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We have studied the three-dimensional (3D) cytoarchitecture
of the human hippocampus in neuropathologically healthy and
Alzheimer’s disease (AD) individuals, based on phase-contrast
X-ray computed tomography of postmortem human tissue punch
biopsies. In view of recent findings suggesting a nuclear origin
of AD, we target in particular the nuclear structure of the den-
tate gyrus (DG) granule cells. Tissue samples of 20 individuals
were scanned and evaluated using a highly automated approach
of measurement and analysis, combining multiscale recordings,
optimized phase retrieval, segmentation by machine learning,
representation of structural properties in a feature space, and clas-
sification based on the theory of optimal transport. Accordingly,
we find that the prototypical transformation between a structure
representing healthy granule cells and the pathological state
involves a decrease in the volume of granule cell nuclei, as well as
an increase in the electron density and its spatial heterogeneity.
The latter can be explained by a higher ratio of heterochromatin
to euchromatin. Similarly, many other structural properties can
be derived from the data, reflecting both the natural polydis-
persity of the hippocampal cytoarchitecture between different
individuals in the physiological context and the structural effects
associated with AD pathology.

X-ray phase-contrast tomography | multiscale imaging | human
hippocampus | 3D virtual histology | Alzheimer’s disease

Brain mappings of the cyto- and myeloarchitecture in larger
brain areas performed postmortem are required to advance

our understanding of the human brain in quantitative terms.
Beyond refinements of a brain atlas, they are also essential for
later integration of in vivo functional observations with high-
resolution structural data (1–3). Mapping the brain, however,
requires additional imaging approaches, which can visualize and
quantify the three-dimensional (3D) architectonics, including
data from more than a single individual (2). The potential of
phase-contrast X-ray tomography also known as phase-contrast
computed tomography (PC-CT) for 3D brain imaging has been
recently demonstrated, both for small animals models (4–8) and
the human brain (9–12). Since the entire 3D architecture on
all scales is relevant for physiological functions and pathologi-
cal mechanisms, multiscale implementations of PC-CT (13) are
particularly suitable for brain mapping.

Complementary to genomics, proteomics, and metabolics,
structural data are also required to unravel mechanisms of
neurodegenerative diseases. Such data must be comprehensive
(large patient and control groups), quantitative, and fully digital;
amenable to advanced analysis including deep learning; and
intrinsically three-dimensional. Alzheimer’s disease (AD) is
a case in point: Evidence for morphological changes in the
hippocampus upon aging and disease can be found already in vivo
with MRI. To interpret such data based on a reference model,
a 3D probabilistic atlas of the hippocampus was put forward in

ref. 3, combining postmortem MRI with histology. The authors
concluded that, to test the hypothesis of differential involvement
of hippocampal subfields in AD, a “more granular study” of the
hippocampus in aging and disease would be required and hence
higher-resolution and truly 3D data.

To this end, we here present an advanced and multiscale im-
plementation of PC-CT in combination with automated segmen-
tation and statistical analysis of morphological features. In this
way, a much-needed complement to conventional 2D histology
is provided, sparing sample sectioning and staining. The signal is
generated by the spatial variation of the real-valued part of the
X-ray index of refraction n = 1− δ + iβ, with δ being propor-
tional to the electron density. Importantly, the advantage of
PC-CT derives from the real-valued decrement being signifi-
cantly larger than the imaginary, absorption-accounting compo-
nent β; i.e., δ/β ≈ 103 in the hard X-ray regime. Image contrast
is then efficiently formed by free-space propagation, i.e., self-
interference of a partially coherent beam behind the object. The
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fact that this does not require any additional optics between the
object and the detector provides a benefit both for dose efficiency
and for resolution. Several PC-CT studies have already targeted
hippocampal cytoarchitecture in transgenic mouse models for
AD (7, 14–17), which exhibit considerable contrast for a typical
hallmark associated with this disease, namely β-amyloid plaques.
In a recent study, we could also demonstrate the potential of
PC-CT on paraffin-embedded hippocampal human tissue af-
fected by AD and evaluate its capability to visualize different
pathologies, including plaques, depletion of neurons, or possible
recruitment of microglia to affected sites (12).

In this work, we study the 3D cytoarchitecture of the human
hippocampus, which serves the formation of declarative long-
term memory, i.e., remote episodic or remote semantic memory,
but may also affect recent memory, emotions, and vegetative
functions (18). Pathologically, the hippocampus is one of the
regions first affected in AD (19). As we show here, the through-
put of PC-CT measurement, reconstruction, segmentation, and
analysis is sufficiently high to treat data from a larger pool,
here consisting of postmortem paraffin-embedded tissue blocks
of several individuals, both of an AD and of a control group
(CTRL), categorized by neuropathological assessment based on
the National Institute of Aging – Alzheimer’s Association (NIA-
AA)–recommended ABC staging (20, 21). We specifically target
the dentate gyrus (DG) and its AD-caused structural alterations.
As recently shown, hippocampal neurogenesis and plasticity of
the entire hippocampal circuitry are linked to the DG and are
found to sharply drop in AD (21). Further, we deliberately do
not focus on plaques and tangles in AD, which have already been
targeted by a high number of studies, but address in particular
the nuclear structure of the DG neurons, since recent evidence

points to a nuclear origin of AD (22) including chromatin struc-
tures (23). In addition, we also include 3D imaging examples of
other parts and structures of the hippocampus and provide the
corresponding statistical analysis.

Fig. 1 shows a schematic of the hippocampus that is embedded
in both left and right temporal lobes of the cerebral cortex,
as a part of the limbic system. In Fig. 1A, the hippocampus
is sketched in the sagittal plane, where it forms an elongated
structure of about 4 to 5.2 cm in length (24). In Fig. 1B, the
frontal plane is shown, in which the appearance is often denoted
as snail shaped. Its characteristic functional units are shown in
Fig. 1C, most prominently including the cornu ammonis (CA)
and the DG, which is a dense zone of granule cells. In the
polysynaptic signal pathway relevant in semantic memory forma-
tion, input signals from the entorhinal cortex (EC) reach first
the DG, which is composed of elliptically shaped granular cells
with millimeter-long dendrites. Connected through mossy fibers,
information is further processed in the CA, whose neurons are
characterized by their pyramidal-shaped bodies. The compart-
mentalization of the CA with commonly attributed subregions
CA1 to -4 is not entirely standardized. The information exits
the hippocampus to the inferior temporal cortex, the temporal
pole, and the prefrontal cortex, constituting the gray matter
(GM). There are further pathways of information processing,
involving myelinated tracts in the white matter (WM) that link
the hippocampus to further brain regions. The physiological
relevance of the hippocampus, with respect to several important
signal pathways and its pivotal role in memory function and
neurodegenerative diseases, in particular in AD, underpins the
necessity to study its 3D structure with cellular and subcellular
resolution.

A

B

C D

E

Fig. 1. Human hippocampus overview. (A and B) Schematics of the human hippocampus (gold) and its location, (A) in sagittal and (B) in frontal view. (C)
Virtual slice through overview PC-CT data in EB configuration. The different neuronal layers are outlined: DG; CA differentiated into CA1, CA2, CA3, and
CA4; WM; GM; and EC. A region with calcified blood vessels (BV) is also indicated. (D and E) High-resolution PC-CT data from an AD patient. (D) Volume
rendering of calcified plaques (blue) in close proximity to the DG (gold). (E) Calcified β-amyloid-plaques (P) and calcified BVs are observed only to one side
of the DG, as shown here in a maximum-intensity projection (16.2 μm thickness). Red arrows indicate the vascular connections between plaques. (Scale bars:
C, 1 mm; E, 30 μm.)
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To cover the hippocampal cytoarchitecture in a larger pa-
tient cohort, we increase the sample throughput with respect to
earlier work (12) by an optimized recording strategy enabling
a large sample pool at high and comparable data quality, and
we implement a multiscale PC-CT workflow for human brain
tissue, based on parallel-beam (PB) recordings at high field of
view (FOV) combined with zooms into region of interest (ROI)
scanned at high magnification based on cone beam geometry.
We then use machine learning based on the V-net architecture
to segment neurons, followed by optimal transport (OT) theory
to unravel pathological alterations. Note that OT enables us
to identify “movement” in a patient cohort based on transport
metrics in a structural feature space, which we define in the image
segmentation step. OT also offers significant advantages over
standard statistical tools such as t testing of a single parameter,
since it can compare the entire neuron population, by metrics
quantifying changes in their distribution.

The implementation of PC-CT, notably regarding the multi-
scale configuration that comprises different zoom levels, is de-
tailed in Materials and Methods. Beginning with overview scans
with a FOV of several millimeters in expanded-beam (EB) con-
figuration as in Fig. 1 or in PB, subregions of the hippocampus
are presented at the different zoom levels in Results I: Multi-
scale Tomography of the Hippocampus. The structure of gran-
ule cell nuclei in the DG is then investigated in volumes of
108 to 109 μm3 at voxel size of px≈ 160 nm and in some
cases even at px≈ 50 nm, based on geometric magnification
using a divergent and highly coherent beam exiting an X-ray
waveguide (WG). In the high-resolution reconstructions, neu-
rons and in particular DG cell nuclei are segmented. Based on
the segmentation masks, histograms of morphological features
are obtained, containing results on the order of 10,000 neurons
for each tissue sample. Histograms of five selected features in
autopsies of 20 individuals (11 subjects with intermediate to high
AD neuropathologic change according to ref. 20, in the following
referred to as AD; 7 controls; and 2 with diffuse presentation
based on ABC score) are then compared in Results II: Geometric
and Statistical Analysis, using the OT tools. In a very general
manner, we propose an analysis workflow to identify a pathway
from healthy to pathological structure.

Results I: Multiscale Tomography of the Hippocampus
Fig. 1C shows the PC-CT result obtained for the largest FOV,
covering an 8-mm biopsy punch of a 2× 3× 0.3-cm3 tissue
block, scanned in EB configuration (SI Appendix, Tables S1 and
S2 and Fig. S1). The quintessential structure supporting all
further identification of ROIs, as already summarized in the
Introduction, is easily recognized and labeled based on visual
inspection of the 3D data. Already at this coarse level, the
granular cell band of the DG can be identified. It is bordered
by a tract of particularly electron-dense blood vessels, indicative
of calcifications. Note that calcified vasculature within the
hippocampus was frequently observed in tissues of different
subjects, both AD and CTRL. As presented in Fig. 1 D and E for
an AD case, these emerge particularly electron dense and may
even traverse β-amyloid, which then also show highly elevated
electron density (as reported in ref. 12). In addition, other regions
such as the pyramidal cell band of the CA, the WM, and the EC
can easily be located. Identification of these regions is important
in view of subsequent extraction of further subvolumes with a
1-mm biopsy punch for the high-resolution scans. As a proof of
principle that these large FOVs can also be scanned with smaller
voxel sizes, the full 8-mm punch was further scanned in PB
configuration (SI Appendix, Table S2). Using dynamic stitching
implemented by the NRStitcher (nonrigid stitching of terapixel-
scale volumetric images) program (25), 7× 7 individual scans
were combined to again cover the entire 8-mm punch in a single
large volume. By this approach, a tissue volume of 63 mm3 was

Fig. 2. Multiscale PC-CT data. (A) Virtual slice through the stitched recon-
struction volume of the entire 8-mm tissue sample obtained from 7 × 7 scans
in PB configuration. Labels indicate the ends of the DG band in this slice, as
well as calcified BVs. The red dashed box marks the region that is further
detailed in B, in two different parallel planes, demonstrating how the DG
band winds through the volume. (C, Bottom) Detailed view of the DG band,
as obtained from a CB scan recorded at M ≈ 40, at the position marked by
the solid red square in A. For comparison of data quality and contrast, C, Top
shows the corresponding PB data. (D) Highest zoom of the DG structure,
recorded at M ≈ 130. The nuclear envelope and heterochromatin become
visible by median-filtered maximum-intensity projection over 0.5 μm. (E) A
single nucleus is further highlighted by a full 3D rendering of the electron
density. Note that also here, darker areas are indicative of higher densities.
(Scale bars: A, 1 mm; B, 0.5 mm; C, 100 μm; D, 30 μm.)

covered with submicrometer voxel size. Fig. 2 presents frontal
plane slices through the stitched reconstruction volume. In
Fig. 2A, gray squares mark the single tomograms. With a few
local ring artifacts only, structures can be successfully traced
throughout the volume, well beyond the boundaries of a single
scan. Fig. 2B illustrates the winding of the DG band throughout
the volume in two different frontal planes. This 3D morphology
with its invaginations helps to accommodate a sufficiently high
number of DG cells. Based on the large FOV even in a single
tomogram, the PB data are particularly suitable to quantify
the DG-band morphology and width (see Fig. 3 and further
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Fig. 3. DG overview. The DG band in a section of 1.25 mm thickness (septotemporal axis) shows (A) segmented DG cell nuclei (gold) and vasculature (red)
and (B–D) rendering in false colors representing (B) the normalized electron density P of the nuclei, (C) its variance S, and (D) the local granular cell density.

analysis summarized in SI Appendix, Fig. S3 and detailed in the
text in SI Appendix). To image ROIs at higher magnification
M � 40 in cone-beam (CB) configuration and without local
tomography artifacts, subvolumes were extracted from the
8-mm block using a 1-mm biopsy punch. Fig. 2C presents a
slice through such a ROI, indicated by a red square in the
overview scan. In this configuration, even the substructure of
DG cell nuclei can be unveiled. These details are even better
resolved by further increasing the geometrical magnification to
M � 130, as shown in Fig. 2D for a slice and in Fig. 2E for a
3D volume rendering of a single nucleus, based on its electron
density.

Importantly, the image quality allows for semiautomatic seg-
mentation of the granular cell nuclei using the Ilastik software
(26) and a subsequent volume rendering of the annotated seg-
mentation masks using Avizo Lite (Thermo Fisher Scientific).
Fig. 3 presents an example for a volumetric perspective, showing
the overall bent shape of the DG cell band in Fig. 3A (gold),
jointly with the vasculature (red). Holes in the DG band are due
to major blood vessels penetrating the DG. Keeping the perspec-
tive, and applying this DG mask to the PC-CT gray values, we
can present volume renderings of different quantities: (Fig. 3B)
normalized electron density P; (Fig. 3C) standardized relative
variance S = σ2/ρ2 of the electron density within the nuclei,
indicative of the prevalence of heterochromatin; and (Fig. 3D)
the local cell density, averaged within a radius of 50 μm. In this
manner, the overall distribution and local inhomogeneities can
be visualized.

Next, we further illustrate high-resolution results obtained in
CB configuration for the examination of specific regions in the
hippocampus such as CA1, DG, surrounding GM, and WM.

Cornu Ammonis 1. Fig. 4 shows exemplary results obtained for
the cornu ammonis 1 (CA1) region, for a 1-mm sample that
was extracted and scanned as detailed in SI Appendix, Table S2.
The elongated, pyramidal shape that is typical of neurons in the
CA layer is well visualized by the maximum-intensity projections
(MIPs) presented in Fig. 4 A–C. In each cell, body, nucleus,
and nucleolus can be differentiated. For some cells, such as the
one marked by the top arrow (Fig. 4A), the contrast between
cell body and nucleus appears to reflect the position of the
nuclear membrane, while for others (Fig. 4A, bottom arrow),
the dominant effect is an overall increased electron density in
the nucleus. Further, the density within the cytosol shows some
variation. This is also observed for other cell types, as shown in
Fig. 4B, depicting the substructure of a satellite cell attached to a
neuron. In line with the function of the CA neurons for one-way
signal processing throughout the hippocampus, the consistent
polarization and orientation with the characteristic long dendrite
are very well visible throughout the 3D reconstruction volume.
The contrast is sufficient to trace the large dendrites over several
tens of micrometers as highlighted in Fig. 4C. Using Ilastik,
neuronal cell bodies and nuclei are segmented and 3D rendered
as shown in Fig. 4 D–F.

In the data of Fig. 4 C and E, areas of lower electron density
(light gray values) are often observed around the neurons. To
check whether this observation of lower electron density could
eventually be an artifact of sample preparation, e.g., by the
dehydration-and-embedding procedure of preparing formalin-
fixed and paraffin-embedded (FFPE) tissue blocks, we varied
the preparation and also scanned the tissue in a hydrated state.
For this purpose, a 1-mm sample was taken from a tissue block,
which was first chemically fixed with 10% formalin and then
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Fig. 4. CA1 region with pyramidal cells (CB data). (A) Pyramidal cells with
the typical uniaxial orientation are well visualized by their electron density,
when gray values are subjected to a MIP, here over a thickness of 13 μm.
The contrast is sufficient to distinguish cell bodies and nuclei, either by the
visibility of the nuclear envelope (upper arrow) or by an overall increased
electron density within the nuclei (lower arrow). (B and C) MIPs over 8.7
μm thickness. (B) Pyramidal cell with a satellite cell attached (arrow). (C)
Pyramidal cells are branched throughout the volume. (D and E) Volumetric
segmentation of the cell bodies. (F) Three-dimensional rendering of the cell
bodies (gold) and the nuclei (brown) in the entire reconstruction volume.
Gray-scaled orthoslices are included as a support for 3D visualization. (G) MIP
of gray matter tissue, over 1 μm thickness. (H) MIP of white matter tissue,
over 1.6 μm thickness. (Scale bars: A, D, E, G, and H, 50 μm; B and C, 10 μm.)

stored in phosphate-buffered saline at 4 ◦C, and examined in its
hydrated state, i.e., neither dehydrated nor paraffin embedded.
Interestingly, this showed that these areas of decreased elec-
tron density are also present in the images of hydrated tissue
(SI Appendix, Fig. S6).

Segmentation of pyramidal neurons was then applied to tissue
samples from different subjects, both of the AD and of the
CTRL group. Samples were extracted from the same position
in the hippocampus. Note that pathological changes associated
with AD are particularly pronounced in this region. Notably,
tissue samples from three individuals diagnosed with AD (ac-
cording to ABC staging; subjects 2, 6, and 21, aged 78± 11 y)
were compared to four controls (subjects 16, 17, 20, and 21,

aged 66± 20 y) and a further sample (subject 12). The results are
reported in SI Appendix and visualized in SI Appendix, Fig. S4.

Gray Matter. Fig. 4G shows a virtual slice (MIP) through hip-
pocampal GM tissue. For sample collection, the GM region was
identified based on histological analysis (stained by hematoxylin
and eosin as well as Bielschowsky silver impregnation). Pyra-
midal cells are also segmented in this region, enabling again
the evaluation of neuron density, neuronal morphology, and
orientation in full 3D.

White Matter. Fig. 4H displays a cross-section through WM tis-
sue. Again, the position at which the sample was extracted by a
biopsy punch in the FFPE block was chosen based on evaluation
of neighboring histological sections (stained by hematoxylin and
eosin as well as Bielschowsky silver impregnation). This tissue
segment does not exhibit particular neurons as the CA and
GM do, as expected, but appears rather fibrous, reflecting the
myelinated fibers of the WM.

Dentate Gyrus. The DG is a particularly substantial component
in the information processing within the hippocampus. Fig. 5
shows a reconstruction of this region from data scanned in the
CB configuration. As exemplified in Fig. 5A, subcellular details
can be visualized. The virtual section is in the same plane as in
Fig. 2. In Fig. 5B, the volume is sectioned in a plane parallel
to the DG band, emphasizing its wall-like appearance. Granular
cells exhibit a well-structured electron density within their nuclei,
which is surrounded by regions of lower electron density (lighter
gray values) in the cell body. Even interconnections between sin-
gle cells can be noticed. The zoom-in highlights the particularly
large variance of the electron density distribution in cell nuclei,
which can be associated with heterochromatin.

Different features in the reconstruction volume of the DG
were then identified and segmented, again using the interactive
learning and segmentation toolkit Ilastik. Fig. 5C shows the
volume-rendered segmentation of DG cell nuclei. Based on the
center of mass of the nuclei, a 3D cell density map was com-
puted as shown in Fig. 5D. The density obtained from the high-
resolution scans in CB configuration confirms the cell density
analysis of the large FOV overviews recorded in the PB config-
uration (Fig. 3D). The density ranges between 2 and 4.5 · 105
cells/mm3, which is in good agreement with the literature (27).

Results II: Geometric and Statistical Analysis
Histograms of Structural Properties of DG Nuclei. As a next step, we
quantify the DG cytoarchitecture in 3D to gain an understanding
of its intersubject variation both in the healthy physiological state
and in the pathological context of AD. To this end, the DG band
in samples of 20 different subjects was scanned, reconstructed,
segmented, and analyzed. AD cases were identified based on
the ABC score (20). Notably, samples from 11 AD subjects
aged 76.6± 9.3 y, 7 CTRL subjects aged 76.6± 7.0 y, and 2
further subjects with no group assignment were collected, as
listed in SI Appendix, Table S1. Similar to the multiscale workflow
described above, 1-mm samples were extracted from each tissue
block and imaged first in PB and then in CB configuration.
The following analysis is mainly based on the CB data, due
to the higher resolution capable of resolving nucleic structures,
while the overview scans in PB configuration helped in correct
positioning of CB scans and analysis robustness. The analysis of
the PB configuration data is given in SI Appendix, Fig. S3 and
corresponding text sections.

Fig. 6 illustrates the segmentation of DG neuronal nuclei (CB
data). In Fig. 6A, the same region is shown before and after
superimposing the object mask, generated from the segmenta-
tion by the machine-learning workflow, described in Fig. 6C. For
each object in the segmentation output, i.e., from each DG cell
nucleus, several structural properties are evaluated for further
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Fig. 5. Zoom into the DG cell band (CB data). (A) Transverse slice through the band. (B) Slice parallel to the DG band. The red square marks a region that
is shown in the zoom and with grayscale chosen to highlight the structure of the nuclei, i.e., the variance of electron density within the nuclei. (C) Volume
rendering of DG cell bodies. (D) Rendering with color indicating the local cell density (see color bar). (Scale bars: A and B, 100 μm; B, Inset, 20 μm.)

analysis: 1) median of the electron density ρ (compactness
parameter), 2) normalized variance of electron density s =
σ2/ρ2 as a proxy for the spatial variations within the nucleus
(heterogeneity parameter), 3) nuclei volume v (size parameter),
4) sphericity ϕ of the nucleus (form parameter), and 5) the
number of neighbors nn within the local vicinity (neuron packing
parameter). Here, object vicinity was defined by a radius given
as x̄nn + 2 ·MADx = 13.5 μm, where x̄nn = 8.8 μm denotes
the median of the next-neighbor distance distribution of all
samples, and MADx = 3.5 μm its median absolute deviation.
Fig. 6D presents the resulting histograms for all five structural
features, as the example of one subject belonging to the CTRL
group. In this particular case, the histograms contain data
corresponding to a total of 3,595 segmented nuclei in the
reconstruction volume satisfying the following selection criteria
applied to the segmentation output: Only objects with v > 35
μm3, 0.6 · x̄nn < xnn < x̄nn + 3 ·MADx , as well as lying within
the 1.5× interquartile range of any of the five features, are
considered for statistical evaluation. These criteria have been
chosen to minimize bias from segmentation artifacts.

Intersubject Variation and Effects of AD. The segmentation of the
granule cell nuclei and extraction of the five parameters per
cell, as described above, are then carried out for all individuals,
including AD patients and CTRLs, based on the same automated
workflow. For each property (parameter) and each individual, an

entire histogram containing the data of all segmented granules is
available. First, the different properties are compared indepen-
dently, one by one. Fig. 7 presents results for electron density
ρ and the heterogeneity parameter s (see SI Appendix, Fig. S2
for all other parameters). The violin plots shown in Fig. 7A
provide a quick overview and illustrate the degree of intra- and
intergroup variations of the histograms. Before addressing these
differences at the level of the entire histograms, the median val-
ues of the distributions are compared for the two groups (AD and
CTRL). The electron density is slightly higher for AD than for
CTRL subjects; i.e., ρ̄AD = 320.91 nm−3 versus ρ̄CTRL = 318.77
nm−3, with a reduced volume, i.e., v̄AD = 101.85 μm3 versus
v̄CTRL = 135.88 μm3, both indicating a trend to more compact
nuclei, with p values (Welch’s t test p ≈ 0.02 and p ≈ 0.07 for
ρ and v, respectively). At the same time, the median of the
heterogeneity parameter s increases from s̄CTRL = 1.07 · 10−5

to s̄AD = 1.45 · 10−5 in CTRL versus AD subjects, indicating
a trend toward a more heterogeneous spatial structure of the
nucleus in AD, but with p ≈ 0.17, this difference in median values
is not significant. Beyond comparison of the median values, how-
ever, entire granule populations should be compared between
subjects and groups, which will lead us again to consider the
changes in s as relevant to discriminate between pathological and
healthy states (see further below). Taking into account the entire
neuron population is important, since the physiological functions
may require a certain bandwidth of structural parameters, i.e.,
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Fig. 6. Segmentation workflow for DG nuclei. (A) Slice through exemplary 3D input data (CB configuration), (Top) without and (Bottom) with mask
annotations. (B) Three-dimensional rendering of the mask, within a cubic volume of side length 400 μm. (C) Flow diagram illustrating the steps of
segmentation. (D) To each masked object (DG cell nucleus), a number of properties can be attributed, resulting in respective histograms. (Scale bar: 100 μm.)

a dispersion of properties associated with functional states of
granules. It is therefore of interest to compare the inter- and
intragroup differences also in view of the entire histograms, as
quantified by the Wasserstein metric (W). Fig. 7B shows a matrix
of pairwise differences of the ρ distributions (“distance chart”),
evaluated with W. The matrix is divided into four quadrants,
showing differences between individuals within and between the
groups. Notwithstanding the large variations at the subject level
that are highlighted by this display, slightly increased differences
can be noted already from visual inspection of the two quadrants
comparing subjects across the groups.

To cope with the two major challenges of the data, the strong
intersubject variation and the dispersion of neuron structural
parameters of any single subject, we adopt a strategy, where each
individual is represented by a point cloud in a five-dimensional
space of structural parameters, denoted in the following as the
feature space. The analysis of the point clouds below is motivated
by the fact that intergroup structural differences for correspond-
ing classification of AD and CTRL groups are expected to be bet-
ter revealed in higher dimensions. Note that only for the special
and very unlikely case that the point cloud distribution can be
written as a factorized (separated) product to one-dimensional
distributions, no information is lost, when treating each dimen-
sion separately. Already a simple projection to a two-dimensional

subspace, as exemplified in Fig. 7C, shows that the point clouds
do not separate (factorize), since the structure parameters are
weakly correlated.

Classification of AD Pathology vs. Control. The point clouds rep-
resenting the granule cell population for each subject, as intro-
duced above, are further analyzed in the five-dimensional feature
space. First, we standardize the point clouds in each dimension
(feature) separately by the population (i.e., the union of all sam-
ple point clouds) mean and standard variation. The standardized
variables are denoted by the respective capital letter (P, S, V,
Φ, NN). Then, each subject’s point cloud is approximated by a
Gaussian distribution, with mean and covariance matrix given by
the empirical mean and covariance matrix of the point cloud. This
distribution can be conceptualized as an ellipsoid, centered at the
mean, orientation of the principal axes given by the eigenbasis
of the covariance matrix and their length by the square root of
the corresponding eigenvalues. A natural metric on the set of
Gaussian distributions is obtained by combining the Bures metric
(28) on the covariance matrices with the Euclidean distance on
the mean values. This yields the L2 OT distance, denoted by
W , between the two Gaussian distributions (29), which has re-
cently become increasingly popular in data analysis applications
(29, 30).
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Fig. 7. Structural features of DG cell nuclei. (A) Violin plots of electron density ρ and heterogeneity s, reflecting the histogram of the selected feature for
each individual. The color scheme refers to the ABC score from neuropathological staging. (B) Wasserstein metric W calculated between any two patients
and arranged in a matrix, as a measure of interhistogram distances, here shown for ρ. Gray dashed lines separate groups. (C) Point clouds in the feature
space, defined here by two selected features, illustrated for the example of two subjects (Left, AD group; Right, CTRL group), (Top) s vs. ρ and (Bottom) v
vs. ρ. Each point corresponds to one neuron. Ellipsoids indicate the results of a PCA with half axis defining the principal axis or equivalently the 1σ intervals
when fitting a two-dimensional Gaussian distribution to the point cloud.

Fig. 8 reports on the point cloud analysis and the correspond-
ing classification in feature space. In Fig. 8A, 2D projections
of the Gaussian distributions are visualized as ellipsoids, Fig. 8
A, Left for the AD group (orange-red) and Fig. 8 A, Right for
the CTRL group (green). The distribution in the V /P plane
(Fig. 8 A, Top) and the S/P plane (Fig. 8 A, Bottom) shows a
larger diversity for the AD group compared to the CTRL group.
The visualization of ellipsoids in 2D also serves to illustrate the
optimal transport cost: Ellipsoids representing patients 15 and
19, for example, are quite distinct, which is reflected by W = 0.86
(V /P plane) and W = 0.74 (S/P plane), respectively. Contrar-
ily, patients 15 and 12 are closer, evaluating to W = 0.21 (V /P
plane) and W = 0.29 (S/P plane), respectively. The distances
W between any two individuals are visualized in the matrix
shown in Fig. 8B, which can again be considered as a distance
chart, now taking into account the full five-dimensionality of the
feature space. Darker colors indicate a higher cost (distance) and
hence a stronger dissimilarity between the 5D ellipsoids of the
corresponding subjects. Two patients stand out strongly: numbers

5 and 8, which are two AD cases in an advanced state (both
show an ABC score of “high” and have a distinct high B score
compared to one further subject ranked with ABC score of high).

The OT distance W can also be evaluated directly at the level
of point clouds (29), making the Gaussian approximation an
optional intermediate step. For the full point clouds one also
obtains a distance chart analogous to that in Fig. 8B. We perform
the subsequent analysis both on full point clouds and with the
Gaussian approximation. Every subject can now be interpreted
as one point in “subject space” where distances are measured by
W (with or without Gaussian approximation). While this space
is not a linear vector space, it has the structure of a Riemannian
manifold (intuitively, a curved hypersurface). This manifold can
then be approximated locally by its tangent space at a suitable
reference point (usually the Riemannian center of mass of the
samples) (31). Thus, we have obtained an embedding of the
subjects into the linear tangent space (where each individual
is represented by one point, which in turn represents a point
cloud or a Gaussian distribution on feature space), where we
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Fig. 8. Multidimensional analysis, optimal transport, and classification. (A) Ellipsoidal representations of the DG cell nuclei in selected 2D subspaces of
the full 5D feature space. Ellipsoids are shown for 17 different subjects, (Left) subjects with AD and with no group assignment and (Right) CTRL, showing
(Top) volume V vs. electron density P and (Bottom) electron density variance S vs. P. (B) Matrix plot of the Bures cost (distance chart), with each entry
referring to the distance between the respective 5D ellipsoids. With respect to the chosen metric, each subject can be located in a subject space, constructed
from the ellipsoids. (C) PCA in a suitable tangent plane of this space yields the dominating components, along which the variance between the subjects
is maximized. The PCA components represent linear combinations of different features. Data points representing the different subjects are color coded
according to Thal phases (upper left triangle), Braak stages (lower right triangle), and ABC score (frame), but this information is not used in the construction
of the tangent space. (D) Linear SVM analysis applied to the four most dominant PCA components reveals a hyperplane separating both groups. (E) The
evolution of histograms according to the first PCA mode is found to describe the change from a healthy to a pathological state, indicating the “stereotypical
transformation,” from CTRL (++) to AD (−−) tissue. The histograms obtained by (Left) Gaussian approximation and from (Right) a full calculation taking
into account every element of the point clouds are found to be in good agreement.

can now apply standard data analysis tools. Principal component
analysis (PCA) can be used to identify the most dominant modes
(directions) of variation in the subject point cloud (in the tangent
space). Fig. 8C shows the coordinates of the patients with respect
to the two dominant PCA modes (pca1,pca2). It is important to
note that the feature space and its lower-dimensional (truncated)
tangent space are implemented without any prior categorization
into groups. Instead, the variance in the data itself is used to
identify a pathway of maximum changes (pca1 mode). Based on
the color code of the data points reflecting the ABC staging, we
can already visually infer that this pathway also separates the
patient groups. To quantify this further, a classification by a linear
support vector machine (SVM) is performed, as shown in Fig. 8D,
using the four most dominant PCA modes, which cover 92.4 or
88.7% of the data variance, in Gaussian approximation or on

point clouds, respectively. The normal vector of the separating
hyperplane that was obtained by the SVM can be interpreted as
the main direction of discrimination between CTRL and AD in
tangent space and differs only by 15◦ from the direction of the
pca1 mode. The shifts in the feature histograms corresponding
to the direction of pca1 are shown in Fig. 8E for the Gaussian
approximation (Fig. 8 E, Left) and the point clouds (Fig. 8 E,
Right), respectively, with colors indicating the shifts from CTRL
group (green) to AD group (red), in a continuous manner. The
evolution of the histograms (disease progression) is very similar
for Gaussians and point clouds analysis, which can be regarded as
a confirmation of validity and robustness. As a result, we can now
indicate quintessential changes in the histograms for all features,
as we move along the main axis discriminating pathology and
control. These changes are (from physiological to pathological
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end) 1) increased density, 2) increased heterogeneity, and 3)
smaller volume of the nuclei.

Discussion
Pathological Progression and Validity of the Analysis. The analysis
presented above indicates that with pathological progression
from CTRL to AD, DG cell nuclei become more compact (in-
crease of electron density, reduction of volume) and exhibit
higher heterogeneity (higher variance of electron density). These
findings are revealed by a quantitative workflow that can be
summarized as follows: 1) PC-CT of well-controlled regions
of the human brain, for a considerable number of individuals;
2) automated segmentation and classification of many neurons
based on machine learning and extraction of structural proper-
ties; 3) creation of a “feature space” based on single-cell proper-
ties and the neuron population for each individual (one point in
the feature space corresponds to a single cell and a point cloud
to one patient); and 4) construction of a subject space based on
the point clouds and their distances, as quantified by OT theory,
and subsequent local linearization, PCA, and SVM analysis. In
the subject space, a point corresponds to a single patient and a
point cloud to one group. Geometric analysis of the respective
subject groups indicates the dominating “modes,” which encode
a movement of cells in feature space that may correspond to
the progression from physiological to pathological states. Since
the full OT analysis is numerically complex and relies on very
recent mathematical work, we have also implemented a more
conservative Gaussian approximation of the point clouds, which
provides a fully established and numerically low-cost alternative
to the full analysis. Importantly, the Gaussian approximation
and the findings on point clouds are consistent, proving that
the conclusions are robust with respect to smaller variations in
the point distributions. At the same time, Fig. 8E shows that
the prototypical change of a histogram for the heterogeneity S
trends toward an asymmetric distribution for strong AD when
estimated on the point clouds. In particular, the distribution
exhibits a shoulder toward higher heterogeneity values, hinting at
a subpopulation of DG neurons relevant in the pathology. In the
Gaussian framework, this detail cannot be captured completely,
but appears only as a broadening of the histogram. This nicely
illustrates the more complete description provided by OT on the
full point cloud.

Heterogeneity, Chromatin, and AD. Next, we raise the question
of interpretation of these findings in the context of the aging
brain and AD. We have to address in particular the increasing
compactness and heterogeneity of the DG cell nuclei, which
were identified as a major marker for AD progression by the
analysis. Note that OT is able to detect changes in a structural
feature such as nuclear volume v, density ρ, or heterogeneity s
also in cases where the average parameter—i.e., averaged over
the neuron population of a patient—does not change significantly
between groups, as tested by a t test for example. This is be-
cause OT provides a measure for changes in the entire neuron
population and hence also takes into account a change in the
distribution such as the broadening observed in Fig. 8E. The
observed changes in heterogeneity can be interpreted based on
Fig. 2 D and E, where we can recognize the typical structural
patterns of heterochromatin as the dominating contribution to
the variance of electron density, i.e., the heterogeneity S. This
identification is plausible, since the noise contribution to S has
been minimized by median filtering prior to the quantification of
P and S. The attribution of s to heterochromatin patterns is also
in agreement with chromosomal conformation studies by soft
X-ray absorption tomography (32). Hence, it is reasonable to
draw the conclusion that the increase in heterogeneity is ex-
plained by an increasing ratio of heterochromatin to euchromatin
or more generally changes in chromatin conformation. In fact,

the percentage of DNA in the euchromatin state is smaller in
AD than in healthy tissue, as known from fractionation of DNA
extracted from postmortem brains (33). By PC-CT subnuclear
structure can be assessed at the single-neuron level in larger vol-
umes of human brain tissue without slicing or staining. Currently,
the topic of nuclear structure and AD receives much attention
as chromatin organization has now been linked to dysregula-
tion of genome architecture in aging and AD brain tissue (23).
Further, a nuclear origin of AD and dominant roles of nuclear
tau protein and of nuclear lamins have been pointed out (34).
A specific contribution to the increased level of heterogeneity
that we observe here could also be due to the formation of
distinct heterochromatic structures designated as senescence-
associated heterochromatic foci (SAHF). SAHF have first been
reported for senescent human fibroblasts (35) and have been
described as subnuclear heterochromatic compartments, which
potentially silence genes that promote cell cycle progression (36).
More recently, SAHF formation and senescence have also been
discussed in neurons and glial cells with respect to a putative
role in AD (37). An additional factor to the observed hetero-
geneity could be the nucleoplasmic reticulum that interrupts
the smooth nuclear surface by tubular invaginations of the nu-
clear envelope and for which a significant expansion was re-
ported in AD brain tissue (38), resulting from neurodegenerative
laminopathy.

Structural Variability. After discussing nucleic structure in
view of a possible role in AD, we briefly address DG and
hippocampal structure in a general context, in view of the average
structural parameters and their intersubject variability, also in the
physiological regime. To this end, we have evaluated the average
neuron density ρ̄n , the local density fluctuations ζn as an indicator
for possible local defects, the average width of the DG band dDG,
and the next-neighbor distance dNN. Note that dNN was quantified
from the inverse of the peak position of the structure factor,
which was computed from the nuclei center-of-mass positions
(SI Appendix, Methods, Short-range order of DG-granular cells).
The results are summarized in Table 1. Two observations are
noteworthy: First, in contrast to the nucleic structure, the
overall spatial distribution of DG neurons in terms of density,
density fluctuations, and packing does not differ between groups
(AD and CTRL), but was found to differ significantly between
subjects. As a result of this study, we can now give accurate
numbers for the structure of the human DG, notably its width
dDG = 32.8 μm, neuron density ρ̄n = 2.32 · 105 1/mm3, and the
next-neighbor distance dNN = 14.29 μm. In addition, we can
quantify the intersubject variance of these quantities. Defining
the structural polydispersity for a structural parameter p as
P =Δp/p, we find a surprisingly large value P = 26% for
the width of the DG band, while for neuron density and next-
neighbor distance we have P = 16% and P = 7%, respectively.

Accessibility and Scalability of PC-CT. Finally, we provide a brief
note on the accessibility, scalability, and possible translation of
PC-CT. The capabilities of PC-CT are currently substantially
augmented, both in quantity and in quality, at almost all syn-
chrotron radiation (SR) sources worldwide. Upgrades of electron
storage ring and X-ray optics, in combination with dedicated
beamlines designed for fully robotic sample handling and au-
tomated reconstruction, will substantially increase resolution,
image quality, and sample throughput. Furthermore, the current
pandemic is catalyzing mail-in and remote beamtime operation.
At the same time, ongoing instrumental progress enables at least
partial translation of the method from SR to compact laboratory
μ-CT, compatible with clinical use, e.g., in the neuropathology
units of university medical centers. Both developments will re-
quire or can at least significantly benefit from optimized PC-
CT reconstruction, segmentation based on machine learning, and
data analysis based on OT, as demonstrated here.
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Table 1. Structural parameters of the DG cell band: mean and SD (All, AD, CTRL)

Parameter (median over subject
All AD CTRL p∗

Neuron population) Mean SD Mean SD Mean SD

Electron density ρ (1/nm3) 320.06 2.00 320.91 2.10 318.77 0.92 0.020
Heterogeneity s (·10−5) 1.30 0.50 1.45 0.50 1.07 0.45 0.165
Volume v (μm3) 115.46 34.26 101.85 28.31 135.88 34.21 0.073
Sphericity ϕ 0.950 0.016 0.963 0.015 0.954 0.017 0.278
nn within radius of 13.5 μm 4.93 1.39 5.44 1.42 4.17 0.983 0.061

Cell density ρ̄n (·105 1/mm3) 2.32 0.37 2.35 0.46 2.32 0.15 0.842
DG bandwidth dDG (μm) 32.82 8.44 34.27 9.04 30.54 7.47 0.358
Next-neighbor distance dNN (μm) 14.29 1.01 13.88 0.95 15.04 0.65 0.009
nn within radius of 13.5 μm 4.83 1.47 5.18 1.66 4.29 0.95 0.166

The upper part refers to CB data and the lower part to PB data. For each subject, the median of the neuron population was calculated. p values reflect
group differences only with respect to the parameter median, not the entire neuron population, which is probed by OT. dNN is derived from the structure
factor maximum. The evaluation of the parameters is detailed in SI Appendix, Methods, Structural parameters of DG-cell nuclei. NN, number of neighbors.
∗t test (Welch).

Materials and Methods
Sample Collection and Preparation. Human hippocampus tissue was
retrieved at routine autopsy in agreement with the ethics committee of
the University Medical Center Göttingen. Following the protocol from
clinical pathology routine, autopsy dissection blocks from 23 subjects were
10% paraformaldehyde fixed, dehydrated, and paraffin embedded (FFPE).
One FFPE block measures about 2 × 3 × 0.3 cm3. Following ref. 20, we
then classified subjects according to the ABC score, accounting for (A) β-
amyloid plaques according to Thal phases (39), (B) neurofibrillar tangles
according to Braak stages (19, 40), and (C) neuritic plaques according to the
CERAD (consortium to establish a registry for Alzheimer’s disease) score (41).
Again following ref. 20, subjects with an AD likelihood “intermediate” or
“high” according to the compound ABC score were classified as AD (11/20
subjects; 2/11 subject datasets were excluded from CB analysis, as detailed
in SI Appendix, Sample collection and preparation). Subjects with an AD
likelihood “none” or “low” were classified as controls (7/20 subjects; 1/7
datasets were excluded from CB analysis, for the same reason as above).
For each subject analyzed in Results II: Geometric and Statistical Analysis,
the neuropathological findings are listed in SI Appendix, Table S1. Note
that 2/20 subjects were not assigned to any group due to their diffuse
presentation in A, B, and C scores (subjects 12 and 13). For PC-CT analysis,
cylindrical samples were then extracted from the FFPE blocks using either a
1- or an 8-mm biopsy punch and inserted into polyimide tubes.

Experimental Setup. The data presented in this work were recorded at
the GINIX holo-tomography endstation of the P10 undulator beamline,
Petra III, DESY, Hamburg, Germany (42), at a photon energy of 8.0 or
13.8 keV, selected by a Si(111) channel-cut monochromator. To cover the
cytoarchitecture over a wide range of length scales, ranging from entire
hippocampus structure in the frontal plane down to ROIs within the dentate
gyrus at subcellular resolution, the instrument’s multiscale capability was
used (13), comprising three different optical configurations. First, large FOVs
up to about 8 mm were scanned in a beam that was focused by a Kirkpatrick–
Baez (KB)-mirror system and subsequently broadened by its divergence. This
is denoted as EB configuration. Second, intermediate FOVs up to about 1.5
mm were scanned in a PB configuration, after moving the mirrors out of the
beam path. Finally, small FOVs up to about 0.4 mm were scanned at highest
resolution, using a compound optics of KB mirrors and X-ray WGs (CB con-
figuration) (10, 43). By adjusting the distance z01 between WG and sample,
two different voxel sizes of px � 160 nm and px � 50 nm were chosen in
this configuration, providing further zoom. The different configurations and
parameters are further detailed in SI Appendix, Methods.

Reconstruction. Projections were first corrected for empty beam and dark
images, recorded before and after the tomography scans. Phase retrieval
was performed by either the linearized contrast-transfer function (CTF)
scheme or the nonlinear Tikhonov (NLT) algorithm (44). Both are well
suited for the holographic regime corresponding to image formation at

small Fresnel numbers F = px2

zeffλ
� 1, with wavelength λ, and the effective

propagation distance zeff = z12/M. After phase retrieval of the projections,
tomographic reconstruction was performed by filtered back projection (FBP)
or a cone-beam (FDK; Feldkamp–Davis–Kress) algorithm, both as imple-
mented in the ASTRA toolbox (45). Spatial resolution was determined using
Fourier shell correlation (FSC), after applying a Kaiser–Bessel window of 7

pixels and a half-bit threshold. Based on the image quality metrics, 2/11 AD
and 1/7 control CB datasets were excluded from the analysis to keep the
segmentation quality on a similar level for all datasets. Further details are
given in SI Appendix, Methods.

Segmentation of DG Cell Nuclei. For the PB data, segmentation of DG cell
nuclei was carried out using the Blobfinder tool of the segmentation and vi-
sualization package Arivis (Arivis AG). The CB data were segmented with the
interactive software package Ilastik (26) and a further manual optimization
based on image filters and object removal based on visual control. These
segmentations served as ground-truth input for machine learning based on
convolutional neural networks (CNN) implemented via the Deep-learning V-
net, which is the three-dimensional generalization of the U-net design (46),
as detailed in SI Appendix, Methods, Segmentation of DG-cell nuclei.

Structural Parameters of DG Cell Nuclei. For segmented nuclei of the DG
cells, five features were selected for further analysis and computed based
on the segmentation mask for each individual: median (over DG neurons)
of the nuclear electron density ρ, normalized nuclear electron density
variance s = σ2/ρ2 (heterogeneity parameter), nuclear volume v, nuclear
sphericity ϕ (shape parameter), and number of neighbors nn in a radius
of 13.5 μm, a value selected in between first and second coordination
shells of the pair correlation function g(r) (10). The pairwise similarity (or
equivalently distance) between the one-dimensional histograms (separately
foreach feature, Fig. 7) was computed using the Wasserstein metric W of
order p = 2, as implemented in ref. 47.

Analysis Based on Optimal Transport. In the Gaussian approximation each
individual is represented by a normal distribution N (Σ, μ) with covariance
matrix Σ and mean μ. The Bures metric between two covariance matrices
was used as in ref. 28 to construct an optimal transport map between the
multidimensional normal distributions fitted to the point cloud data. Be-
yond this Gaussian approximation, point cloud optimal transport plans were
also computed with entropic regularization and the Sinkhorn algorithm.
Local linearization of the optimal transport metric is performed as described
in ref. 31, including the approximate extraction of an optimal transport map
from the optimal transport plan between two point clouds. In the Gaussian
approximation, the optimal transport center of mass (“barycenter”) was
used as a reference for linearization, which can be computed efficiently
with the fixed-point algorithm of ref. 48 and also serves as a basis to sample
104 points from Gaussian distribution for point cloud analysis. Linear SVM
classification was performed with the implementation of ref. 49. Full details
are given in SI Appendix, Methods, Analysis based on optimal transport.

Data Availability. CT reconstructions data have been deposited in Zen-
odo DOI: 10.5281/zenodo.5658994 (50). All study data are available upon
request.
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