C14:1, SM (OH) C22:1, SM(OH) C22:2, SM (OH) C24:1, SM C18:0, SM C18:1, SM C20:2,
SM C24:0, SM C26:1

2.3. Targeted Mass Spectrometry Reveals Differences in the Whole MV Metabolome of Breast
Cancer Patients and Controls

Next, we asked whether the metabolome of MV from breast cancer patients differs
from that of healthy controls. Interestingly, the first steps in analyzing the data by both
PCA and heatmapping yielded no major difference in the general metabolite profile of
the two groups (Figure A2). Considering that tumor MV constitute only a minor part of
the whole plasma microvesiculome, potentially “diluting” tumor-specific findings, this
was not unexpected. In the next step, we therefore aimed at identifying differentially
expressed single compounds within the total MV metabolome. Here, a significantly
different concentration (Figures 2a and A3, Table 3) was observed for eight compounds:
PC ae C40:6, lysoPC a C26:0, PC aa C38:5, PC ae C40:2, PC ae C34:2, PC ae C32:2, PC ae
C38:3 and SM (OH) C16:1.
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Figure 2. MV-based metabolomics allows the differentiation between healthy controls and breast
cancer patients in blood plasma. T-statistics (a) reveal eight significant metabolites (p ≤ 0.05, two-
tailed unpaired Student’s t-test, relevant metabolites are colored in pink) and multiple logistic
regression (b) for combined Receiver operator characteristic (ROC) analysis of PC ae C40:6, lysoPC a
C26:0, PC aa C38:5, PC ae C34:2, PC ae C32:2, PC ae 38:3 and SM (OH) C16:1.

Table 3. T-statistics revealed eight significant metabolites differentiating breast cancer patients from
the controls.

Metabolite t-Value p-Value FDR

PC ae C40:6 −3.8915 0.0002 0.016
lysoPC a C26:0 −2.6967 0.0081 0.3277

PC aa C38:5 −2.5989 0.0107 0.3277
PC ae C40:2 −2.2459 0.0268 0.3946
PC ae C34:2 −2.2170 0.0288 0.3946
PC ae C32:2 −2.1730 0.0320 0.3946
PC ae C38:3 −2.1701 0.0322 0.3946

SM (OH) C16:1 −2.1441 0.0343 0.3946

Receiver operator characteristic (ROC) curve analysis revealed that single metabolites
were not suitable to discriminate between the cancer and control samples (AUC < 0.80).
However, when combining seven out of the eight metabolites—PC ae C40:6, lysoPC a
C26:0, PC aa C38:5, PC ae C34:2, PC ae C32:2, PC ae C38:3 and SM (OH) C16:1—for
multiple logistic regression, we reached an AUC of 0.78 (95% CI [0.690;0.876]) (Figure 2b).
In summary, we were thus able to identify a profile of lipid metabolites specific for MV
from breast cancer patients. Comparing these eight differentially expressed metabolites in
patients’ MV to metabolites detected by mass spectrometry in breast cancer tissue [13,14,27],
we observed one common lipid: PC aa C38:5. There was no overlap with the lipids
previously detected by Diáz-Beltrán et al. [11] in blood plasma. The list of all metabolites is
depicted in Table A4.

2.4. LysoPC a C26:0 and PC aa C38:5 Levels Are Prognostic for Overall Survival

We then asked whether the abovementioned metabolites are correlated with the
clinical outcome. The median overall survival (OS) for all patients was 15.35 (min: 1.87;
max: 62.56) months. To define the optimal cut-off for the investigated metabolites, we
used the freeware X-tile [28]. Patients were categorized in groups of either “high” or “low”
metabolite concentration. An overview over grouping and cut-offs is presented in Table 4.
Out of the eight metabolites described above, two showed a significant association with
OS: elevated concentrations of both lysoPC a C26:0 and PC aa C38:5 were significantly
correlated with shorter survival (Figure 3a,b).
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Figure 3. MV lipids are prognostic markers for overall survival in breast cancer. Kaplan–Meier
curves (a,b): patients with high concentrations of lysoPC a C26:0 and PC aa C38:5 show a shorter OS
(p ≤ 0.05, Gehan–Breslow–Wilcoxon test).

Breast cancer patients with higher concentrations of PC aa C38:5 had a median
OS of 23.80 months, whereas those with lower concentrations showed a median OS of
49.61 months (p = 0.017). The corresponding HR was 1.79 (95% CI [0.77;4.196]). Similarly,
OS in patients with higher concentrations of lysoPC a C26:0 was significantly shorter than
in the group with lower concentrations (p = 0.020; HR 2.07 (95% CI [0.91;4.71]), 35.90 versus
58.92 months). There was a trend towards shorter OS in patients with high concentrations
of PC ae C40:6, but which did not reach statistical significance (p = 0.077; HR 1.70 (95% CI
[0.77;3.76])).

Table 4. Cut-off for categories of high or low biomarker concentration in patients with breast cancer.

Metabolite Group N (Patients) N (Events) Cut-Off
(µmol/L)

lysoPC a C26:0 low 26 5 0.03
high 52 30

PC aa C38:5 low 49 13 2.56
high 29 9

PC ae C32:2 low 33 8 0.03
high 45 17

PC ae C34:2 low 24 6 0.39
high 54 19

PC ae C38:3 low 19 6 0:27
high 59 19

PC ae C40:2 low 56 18 0.18
high 22 7

PC ae C40:6 low 39 10 0.14
high 39 15

SM (OH) C16:1 low 49 16 0.27
high 29 9
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2.5. The Whole Blood MV Metabolome Differentiates between Molecular Breast Cancer Subtypes

Molecular subtyping is crucial in breast cancer, since the molecular subclasses de-
termine prognosis and therapy [29]. We therefore evaluated the obtained metabolomic
profiles in correspondence to the respective molecular subtype (luminal A, luminal B, Her2-
enriched or basal-like). Comparison of Her2-enriched to luminal A or luminal B samples,
revealed significant differences in both cases (Table A2). However, the FDR was >0.90, thus
not corroborating the statistical significance of these differences. Similarly, the comparison
of Her2-enriched with basal-like samples or basal-like with luminal A samples did not
yield any significant results. Analysis of basal-like versus luminal B yielded two significant
metabolites—PC aa C32:2 and PC aa C36:0 (Table A2). However, single and combined ROC
curve analysis (Figure A4) showed that both metabolites were not able to discriminate
between the subtypes with sufficient statistical power. The size of the Her2-enriched and
basal-like cohorts was relatively small (see also Section 3) and the numbers required to
reach a power level of 0.8 as well as a significance level of 0.05 were not reached. Thus,
more patient samples would be needed to confirm the detected tendencies.

We then focused on patients with luminal A and B breast cancer. Both luminal A
and B represented the largest groups of molecular subtypes in our cohort and had been
recruited in sufficiently large numbers (31 and 34 patients, respectively) according to the a
priori power analysis. The comparative analysis of these two molecular subtypes revealed
24 significantly differently expressed metabolites (Figure 4a, Table A2).
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Figure 4. MV-based metabolomics allows the differentiation between molecular breast cancer sub-
types. The metabolomic profiles of plasma MV from luminal A and luminal B breast cancer patients
were compared by targeted mass spectrometry. t-statistics (a) reveal 24 significantly differentially
expressed metabolites (unpaired Student’s t-test, relevant metabolites colored in pink). Multiple
logistic regression (b) for combined ROC analysis of all 24 metabolites.

ROC curve analysis after multiple regression yielded an AUC of 0.80 (95% CI (0.689;
0.905)) with a sensitivity of 73.53% and specificity of 77.42% (Figure 4b). Hence, the
combination of these 24 compounds is able to reliably differentiate between luminal A and
B subtypes.

2.6. A Distinct Metabolic Profile Discriminates between Subtype Luminal B and Healthy Controls

We then compared the MV metabolome of the various molecular subtypes with that
of the healthy controls. Again, there was no significant difference between the small cohort
of basal-like cancers and controls, most likely due to the different size of the two groups.
Of note, the lysoPC a C26:0, which had already been part of the cancer-specific MV profile
described above, was confirmed to be differentially expressed in the other three breast
cancer subtypes compared to the controls (Table A3). Surprisingly, only in the luminal B
subtype 24 metabolites were identified with a significant FDR ≤ 0.05 despite an equally
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large sample size in the luminal A subgroup (Figure 5a, Table A3). This suggests that
luminal B patients display a particularly distinct plasma MV metabolome. In contrast to
luminal B, luminal A represents the most favorable breast cancer subtype with the highest
similarity to the original ductal tissue [30].
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Figure 5. Metabolomic profiling of MV in breast cancer patients of the molecular subtype luminal B
compared to healthy controls. T-statistics (a) reveal 24 significantly differentially expressed metabo-
lites (unpaired Student’s t-test, relevant metabolites colored in pink). Multiple logistic regression (b)
for the top five metabolites; (c) ROC combined for lysophosphatidylcholines, sphingomyelines and
PC aa C32:1, PC ae C36:0 and PC ae C34:0; and (d) combined ROC of all 24 metabolites.

This may explain the more prominent differences found in the luminal B subtype.
Therefore, we concentrated on the differences between this particular subtype and the
controls.

ROC curve analysis for each of the top 24 metabolites in luminal B patients revealed
that PC aa C32:1 was the best discriminator between controls and patients. The AUC
of 0.79 (95% CI [0.672;0.898]) as well as the sensitivity (67.65%) and specificity (73.33%)
indicated that these results are not sufficiently conclusive to support a clinical relevance.
To improve the discriminatory power, we performed a combined analysis of multiple
metabolites. Multiple logistic regression of the top five metabolites (lysoPC a C26:0, PC aa
C32:1, PC ae C32:1, PC ae C36:0 and PC ae C34:0) (Figure 5b) yielded an enhanced AUC of
0.81 (95% CI [0.710;0.915], p < 0.0001), without significantly improving the sensitivity and
specificity (73.53% and 70.00%, respectively). When combining PC aa C32:1, PC ae C36:0
and PC ae C34:0 with the lysoPCs and sphingomyelins, we reached an AUC of 0.86 (95%
CI [0.770;0.949], p < 0.0001, sensitivity = 79.41%, specificity = 76.67%, Figure 5c). The best
results were achieved upon combination of all 24 metabolites, with an AUC of 0.94 (95%
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CI [0.889;0.994], p < 0.0001) as well as high sensitivity (85.29%) and specificity (90.00%)
(Figure 5d).

Comparing these 24 differentially expressed metabolites in patients’ MV to metabolites
detected by mass spectrometry in breast cancer tissue [13,14,27], we observed again only
one common lipid: PC aa C32:1. We detected LysoPC a C16:0 as the only lipid in common
with the lipids previously reported to be found in blood plasma [11]. The list of all
metabolites is depicted in Table A4.

2.7. Pathway Analysis Reveals Alterations in Glycerophospholipid and Ether Lipid Metabolism as
Well as Linoleic Acid Metabolism

With the relevant metabolites at hand, which were either able to differentiate between
the controls and breast cancer patients or between controls and the luminal B subtype, we
used these to identify the underlying metabolic pathways. When comparing the controls
to all breast cancer patients, alterations in the metabolites in the glycerophospholipid
metabolism were found. For the latter an involvement of lecithin-cholesterin acyl trans-
ferase (LCAT) was described in colorectal cancer [31]. There were also relevant alterations
in the linoleic acid and alpha-linolenic acid metabolism. The same analysis was performed
with the metabolites that were different between the molecular subtype luminal B and the
controls. This analysis yielded similar results. Again, as expected, we observed changes in
the glycerophospholipid pathway (Figure 6a) and in the ether lipid metabolism (Figure 6b).
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Figure 6. Schematic depiction of pathways detected in plasma MV by pathway analysis. Glyc-
erophospholipid metabolism (a): relevant metabolites detected by metabolomics were involved
in the enzymatic reaction catalyzed by lecithin-cholesterin acyl transferase (LCAT) and lysophos-
phatidylcholine acyltransferase (LPCAT).Changes in (a) were detected comparing the controls to all
breast cancer patients and to the subgroup luminal B. Ether lipid metabolism (b): pathway analysis
suggested involvement in the reaction catalyzed by LPCAT or phospholipase 2 when comparing
metabolites of the control group to subgroup luminal B.

Additionally, alterations in the linoleic acid metabolism were proposed. Summing
up, we observed relevant metabolic changes both in glycerophospholipid and ether lipid
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metabolism, which have been described to be associated with cancer metabolism also by
other authors [31–34].

3. Discussion

Reprogramming of cellular energy metabolism is one of the hallmarks of cancer [35].
Changes in cancer metabolism should be reflected in the metabolite composition of
cancer tissue or blood samples of patients, which has been shown for several cancer
entities [36–39]. However, metabolic profiling of body fluids such as plasma is challenging
since the metabolite content is influenced by factors such as diet, microbiome and expo-
some [40], and, in particular, by the stability of the compounds in an aqueous solution.
Identifying (onco) metabolites in the more sheltered matrix of EV, which originate at least
in part directly from the tumor cells, therefore seems enticing. Additionally, since EV from
breast cancer patients have been shown to be critical for conferring invasiveness [8], it can
be assumed that the most important compounds for these effects are associated with EV.
Nevertheless, surprisingly few studies [20–22,41] have focused on the metabolome of EV
in cancer patients, most of them characterizing either EV as a whole or exclusively sEV. In
contrast, our analysis was performed on the larger MV, which confer the crucial advantage
of rapid and simple harvest from peripheral blood [25].

Since we were interested in a high-throughput tool, the first question we asked was
whether the AbsoluteIDQ® p180 kit (Biocrates) was suitable for this matrix. Our study is
the first to demonstrate the application of the AbsoluteIDQ® p180 kit (Biocrates, Innsbruck,
Austria) for analyzing MV. Validation by parallel analysis via an untargeted metabolomics
approach on a QToF mass spectrometer showed that most of the significant metabolites
were also detected with the second method. Although the kit detected a broad variety
of compounds, we found mostly lipids, such as (lyso)PCs and SMs, as the predominant
metabolites. This is not surprising, since these compounds represent key players in energy
housekeeping, membrane structure and signal transduction [42,43] and are to be expected
in high abundance in the large membrane-enclosed MV. In contrast, the absence of other
metabolites that are highly abundant in blood plasma, e.g., amino acids and carnitines,
underlines the quality of our preparation protocol for EV. However, some metabolites of
low abundance, but nevertheless of functional importance, may have been missed using
the standardized approach, suggesting that the application of specifically optimized mass
spectrometry methods would be necessary.

Through metabolic profiling of blood plasma several authors have previously identi-
fied cancer-specific metabolites that differentiate between healthy subjects and lung [44–46]
or breast cancer patients [11,12]. Now, we demonstrate for the first time that the metabolome
of blood-derived MV from breast cancer patients differs significantly from that of healthy
controls. We describe eight lipids that are present in higher concentrations in cancer pa-
tients. The profile in our study is partially superimposable with the metabolic profile
identified by Qiu et al. [12] in plasma samples of breast cancer patients (6/8 metabolites).
Likewise, 11/24 metabolites in the cohort luminal B vs. controls were identical with the
Qiu data. This is hardly surprising, given that plasma contains EV in addition to soluble
molecules. Depending on the sample preparation before mass spectrometry, EV can also
be lysed and included in subsequent analyses. The fact that we observed higher lipid
concentrations of all metabolites than Qiu et al. is in line with this assumption.

Some of the identified compounds were not only suitable discriminators between can-
cer patients and controls, but also markers of poor clinical outcome. Higher concentrations
of the phosphatidylcholine (PC) “PC aa C38:5” as well as the lysoPC “lysoPC a C26:0”
were associated with significantly shorter OS, thus underlining the prognostic relevance of
this finding. In accordance, Guo and coworkers had previously described that deviations
of lysoPCs were associated with cancer progression [44]. Interestingly, this association
differs between cancer entities. Prostate cancer patients showing high amounts of lysoPCs
before the onset of disease seem to have a lower risk for advanced disease at the time of
diagnosis [47].
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Comparison of the MV metabolome from breast cancer patients with different molec-
ular subtypes revealed distinct features predominantly for the two large groups of luminal
A and B versus each other as well as luminal B versus controls. Despite some variations
regarding single metabolites, we could not detect significantly different profiles for the
Her2-enriched and the basal-like cohort, although their diverging biological characteristics
would strongly suggest such differences. However, both subcohorts comprised only few
patients (basal-like: 9 patients; Her2-enriched: 4 patients); thus, the statistical power to
detect significant differences was not reached. The reason for the small numbers was that
only a minority of the patients in these clinically aggressive subgroups could be included
in our study, since most of them were under cancer-specific (chemo)therapy that had been
established as an exclusion criterion to avoid contamination with apoptotic bodies.

There are only limited data on the breast cancer metabolome in the literature and
most of these are derived from tissue analysis. In accordance with our results, Ide and
coworkers [14] described an elevated content of saturated and unsaturated PC in breast
cancer tissue, in particular PC aa C32:1, PC aa C34:1 and PC aa C36:0, which were significant
metabolites in the luminal B subtype profile we observed. Similarly, PC aa C32:1 was found
by other authors in the tissues of breast cancer and oral squamous carcinoma [13,27].
Only two recent studies aimed to identify metabolome signatures specific for the various
molecular subtypes by analyzing blood plasma [11,48]. Similar to our data, Dìaz-Béltran
et al. found several candidates that were able to discriminate between the subtypes;
however, there is no overlap between our profile for luminal B and the one proposed by
that study. Fan et al. were able to distinguish between molecular subtypes using eight
metabolites. However, none of these metabolites overlapped with our data. A distinct
classification of molecular subtypes may explain these findings, in addition to the fact that
our source was MV rather than plasma. On a second note, we identified several lipids
not previously described by metabolic studies investigating tissue samples. This is to be
expected, since MV extracted from the blood represent a mixture of MV from platelets,
red blood, endothelial and immune cells, with only a minority of tumor MV. Cancer cells
and their MV influence the microenvironment by reprogramming the innate and adaptive
immune cells [49,50]. Thus, our approach offers the advantage to detect specific metabolites
not only in the tumor MV but also to characterize metabolic changes in the whole blood
MV “reactome”, allowing a broader, holistic view on cancer metabolism.

Lipids are critically involved in cancer-related signaling cascades. Accordingly, path-
way analysis of our detected metabolites yielded two significantly altered metabolic path-
ways. Distinct changes in the glycerophospholipid metabolism were found in breast cancer
MV samples in comparison to healthy controls as well as in the luminal B subtype MV
versus controls. Within this pathway, particularly the conversion of the PC with the KEGG
identifier C00157 (e.g., PC aa C32:1) into lysoPCs with the KEGG identifiers C04230 and
C04233 (e.g., lysoPC a C16:0) and back were involved. These reactions are catalyzed by
the enzymes lecithin–cholesterol acyltransferase (LCAT) and lysophosphatidylcholine
acyltransferase (LPCAT), respectively. An accumulation of PC (16:0/16:1), a potential
isomer of PC aa C32:1, and the dysregulation of the responsible enzyme has also been
observed by others in colorectal cancer tissues [31]. The second significantly involved
pathway, the ether lipid metabolism, did not discriminate between the whole cohort of
cancer patients and the controls but predominantly between the luminal B subtype and the
controls. The proposed relevant metabolites were the KEGG identifiers C05212 and C04598,
which comprise the compounds PC ae C36:0 and PC ae C34:0 found in our analyses. These
isomers are substrates for phospholipases and the enzyme LPCAT2. Changes in ether lipid
metabolism have recently been described on the genomic and metabolic level in vitro as
well as in vivo for breast cancer patients [32–34]. There are first pre-clinical efforts to target
ether lipid metabolism in cancer cells [51].

Taken together, we demonstrate that metabolomic profiling of blood-derived MV is
feasible using a standardized high-throughput tool for mass spectrometry (AbsoluteIDQ®

p180 kit; Biocrates, Innsbruck, Austria). Analysis of MV and other vesicles, in contrast to
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whole plasma, is of particular interest for the understanding of breast cancer progression,
since we have shown earlier that vesicles, and not soluble plasma compounds, mediate
the invasiveness of breast cancer cells [8]. The identified lipid biomarkers did not only
discriminate between breast cancer patients and controls but were also prognostic markers
of clinical outcome. Additionally, a distinct metabolic profile was described for the luminal
B subtype, which was very different from the controls and the luminal A cohort. This is
in line with the biological behavior of these subtypes, the luminal A group representing
the most favorable variant with the highest similarities to the original ductal tissue [30].
Assumedly, the aggressive Her2-positive and triple-negative subtypes display distinct
metabolic features but our subcohorts were too small for statistically reliable conclusions.

In summary, metabolic profiling of MV yields promising biomarkers for diagnosis
and prognosis of breast cancer. Further studies are necessary to determine whether they
are indeed of functional relevance and to clarify their potential mode of action.

4. Materials and Methods
4.1. Patient Recruitment and Data Extraction

This project was approved by the local ethics committee (project number 3/2/14).
Sample size was calculated a priori to reach a power of 0.8, an alpha-error of 0.05 and an
effect size of 0.8. Case allocation was 2:1 for breast cancer patients versus healthy controls
(N (breast cancer patient) = 39; N (healthy control) = 19) and 1:1 for any sub-group analysis
(N (per subgroup) = 26).

Female breast cancer patients (n = 78) and controls (n = 30) were recruited consec-
utively between March 2014 and June 2020. Inclusion criteria were advanced primary
tumor or metastasized disease. To avoid contamination with apoptotic bodies as far as
possible, we only included patients without or prior to chemo-/radiotherapy and, rarely,
with stable disease under anti-hormonal therapy. Patients were recruited at the department
for Hematology and Medical Oncology, the department of Gynecology and Obstetrics (both
University Medical Center Goettingen) and an associated out-patient clinic for medical
oncology. Female controls were recruited from the medical staff of the institute, healthy
volunteers and regular blood donors. Blood samples were drawn after written consent.
Histology and molecular breast cancer subtypes had been evaluated by the Department of
Pathology, University Medical Center Goettingen. Patients were defined as oligometastatic
if they had ≤3 metastasis. Disease status—stable vs. progressive disease—was assessed at
the time of recruitment. Patient characteristics are summarized in Table 1.

4.2. Sample Preparation and Mass Spectrometry

MV were isolated from 5 to 15 mL EDTA-anticoagulated peripheral blood from healthy
controls and breast cancer patients. In order to prevent plasma degradation and metabolite
leakage, samples were processed immediately (<2 h) after collection. Blood plasma was
obtained by centrifuging the samples for 15 min at 1200× g. MV were then purified by
two additional centrifugation steps at 1500× g (15 min) and at 14,000× g (35 min). The
14,000× g pellets containing the MV were washed and resuspended in PBS, as previously
described [8,25]. Samples were quantified before storage at −20 ◦C by measurement of the
protein content with the Lowry assay (Dc protein assay, Bio-Rad, Thermo Fisher, Bremen,
Germany). For mass spectrometry, MV (50 µg protein) were cracked by adding 30 µL
methanol/water (9:1) and freezing/thawing samples three times at −150 ◦C.

Targeted metabolomic analysis was performed using the AbsoluteIDQ p180-Kit
(Biocrates Lifesciences, Innsbruck, Austria) applied to a BEH Amide column (Waters
Cooperation, Milford, MA, USA) and a Xevo TQ-S mass spectrometer (Waters Cooperation,
Milford, MA, USA). The kit was processed using the guidelines of the manufacturer. Mea-
surement of the kit consisted of two separate analyses, flow injection analysis (FIA-MS)
for lipids and liquid chromatography MS (LC-MS) for amines. FIA-MS was used for the
quantification of up to 145 metabolites (including 40 acylcarnitines, 15 sphingolipids, 76
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PC and 15 lysoPC). LC-MS analysis includes the measurement of 21 canonical amino acids
and 21 other biogenic amines, such as neurotransmitters.

Briefly, 30 µL of sample were applied to the kit plate in 2 separate steps of 10 and
20 µL each and dried using a positive-pressure manifold (Waters Cooperation, Milford,
MA, USA). Consecutively, the dried sample plate was treated with phenylisothiocyanate
to derivatize amines and dried under nitrogen flow. Samples from the plate were extracted
using 5 mM ammonium acetate in methanol and diluted in flow injection analysis solvent
for FIA analysis and in water for LC-MS analysis, respectively. After the FIA and LC-MS
runs, LC-MS data were first analyzed using MassLynx V4.1 software (Waters Cooperation,
Milford, MA, USA) using the supplied analysis method by Biocrates, confirmed manually,
and imported into the software supplied by the kit (MetIDQ Carbon, Biocrates Lifesciences,
Innsbruck, Austria). FIA data were directly loaded into MetIDQ Biocrates Lifesciences,
Innsbruck, Austria and interpreted automatically.

The analytical quality of each kit run was validated according to the guidelines of
the manufacturer. Briefly, three different concentrations of plasma-based quality controls
were measured. The medium concentration quality control sample was distributed 4 times
across the plate to validate the quality throughout the entire run. Quality control results
were assessed automatically based on internal criteria via the MetIDQ software (Biocrates
Lifesciences, Innsbruck, Austria). The untargeted mass spectrometry metabolomics ap-
proach (UPLC-MSMS) was conducted on an Acquity UPLC® I-Class (Waters Cooperation,
Milford, MA, USA) coupled to a Xevo G2S (Waters Cooperation, Milford, MA, USA)
equipped with an electrospray ionization (ESI) ion source. An Acquity UPLC® HSS T3
1.8 µm 2.1 × 100 mm column (Waters Cooperation, Milford, MA, USA) was used for
chromatographic separation of the compounds. The composition of the mobile phase A
and B was as following: 10 mM ammonium formate, 0.1% formic acid, 40% H2O, 60%
acetonitrile (A) and 10 mM ammonium formate, 0.1% formic acid, 10% acetonitrile, 90%
2-propanol (B); 2 µL of the sample were injected. Phase B was set at 35% and subsequently
increased to 90% over 55 min, before the column was equilibrated for another 5 min under
the initial conditions. The flow rate was 0.2 mL/min. The column temperature was set to
55 ◦C. All compounds were analyzed in positive mode with a capillary voltage of 2.4 kV
and source temperature of 120 ◦C. The mass range setting was m/z 70 to 1000. For each
setting, 3–4 technical replicates were performed. Alignment of the spectra and peak picking
were processed using Progenesis QI software (Non-linear Dynamics, Wilmslow UK) and
the open software http://metaboanalyst.ca (version 4.0 [52]).

4.3. Nanoparticle Tracking Analysis (NTA)

Size distribution and concentration of MV were analyzed on a Nanosight NS300
(Malvern Panalytical Ltd., Malvern, UK) equipped with a 488 nm laser and a sCMOS
camera. MV samples equivalent to 50 µg protein were diluted in PBS up to a final volume
of 400 µL to obtain a concentration of 20–60 particles per frame. At least three videos of 60 s
were recorded for each sample. Temperature setting was controlled at 25 ◦C and syringe
pump flow rate at 50 MV of the breast cancer cell line SK-BR-3 were used as positive size
controls. The NTA 2.3 software (build 013) was used for analyzing videos and calculating
mean values of particle concentration and size of each sample.

4.4. Western Blot

Human MFC-7 cells were cultured in RPMI-1640 medium supplemented with 10%
fetal calf serum (FCS). Protein expression of cell lysate, human plasma and patient MV was
assessed using the following primary antibodies: α-ACTININ-4 (#sc-390205), RGAP1 (#sc-
271110), β-AKTIN (#sc-47778), APOA1 (#sc-376818, all from Santa Cruz Biotechnology).
The HRP-linked secondary antibody was obtained from cell signaling (#7076). In total,
17 µg of protein were subjected to SDS-PAGE and subsequently blotted onto nitrocellulose.
Membranes were blocked in TBST (137 mM NaCl, 20 mM Tris pH 7.6, 0.1% (v/v) Tween-20)
before incubation with the respective primary antibody overnight at 4 ◦C. After three
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washing steps for 5 min each in TBST, the membranes were incubated with the secondary
antibody at RT followed again by three 5 min washing steps in TBST. Signals were detected
with ECL Prime (GE Healthcare, Chicago, IL, USA) on a LAS-40,000 imager (Fujifilm,
Düsseldorf, Germany). Ponceau staining was routinely used as the loading control.

4.5. Statistical Analysis and Bioinformatics

The following modules of the online freeware Metaboanalyst (version 4.0 [52]) were
used for analysis: “Statistical Analysis”, “Pathway Analysis” and “Biomarker Analysis”.
The t-test was used for identifying significant metabolites differing in concentration/peak
between groups. A p-value of ≤0.05 was considered significant. In that case, the metabolite
was included into further analysis. The false discovery rate (FDR) was obtained for
each metabolite analyzed by t-statistics. The principal component analysis (PCA) and
heatmapping tool of Metaboanalyst were also applied.

ROC curves for multiple metabolites were calculated by multiple logistic regression
using GraphPad Prism (Version 8.4.2, Graphpad Holdings, San Diego, CA, USA). X-
tile (Version 3.6, New Haven, CT, USA) was used as bioinformatics tool to assess the
optimal cut-off for metabolite concentrations, dividing samples into groups of “high” and
“low” metabolite concentrations [28]. We used GraphPad Prism (Version 8.4.2, Graphpad
Holdings, San Diego, CA, USA) for survival analysis. The endpoint of the survival analysis
was death or loss in follow-up. The Gehan–Breslow–Wilcoxon test was used for calculating
the Kaplan–Meier curves, and a p-value < 0.05 was considered significant. Mantel–Haenszel
analysis was applied for calculating the hazards ratios (HR).

Pathway analysis was performed for significant metabolites. The list of metabolites
recognized by the Biocrates AbsoluteIDQ® p180 kit (Biocrates Lifesciences, Innsbruck, Aus-
tria) are listed at http://metap.helmholtz-muenchen.de/metap2/metabolites/Details/,
refer to [53]. All proposed KEGG IDs [54] were used for pathways analysis using the
“Pathway Analysis” module of Metaboanalyst.
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Figure A4. ROC-curves of significant metabolites (t-statistics) when comparing molecular subtype lu-
minal B to basal-like breast cancer: (a) ROC of PC aa C32:2; (b) ROC of PC aa C36:0; and (c) combined
graph (multiple logistic regression).
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Table A1. Lipid classes and single lipids detected in EV samples using the Biocrates IDQ® p180 kit
(Biocrates Lifesciences, Innsbruck, Austria).

Metabolite Class Metabolites Detected

LysoPC

lysoPC a C16:0
lysoPC a C18:0
lysoPC a C18:1
lysoPC a C18:2
lysoPC a C20:4
lysoPC a C24:0
lysoPC a C26:0
lysoPC a C26:1
lysoPC a C28:0
lysoPC a C28:1

PC aa

PC aa C24:0
PC aa C28:1
PC aa C30:0
PC aa C32:0
PC aa C32:1
PC aa C32:2
PC aa C32:3
PC aa C34:1
PC aa C34:2
PC aa C34:3
PC aa C34:4
PC aa C36:0
PC aa C36:1
PC aa C36:2
PC aa C36:3
PC aa C36:4
PC aa C36:5
PC aa C36:6
PC aa C38:0
PC aa C38:3
PC aa C38:4
PC aa C38:5
PC aa C38:6
PC aa C40:2
PC aa C40:3
PC aa C40:4
PC aa C40:5
PC aa C40:6
PC aa C42:0
PC aa C42:1
PC aa C42:2
PC aa C42:4
PC aa C42:5
PC aa C42:6
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Table A1. Cont.

Metabolite Class Metabolites Detected

PC ae

PC ae C30:0
PC ae C30:1
PC ae C30:2
PC ae C32:1
PC ae C32:2
PC ae C34:0
PC ae C34:1
PC ae C34:2
PC ae C34:3
PC ae C36:0
PC ae C36:1
PC ae C36:2
PC ae C36:3
PC ae C36:4
PC ae C36:5
PC ae C38:0
PC ae C38:1
PC ae C38:2
PC ae C38:3
PC ae C38:4
PC ae C38:5
PC ae C38:6
PC ae C40:1
PC ae C40:2
PC ae C40:3
PC ae C40:4
PC ae C40:5
PC ae C40:6
PC ae C42:1
PC ae C42:2
PC ae C42:3
PC ae C44:3
PC ae C44:5
PC ae C44:6

SM

SM C16:0
SM C16:1
SM C18:0
SM C18:1
SM C20:2
SM C24:0
SM C24:1
SM C26:0
SM C26:1

SM (OH)

SM (OH) C14:1
SM (OH) C16:1
SM (OH) C22:1
SM (OH) C22:2
SM (OH) C24:1
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Table A2. Analysis of molecular subtypes tested against each other.

Metabolite t-Value p-Value FDR

Her2-enriched
Luminal A PC aa C24:0 2.3912 0.02266 0.9786

Her2-enriched
Luminal B PC ae C40:4 −2.0812 0.0446 0.9456

Basal-like
Luminal B

PC aa C32:2 −2.6532 0.0113 0.3688
PC aa C36:0 −2.5427 0.0149 0.3688

Luminal A
Luminal B

lysoPC a C16:0 −2.7094 0.0087 0.1687
SM C16:0 −2.5227 0.0142 0.1687

lysoPC a C18:1 −2.4528 0.0170 0.1687
PC aa C40:4 −2.4522 0.0170 0.1687

lysoPC a C18:0 −2.4133 0.0187 0.1687
PC aa C34:1 −2.3647 0.0211 0.1687

SM OH C16:1 −2.3531 0.0218 0.1687
PC aa C36:2 −2.3475 0.0220 0.1687
PC aa C38:3 −2.3247 0.0233 0.1687
PC ae C36:1 −2.2838 0.0258 0.1687
PC ae C40:2 −2.2831 0.0258 0.1687

SM C18:1 −2.2667 0.0269 0.1687
PC aa C42:4 −2.2577 0.0274 0.1687
PC aa C36:4 −2.2442 0.0283 0.1687

SM OH C22:2 −2.2387 0.0287 0.1687
PC aa C36:3 −2.2061 0.0310 0.1687
PC ae C38:4 −2.1969 0.0317 0.1687

SM C18:0 −2.1799 0.0330 0.1687
PC ae C38:5 −2.1078 0.0390 0.1723

SM C24:1 −2.1067 0.0391 0.1723
PC aa C34:3 −2.0851 0.0411 0.1723
PC ae C36:2 −2.0515 0.0444 0.1723
PC ae C32:1 −2.0474 0.0448 0.1723
PC aa C38:6 −2.0347 0.0461 0.1723

Table A3. Differentially expressed metabolites, comparing molecular subtypes to healthy controls.
Due to the abundance of significant metabolites for luminal B only those with an FDR ≤ 0.05 are
shown here.

Metabolite t-Value p-Value FDR

Luminal A lysoPC a C26:0 −2.0632 0.0435 0.8630

Luminal B lysoPC a C26:0 −3.7419 0.0004 0.0332
PC aa C32:1 −3.5215 0.0008 0.0332
PC ae C36:0 −3.1676 0.0024 0.0332
PC ae C32:1 −3.1676 0.0024 0.0332
PC ae C34:0 −3.0978 0.0029 0.0332
PC ae C40:5 −3.0619 0.0033 0.0332
PC ae C40:6 −3.0584 0.0033 0.0332
PC ae C40:2 −3.0581 0.0033 0.0332
PC ae C36:1 −3.0542 0.0033 0.0332

SM OH C16:1 −2.9544 0.0044 0.0332
PC aa C36:5 −2.9370 0.0046 0.0332
PC ae C44:3 −2.9368 0.0046 0.0332
PC ae C38:3 −2.9318 0.0047 0.0332
PC ae C36:2 −2.9057 0.0051 0.0332
PC aa C32:0 −2.8831 0.0054 0.0332
PC ae C40:4 −2.8284 0.0063 0.0362
PC aa C36:0 −2.7971 0.0069 0.0371
PC aa C42:0 −2.7682 0.0074 0.0379
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Table A3. Cont.

Metabolite t-Value p-Value FDR

PC aa C36:2 −2.6660 0.0098 0.0461
SM C18:1 −2.6564 0.0100 0.0461

PC ae C42:3 −2.5854 0.0121 0.0487
PC aa C34:1 −2.5802 0.0123 0.0487

lysoPC a C18:1 −2.5700 0.0126 0.0487
lysoPC a C16:0 −2.5666 0.0127 0.0487

Her2-enriched lysoPC a C26:0 −3.1351 0.0037 0.3374

Table A4. Differentially expressed metabolites of all breast cancer patients and of the luminal B
subgroup compared to the metabolic profiles already published in the literature.

Author Overlapping Metabolites
(All Breast Cancer Patients)

Non-Overlapping
Metabolites Published

Dìaz-Béltran et al.
(blood plasma) 0

LyoPC a C14:0
LysoPC a C16:0
LysoPC a C23:0

Biliverdin

Ide et al., 2013
Uchiyama et al., 2014
Hosokawa et al., 2017

(tissue)

PC aa C38:5

PC aa C36:1
PCaa C34:1
PC aa C38:6
PC aa C32:1
PC aa C34:0
PC aa C30:0

Author Overlapping metabolites
(luminal B patients)

Non-overlapping
metabolites published

Dìaz-Béltran et al.
(blood plasma) LysoPC a C16:0

LyoPC a C14:0
LysoPC a C23:0

Biliverdin

Ide et al., 2013
Uchiyama et al., 2014
Hosokawa et al., 2017

(tissue)

PC aa C32:1

PC aa C38:6
PC aa C34:0
PC aa C30:0
PC aa C38:5
PC aa C36:1
PC aa C34:1
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