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As early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the
probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context,
polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict
complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using
Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric
Genomics Consortium, third release). Eight well-phenotyped groups (n= 1580; 56% males) were assessed: control (n= 305), lower
(n= 117) and higher (n= 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n= 120), BD type-I (n= 359),
BD type-II (n= 96), schizoaffective disorder (n= 86), and SZ groups (n= 384). PRS differences were investigated for binary traits and
the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk
and clinical groups (Nagelkerke’s pseudo-R2: 1.3–7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS
and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk
groups, but not between at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRSs, but not
BD-PRSs, were positively associated with transdiagnostic symptomology. Overall, PRSs support the continuum model across the
psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical
attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic
accuracy of PRSs in mental healthcare.
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INTRODUCTION
Psychosis is a mental condition characterized by disturbed contact
with reality, affecting cognition, feelings, and behavior. It
manifests primarily as sensory experiences in the absence of
physical stimuli (hallucinations) and holding bizarre, irrational, or
false beliefs (delusions) [1]. While psychotic symptoms are
associated with different medical conditions, they typically occur
in schizophrenia (SZ), a prototypical psychotic disorder, and as a
frequent characteristic in bipolar disorder (BD). Notably, SZ and BD
are highly heritable, with heritability estimates of 60–80% [2] and
substantially overlapping genetic architectures [3–5]. Psychotic
symptoms in SZ and BD also show clinical responses to
antipsychotic medication [6]. Despite extensive research, the
etiology of psychotic disorders remains unclear, with multiple
putative determinants and risk-conferring factors [7]. Within this

complex scenario of poly-causation, genetic burdens may predis-
pose certain individuals to developing clinical syndromes in
critical life periods [8]. Addressing the heterogeneity of SZ and BD
genetics results, a recent investigation assessed the contribution
of common variants to disease susceptibility [9]. In addition, the
availability of large datasets enabled by high-throughput screen-
ing and genomic advances have facilitated the development of
polygenic risk scores (PRSs). PRSs cumulatively estimate genome-
wide effects of common variants en masse instead of the effects of
individual single-nucleotide polymorphisms (SNPs) [10]. In the
context of psychosis research, the value of PRSs has been
substantiated across numerous applications, including their
capacity to differentiate between cases and controls [11, 12] and
to predict longitudinal illness courses, diagnostic subtype shifts
[13], and responses to antipsychotic medication [14, 15].
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Overt psychosis in SZ is often preceded by early signs and mild
symptoms developing 2–5 years before a formal diagnosis [16].
Newer diagnostic manuals, such as Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition [17] and International
Classification of Diseases, Eleventh Revision [18] incorporate
dimensional aspects. A growing body of evidence also supports
a continuum-like or extended psychosis spectrum model (cf.
categorical approaches) of increasing symptom severity and
persistence [19, 20]. These findings are corroborated by the
modulating effect of PRS for SZ (SZ-PRS) on well-established
neurocognitive intermediate phenotypes, such as prefrontal
dysregulation in connection to working memory load, which has
been observed in both SZ patients and healthy persons [21]. The
polygenic burden indexed by SZ-PRS was also shown to be
associated with cognitive–emotional, behavioral, and social
impairments, known antecedents of SZ, across the developmental
trajectory in large population-based cohorts [22]. Additionally,
separate and joint PRSs for SZ and BD (BD-PRS) have proven useful
in dissecting BD subtypes [23] and predicting progression to BD
and psychotic disorders from a diagnosis of unipolar disorder [24].
As early recognition of psychosis may mitigate its negative
individual and societal impacts, recent research has emphasized
the importance of early detection and intervention [25]. The
concepts of both schizotypy (trait-like psychosis proneness) and
at-risk mental state (imminent, basic symptom criteria) have
substantially informed preventive research [26, 27]. Nevertheless,
the role of schizotypy in the developmental psychopathology of
psychosis remains debated [26, 28], and most individuals at high
risk do not transition to a diagnostic entity even years after an
initial clinical presentation [29]. The molecular and genetic
foundation of a broad psychosis spectrum is unclear, yet its
exploration may reveal biological common denominators. In this
context, the ultimate objectives of PRS analyses include the
accurate prediction of disease onset and determination of tailored
treatment strategies [10]. However, studies aimed at identifying
associations between PRS and quantitative psychotic symptom
manifestations have yielded both significant [30, 31] and
inconsistent findings [32]. Notably, one study identified a linear
relationship only when both cases and controls were pooled [33],
underscoring the value of the continuum model. Inconsistencies
may also have arisen from possible temporal symptom fluctua-
tions and/or differences in operationalization among the clinical
instruments employed. Furthermore, recent genome-wide asso-
ciation studies (GWASs) based on increasing discovery sample
sizes and refined algorithms have contributed to the improved
PRS power [34], which itself is sufficient motivation for new
predictive studies.
This work investigates the associations and between-group

differences of PRS computed for SZ and BD across the extended
psychosis spectrum. In an early study utilizing PRS [35], SZ-PRS
and BD-PRS were significantly associated with SZ and BD
diagnostic spectrums. When split into separate diagnoses, SZ-
PRS was associated with SZ, schizoaffective disorder (SZA),
psychosis not otherwise specified, and BD type I, while BD-PRS
was associated with BD type I and BD type II. However, no
significant differences between any portion of the spectrum or
specific groups were found after controlling for multiple
comparisons (Tukey method). In contrast, the present investiga-
tion expands the phenotypic poles of normatively diagnosed
disorder groups (SZ, BD type I, BD type II, SZA) and controls into
the subclinical categories of high risk for developing psychosis, as
well as schizotypy. If individuals across these groups differentially
share genetic liability, a smooth gradient and severity-related
differences in PRS should be observed. Moreover, in a transdiag-
nostic manner, this work examines the relationship between PRS
and a well-validated continuous symptom measure, the Positive
and Negative Syndrome Scale (PANSS) [36], using quantile
regression modeling [37].

METHODS AND MATERIALS
Phenotype definition
Data included in this work come from three main projects, two completed
in Switzerland [38, 39], the Zurich Program for Sustainable Development of
Mental Health Services (ZinEP) project on at-risk mental state for psychosis
and the Exceptional Experiences (EE) project on psychotic-like experiences,
as well as the multi-center PsyCourse Study [40] on the affective-psychotic
spectrum conducted in Germany and Austria. Two other smaller Swiss
projects, the Zurich Family-Trio Study and the Zurich OCD Study, served as
additional sources of healthy controls [41, 42]. Data from eight groups
were analyzed in this study according to the pre-established criteria: SZ,
SZA, BD II, BD I, at-risk state for psychosis (RISK), higher schizotypy (SCHIZ
H), lower schizotypy (SCHIZ L), and non-psychiatric controls (CTRL). The at-
risk categories included basic symptoms, by some conventions known as
“high risk” (HR) and “ultra-high risk” (UHR) for psychosis [29]. The specific
inclusion criteria were as follows: at least one cognitive–perceptive basic
symptom and/or at least two cognitive disturbances based on the
Schizophrenia Proneness Interview [43, 44] for HR; at least one attenuated
psychotic symptom, and/or at least one brief limited intermittent psychotic
symptom based on the Structured Interview for Prodromal Syndromes [45]
for UHR. Additionally, the hypomanic symptoms in this group were
measured using the Hypomania Checklist (HCL-32) [46]. The median-split
of the Schizotypal Personality Questionnaire (SPQ) [47] score was used, as
in earlier studies on higher and lower schizotypy [48, 49], with similar cut-
offs and mean values. Psychiatric axis I diagnosis in these two groups was
excluded using the Mini-International Neuropsychiatric Interview [50]. The
diagnoses and assessments were made by clinicians and trained raters.
Patients were recruited based on referrals from clinics or patient register
queries. Proficiency in German was a criterion for participation. Written
informed consent was obtained from all participants and, for participants
under 18 years of age, their parents or legal guardians. All the participating
projects were approved by the ethics committees of each respective
institution (Zurich: KEK-Nr. E63/2009, KEK-Nr. 2011-0423, KEK-Nr. 2010-
0340/3, KEK-Nr. 2010-0340; see detailed information on the PsyCourse
Study [40] [www.psycourse.de] provided in the Supplementary Methods
and Materials) and conducted in compliance with the Declaration of
Helsinki. Table S1 (Supplementary Information) lists the primary inclusion
criteria for the eight investigated groups. All data were anonymized for
analysis.

Genotyping and genotype imputation
Genomic DNA was isolated from venous whole blood or saliva (for a small
subsample of controls) and genotyped using Illumina Infinium Psych-Array
BeadChips (Illumina, San Diego, CA, USA). SNP-level quality control (QC)
included the removal of variants with a call rate <98%, significant
deviations from Hardy–Weinberg equilibrium (HWE) (p < 0.001), or minor
allele frequency (MAF) < 0.1%. In the individual-level QC, data were
removed to eliminate duplicates, sex mismatches, cryptic relatives (PI-
HAT > 0.125), samples with an individual genotyping rate >98%, or
heterozygosity rate exceeding 3 SD from the mean. Population stratifica-
tion was assessed using a principal component analysis on the pairwise
genomic relationship matrix. Individuals with genotypes not clustered with
1000 Genomes Project EUR super-populations were removed from the
analyses (n= 47). After QC, pre-phasing was performed using SHAPEIT [51]
and imputation was conducted using IMPUTE2 [52]. The phase 3
integrated variant dataset from the 1000 Genomes Project [53] was used
as the reference panel. After imputation, variants with a low information
score (INFO < 0.9) or frequency (MAF < 1%) were removed. All data were
processed with the same analysis pipeline. Figure S1 (Supplementary
Information) visualizes the European origin of participants along the first
two ancestry PCs with labeled superpopulations.

PRS computation
The PRS calculations for each individual were based on the risk alleles and
the corresponding odds ratios (ORs) from the most recent GWAS of the
Psychiatric Genomics Consortium (PGC3) on SZ [54] and BD [55]. The SZ
GWAS included 69,369 cases and 236,642 controls, while the BD GWAS
included 41,917 cases and 371,549 controls. PRSs were computed using a
recently developed Bayesian regression and continuous shrinkage priors
method (PRS-CS) [34, 56]. The PRS-CS method exhibited superior
prediction accuracy across multiple complex diseases and traits, compared
to several other methods, particularly with large training datasets [56]. In
this approach, the posterior effect sizes of SNPs are inferred using
information from the GWAS summary statistics and an external linkage
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disequilibrium reference (1000 Genomes Project phase 3, EUR super-
populations), through principles of joint multivariate modeling. The global
shrinkage parameter phi (φ) [57] was automatically learned from the data
(PRS-CS-auto; φ1/2 ~ C+(0,1), where C+(0,1) denotes the half-Cauchy
distribution). In our study, the automatically estimated global shrinkage
parameter was φ= 1.8E−04 for SZ and φ= 1.3E−04 for BD. PRS-CS
allowed us to use a single polygenic score for each discovery trait (SZ and
BD, respectively) that considers the polygenicity of the disorder and
appropriately models the genetic architecture of SZ and BD. The PRSs were
standardized using z-score transformation to facilitate interpretation.

Statistical analysis: PRSs across groups
An analysis of variance (ANOVA) was conducted to assess between-group
differences in SZ-PRS and BD-PRS (with group as predictor and PRS as
outcome variable), using subject age, sex, and first five genetic ancestry
principal components (PCs) to account for population stratification.
Pairwise comparisons were corrected per analysis using a Bonferroni
correction for 28 tests performed (i.e., the number of pair combinations for
each PRS). Additionally, to assess the associations with group/diagnosis
and variance explained by PRS, block-wise binary logistic regressions with
healthy controls were conducted. For each PRS, two statistical models with
case/control status as outcome were compared, one testing the covariates
alone (i.e., age, sex, and the five ancestry-specific PCs as a baseline model)
and the other testing the covariates with the added PRS (full model). We
report the R2 value as the difference in Nagelkerke’s pseudo-R2 [58]
between these two nested models as an indicator of explained variance. As
these comparisons were against the control condition, no further
correction was applied in these non-independent tests.

Statistical analysis: association between PRSs and symptoms
To examine the effects of PRS predicting the symptom PANSS scores
(Positive Symptoms, Negative Symptoms, General Psychopathology, and
Total Score) across low, medium, and high symptom score distributions,
quantile regressions using three tau (τ) values (0.25, 0.50, 0.75) and
accounting for age, sex, and the five ancestry-specific PCs were conducted.
The quantiles indicate that 25%, 50%, and 75% of the scores, respectively,
fall below each corresponding point in the distribution of scores. Quantile
regression [37] was chosen over a transformation because of the floor
effect of symptom data. This statistical approach estimates the effects at
different locations in the criterion distribution with or without normality
assumptions being met, where relying on the mean as a measure of
centrality under an ordinary least squares model might be less informative
or inappropriate [59].
Statistical analyses were performed using the R statistical computing

environment (version 4.0.5). Nominal significance was assessed at an α <
0.05 threshold.

RESULTS
Study sample
After QC, 1580 samples (883 males; ages 12–78 years) from the
initial pool of 1752 genotyped samples, with complete informa-
tion for study group, sex, and age, were available for analysis,
including 6,600,214 genetic markers. PANSS data were accessible
for 1134 individuals (622 males). The characteristics and symptom
scores of participants are summarized in Table 1. Within the at-risk
group, the following numbers of individuals met the partial
(overlapping) criteria: 120 (HR or UHR), 111 (HR), 70 (UHR), 50 (HR
without UHR), 86 (risk for BD).

Between-group differences
ANOVA revealed significant among-group differences for both SZ-
PRS (F7,1565= 9.30, p= 2.52 × 10−11) and BD-PRS (F7,1565= 11.71,
p= 1.37 × 10−14). Out of 28 pairwise Bonferroni-corrected tests for
SZ-PRS and for BD-PRS, 9 and 12 were significant, respectively.
Figure 1 depicts the mean standardized PRS, density plots, and
95% confidence intervals (CIs) with comparison arrows between
groups. Notably, the controls differed from the SZ and SZA groups
in SZ-PRS and from the BD I, BD II, SZA, and at-risk groups in BD-
PRS. Very similar results were observed for the lower schizotypy
group. Additionally, the high schizotypy group differed from most Ta
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clinical groups and the at-risk group, while the latter was not
distinguishable from any clinical diagnoses. Tables 2 and S2
(Supplementary Information) provide detailed statistics for this
analysis.

Case–control status
SZ-PRS was significantly associated with the case–control status in
the binary regression for the SZ (odds ratio (OR)= 1.62, 95% CI=
1.37–1.93, p= 6.88 × 10−9), SZA (OR= 1.82, 95% CI= 1.38–2.45, p
= 2.04 × 10−5), BD I (OR= 1.27, 95% CI= 1.07–1.51, p= 0.006),
and RISK (OR= 1.57, 95% CI= 1.14–2.20, p= 0.006) groups with
the controls (change in Nagelkerke’s pseudo-R2, 1.3–6.1%). BD-PRS
was also significantly associated with the case–control status for
contrasts involving the BD I (OR= 1.80, 95% CI= 1.51–2.16, p=
2.53 × 10−11), BD II (OR= 1.65, 95% CI= 1.26–2.18, p= 1.98 ×
10−4), SZA (OR= 1.96, 95% CI= 1.46–2.67, p= 3.41 × 10−6), SZ
(OR= 1.26, 95% CI= 1.10–1.46, p= 0.011), and RISK (OR= 2.19,
95% CI= 1.53–3.20, p= 8.21 × 10−6) groups and the control
group, resulting in a slightly higher Nagelkerke’s pseudo-R2

change range, 4.0–7.7% (Fig. 2 and Table S3 [Supplementary
Information]).

PRSs and symptoms
SZ-PRS was found to be a significant predictor of PANSS Total
Score at the 25th (t= 3.86, p= 1.18 × 10−4), 50th (t= 3.19, p=

0.001), and 75th (t= 2.64, p= 0.008) percentiles. Significant effects
were also found for Positive Symptoms at the 50th (t= 4.86, p=
1.35 × 10−6) and 75th (t= 2.50, p= 0.013) percentiles and for
General Psychopathology at the 25th (t= 3.41, p= 6.70 × 10−4)
and 50th (t= 2.27, p= 0.023) percentiles, while Negative Symp-
toms were significant only at the 50th percentile (t= 2.64, p=
0.008). In contrast, no significant effects were observed for BD-PRS
across any of the PANSS measures. Figure 3 and Table S4
(Supplementary Information) report further details for this
analysis.

DISCUSSION
This work investigated the polygenic burden in four healthy/
subclinical groups and four clinical groups. It aimed to quantify
the associations and between-group differences of SZ-PRS and
BD-PRS and their possible relationship with symptomatic pre-
sentation. Both PRSs were differentially useful in elucidating the
genome-wide architecture across the extended psychosis
spectrum.
Overall, the gradient of genetic risk proximity observed across

groups is commensurate with the continuum model [35]. SZ-PRS
and BD-PRS performed most robustly for the extremes of the
psychosis spectrum, i.e., in distinguishing SZ and BD cases from
controls, respectively, corroborating previous findings [11, 12].

Fig. 1 Mean polygenic risk score (PRS) for schizophrenia (SZ-PRS) and bipolar disorder (BD-PRS) in the eight investigated groups. A, B
Each boxplot shows the median (vertical lines) and mean (gray dots) PRS values; whiskers represent the minimum and maximum values; the
vertical blue dashed lines separate the groups with subclinical versus clinical symptomatology; brackets with symbols indicate significantly
different pairwise Bonferroni-corrected comparisons at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) thresholds as well as comparisons trending
toward significance (#, adjusted p value range, 0.050–0.064). The results are adjusted for age, sex, and the first five ancestry principal
components. Higher scores indicate a higher polygenic burden. C, D The vertical dotted lines within the colored distributions represent the
mean PRS for each group. E, F The blue bars represent confidence intervals for each group’s least squares mean. If the red arrows for two
groups overlap, the difference is not significant after a Bonferroni correction. Group abbreviations: BD I bipolar I disorder, BD II bipolar II
disorder, CTRL control, RISK at-risk state for psychosis, SCHIZ H higher schizotypy, SCHIZ L lower schizotypy, SZA schizoaffective disorder, SZ
schizophrenia.
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Besides, given the significant effects for both PRSs, the existence
of shared risk loci for SZA may be inferred from our results relative
to this phenotype. Indeed, SZA seems genetically intermediate to
BD I and SZ, with evidence from twin studies identifying the same
genetic risk factors across SZA, SZ, and manic episodes [60].
Furthermore, similar results were observed for both controls and
the low schizotypy group, while the at-risk group seems best
positioned close to the clinical spectrum. Moreover, significant
associations were seen for both BD type-I (characterized by manic
episodes often alternating with depressive episodes) and BD type-
II (characterized by hypomania and depression) using BD-PRS, but
only for BD type-I using SZ-PRS. While we analyzed roughly four
times more BD I than BD II cases, this effect is probably best
explained by the putative partial genetic independence within
these two BD subtypes [61]. Our findings align with prior reports
confirming the ability of PRSs to accurately differentiate subtypes
along diagnostic spectra, such as between SZ and other psychotic
disorders [11], BD with and without psychotic features [62], and
BD with manic and depressive psychosis [63].
Notably, BD-PRS values were higher, conveying a higher

polygenic burden, in the at-risk group compared to controls, but
not different from those of clinical groups. BD-PRS also explained a
significant portion of variance in the binary logistic regression for
at-risk status, an effect observed at a somewhat weaker level for
SZ-PRS. These findings highlight the inherent genetic vulnerability
of this subclinical group. To the best of our knowledge, there has

been only one published report of a PRS analysis of a sizeable
population of individuals at high risk for psychosis. Perkins et al.
[64] recently demonstrated that SZ-PRSs were significantly
elevated in individuals transitioning to a psychotic disorder
diagnosis within a 2-year interval, compared to unaffected
controls, but not in those not transitioning to a clinical diagnosis.
Interestingly, our results were significant even without differen-
tiating individuals according to their conversion status. Another
key difference is the detection of effects using BD-PRS in our work.
In particular, beyond the well-established high clinical risk criteria
[29], we also assessed subtle subclinical hypomanic symptoms. A
large majority of at-risk individuals (72%) met a cut-off value of
≥14 in the HCL-32 as a secondary measure and tentative risk
criterion for BD [38]. This aligns with the common difficulties in
unambiguously distinguishing SZ from BD, especially in early
disorder onset [65], often continuing as diagnostic instability [66].
Given the large residual variance beyond the currently captured
polygenic burden, gene × environment interactions are biologi-
cally plausible mechanisms as course specifiers for symptom
development [67]. Such an interaction between BD-PRS and
childhood trauma predisposing individuals to more severe
disorders has indeed been shown recently [68]. As genetic risk is
not modifiable, future research should thus also concentrate on
psychosocial prevention of mental illness [69].
Our results inform the discussion of psychosis risk enrichment in

at-risk individuals [70]. A meta-analysis has estimated a 36%
transition rate within 3 years from clinical presentation in such
individuals [71]. In the sample included in this study, which was a
prospective investigation [38], over the same time window, the
transition rate into F20 (schizophrenia), F23 (brief psychotic
disorder), and BD diagnoses reached 15%. Currently, risk
identification and predictors of exacerbation are primarily based
on symptoms, thus lacking proper scalability [72]. In contrast to
family history as a proxy for genetic risk, PRS offers a scalable
quantitative metric for potential use in clinical contexts condi-
tional on empirical validation [73]. Notably, the severity of
psychopathology or clinical deterioration in the psychosis
spectrum is often linked to neurocognitive deficits [74] and both
SZ-PRS and BD-PRS have repeatedly been linked to cognition
[75, 76]. In a differential analysis, most SZ risk alleles were
associated with poorer cognition, while most BD risk alleles were
linked to better cognition [77]. Accordingly, moderate neurocog-
nitive impairments typically observed in the at-risk state [78],
compared to severe impairments in SZ, align with our finding that
genetic liability in this group was best characterized by risk
variants covered by BD-GWAS. Downstream in the pathway
towards symptom development, neurobiological mechanisms
influenced by genetic variation [79] might be even more directly
associated with emerging cognitive-perceptual disturbances [80].
These brain-based mechanisms may involve altered salience
processing, neural coding of prediction error, and precision
signaling [81]. Indeed, recent studies combining PRSs with brain
imaging parameters have revealed new insights into the genetic
determination of brain function and structure in psychosis
spectrum [82, 83].
This work also reveals a possible irregularity within the

continuum model at the genomic level, suggesting that schizo-
typy may share less genetic architecture with severe psychotic
disorders than formerly thought. This tentative interpretation can
be inferred from the lack of significant differences between the
high and low schizotypy groups and between either schizotypy
group or controls. Notably, in absolute terms, the high schizotypy
group had the most negative mean SZ-PRS among all groups and
marginally lower SZ-PRS and BD-PRS compared to the at-risk
group (trend level). In the binary logistic regressions, neither high
nor low schizotypy was significantly associated with either of the
two PRSs. It should be emphasized that this sample in our study
was composed of healthy participants by excluding individuals

Fig. 2 Block-wise binary logistic regressions using polygenic risk
score (PRS) in the case–control comparisons. A Polygenic risk score
for schizophrenia. B Polygenic risk score for bipolar disorder.
Asterisks indicate statistically significant effects of the full (covariates
only) versus baseline (covariates with PRS) models: *p < 0.05; **p <
0.01; ***p < 0.001. Group abbreviations: BD I bipolar I disorder, BD II
bipolar II disorder, CTRL controls, RISK at-risk state for psychosis,
SCHIZ H higher schizotypy, SCHIZ L lower schizotypy, SZA
schizoaffective disorder, SZ schizophrenia.
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with clinical diagnoses. Drawing participants without restriction
from a general population could lead to different results.
Previously, findings indicating high overlaps between schizotypy
and SZ have been made for single candidate genes [84, 85]. Our
observation aligns with a recent study by Nenadić et al. reporting
no association between SZ-PRS, BD-PRS, or MDD-PRS and
symptom SPQ scores in non-clinical subjects [28]. Similarly,
another PRS study identified a counter-intuitive negative relation-
ship between SZ-PRS and schizotypal dimensions [86]. These
studies challenge the key role of genetic predisposition and
emphasize environmental stress as a moderator of schizotypy-
related phenotypic expression [86], further informing the discus-
sion on competition versus synergism of genetic–environmental
influences [87]. Thus, schizotypy may be better positioned as a
qualitatively distinct taxon-like cluster rather than along a
unidimensional liability scale [88]. Furthermore, the possibility of
“benign” schizotypy [89] supported by some brain-based endo-
phenotype findings [90, 91] suggests that some protective
mechanisms may impede a psychotic decomposition of schizoty-
pal traits. While this claim merits further investigation, our results
encourage a local reappraisal of the genetic continuum model for
schizotypy.
Our findings also contribute to the ongoing discussion of the

symptom- and function-level correlates of PRS in support of
the continuum model. To the best of our knowledge, this study
is the largest to investigate relations between PRS and the gold
standard PANSS and is also unique in its transdiagnostic
approach. We observed significant associations with SZ-PRS
across all symptom measures. However, we were unable to
detect any effect whatsoever using BD-PRS, suggesting its lack
of specificity in this application and/or its limited power.
Previous studies varied in their capacity to find associations
with continuous symptom measures. These earlier results
included no significant effects [32], links with negative

symptoms [92], general psychopathology [30], and a mixture
of positive, negative, and cognitive trait dimensions [93]. It has
been suggested that a higher SZ-PRS typically predisposes
individuals to a general vulnerability [94]. Our results from 1134
data points extend this conclusion based on the observed effect
for overall symptomology (PANSS total score) across all three
quantiles examined. Still, the strongest effect was identified at
the high quantile for specific and more severe positive
symptoms, a hallmark of psychosis. Overall, the distribution-
dependent effects, especially as linked to different symptom
facets and their interactions with environmental factors, may be
a source of interesting findings in the field [68, 95].
This study has two particularly promising clinical applications of

PRSs in the context of psychotic disorders and their antecedents:
as potential support or a stratification tool in early diagnostic
decision-making; in informing pre-emptive or full treatment
strategies. Substantial clinical and research-based evidence
demonstrates the utility of early interventions in reducing the
highly debilitating character of psychotic disorders [96]. Indeed,
long periods of untreated illness are among the most negative
predictors of outcome, progression into chronic forms, and total
time spent disabled [97]. Variation in help-seeking behavior may
also delay presentation to healthcare specialists [98]. This further
motivates the search for objective methods of early detection,
which may be as easy as genotyping a blood sample and
performing an analysis with a sufficiently large training dataset.
For example, integrating PRS with other risk-conveying variables
has been shown to improve the prediction of psychosis [64].
Proposals for refining this approach have been incorporated into
current pilot projects aiming to create poly-risk scores that
consider idiosyncratic combinations of risk and protective factors
[99]. PRS-based approaches might also guide drug targeting [100]
or explain resistance to pharmacotherapy [15]. For example, PRSs
have been shown to be associated with responses to

Fig. 3 Quantile regression analysis of schizophrenia polygenic risk score (SZ-PRS) predicting symptoms. Three quantiles of symptom score
distributions (Q1= 0.25, Q2= 0.50, Q3= 0.75) included three dimensions (A–C) and the total score (D) of the Positive and Negative Syndrome
Scale (PANSS). The quantile regression estimates are visualized at 0.1 increments as black lines and with corresponding confidence intervals
(CIs) shown as the gray shaded areas. The Q1, Q2, and Q3 quantiles are depicted in blue. For comparison, the ordinary least squares (OLS)
regression estimates are shown as red solid lines with their CIs as dashed red lines. Many quantile estimates fell within the CI of the OLS
regression slope, indicating overlap (though OLS does not adequately address the floor effect). *p < 0.05; **p < 0.01; ***p < 0.001. There were
no significant results for BD-PRS. Group abbreviations: BD I bipolar I disorder, BD II bipolar II disorder, CTRL controls, RISK at-risk state for
psychosis, SCHIZ L lower schizotypy, SCHIZ H higher schizotypy, SZA schizoaffective disorder, SZ schizophrenia.
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antipsychotic medication [14] and lithium [101]. Such PRS-
informed bio-typing may identify patients who will benefit more
from one pharmacological treatment among alternatives.
We acknowledge some limitations of this work. The numbers of

participants varied substantially among groups. Inclusion of more
polarized schizotypy groups (i.e., more extreme phenotypes)
might also have been better suited to the goals of this study.
The cross-sectional nature of these findings implies the possibility
of a progression across the phenotypic spectrum, development of
comorbidities, or dampening of genetic liability later in life.
Indeed, the at-risk group had the lowest mean age. We also did
not consider the role of medication. Finally, as GWASs exclude rare
variants, we only investigated the effects of common variants with
population frequencies of 1% or more. There are also more
general limitations to polygenic risk profiling discussed in the
current scientific debate on PRS, which has included articles
covering its potential clinical utility [10] and bioethics [102], with
some expressly critical tones [103]. Notably, provided the ancestral
differences in linkage disequilibrium and polymorphisms, the
predictive accuracy of PRS is currently constrained to individuals
of European descent, owing to the lack of statistically powerful
GWASs of psychiatric disorders and traits from ethnically diverse
populations [104].
While PRS is certainly not immediately ready for routine clinical

application, this study highlights the value of PRS for SZ and BD in
elucidating the genetic architecture of psychosis and identifying
vulnerable individuals who may benefit from early attention and
monitoring. Future research should focus on possible differential
developmental trajectories and factors precipitating or mitigating
pre-existing genetic liability.
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