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Supporting Information Text13

SI Methods14

Sample Collection and Preparation Human hippocampus tissue was retrieved at routine autopsy in agreement with the ethics15

committee of the University Medical Center Göttingen. Following the protocol from clinical pathology routine, autopsy16

dissection blocks from 23 subjects (13 subjects for DG-samples only, 2 for CA1-samples only, 6 for DG- and CA1-samples, 1 for17

DG-, CA1- and WM-samples, and 1 subject for GM-sample; in total resulting in 20 DG-samples, 4 CA1-samples, 1 WM- and 118

GM-sample) were 10% PFA-fixed, dehydrated and paraffin-embedded (FFPE). One FFPE block measures about 2× 3× 0.319

cm3. Tab. S1 lists the sample numbers with neuropathological staging. Tissue of one further patient has been 10% PFA-fixed20

and stored in PBS, i.e. has not been dehydrated and paraffin-embedded, for hydrated examination (cf. Fig. S6). For PC-CT,21

cylindrical samples were extracted using either a 1 or 8 mm-biopsy punch and inserted into polyimide tubes. A note on the22

number of DG samples: during the analysis of CB data from DG samples, 3/20 needed to be excluded since the corresponding23

tomographic acquisitions yielded inferior data quality and the automated segmentation quality was hence not on a comparable24

level (this concerns subjects 4, 9 and 20), while this was not necessary for PB data, which is much more robust against beam25

fluctuations.26

Neuropathological Staging Patients were diagnosed as AD patients following post-mortem analysis according to (1–4). Intra-27

neuronal tangles as well as dystrophic neuritic plaques were analyzed in hippocampal, temporal, frontal and occipital sections28

stained with a phospho-tau antibody (monoclonal mouse at8, Thermo Fisher Scientific, 1:100, pretreatment steamer + citrate29

pH 6). The same hippocampal blocks were used for neuropathological staging and PC-CT. For staging of plaques, Bielschowsky30

silver impregnation and an amyloid-beta staining (monoclonal mouse anti amyloid-beta, 6E10, Zytomed Systems GmbH,31

1:500 after pretreatment with formic acid, steamer + citrate pH 6) were performed. Following (4), we then classified patients32

according to the ABC score, accounting for β-amyloid plaques according to Thal phases (1) (A), neurofibrillar tangles according33

to Braak stages (2, 5) (B), and for neuritic plaques according to the CERAD score (3) (C). The overall ABC score is then34

evaluated in terms of an AD likelihood based on a logic matrix with the individual entries, as defined in (4). In this work,35

patients with a AD likelihood "intermediate" or "high" according to the compound ABC score were classified as AD patients,36

again following (4). One subject showed an amyloid pathology with cerebral amyloid angiopathy only while another subject37

displayed tau pathology only, with almost no amyloid depositions (subjects 12 and 13, respectively). Both are not assigned to38

any group. All results of the neuropathological staging are tabulated Tab. S1.39

Experimental Setup The data presented in this work were recorded at the GINIX holo-tomography endstation of the P1040

undulator beamline, Petra III, DESY, Hamburg (6), at a photon energy of 8.0 and 13.8 keV, selected by a Si(111) channel-cut41

monochromator. The beamline’s high brilliance > 1021 ph/s mrad2 mm2 (0.1% BW) (7), and correspondingly high coherence,42

enables coherent nano-focusing, and hence high-resolution phase-contrast recordings in the holographic regime, as well as43

high-contrast and fast parallel-beam acquisitions. In order to cover the cytoarchitecture over a wide range of length scales,44

ranging from the entire hippocampus structure in frontal plane, down to regions-of-interest (ROIs) within the dentate gyrus at45

sub-cellular resolution, the instrument’s multiscale capability was used (8, 9), comprising three different optical configurations46

which are illustrated in Fig. S1. First, large field-of-views (FOVs) of up to about 8 mm were scanned in a beam which47

was focused by a Kirkpatrick-Baez (KB) mirror system and subsequently broadened by its divergence. This is denoted as48

expanded beam (EB) configuration. Second, intermediate FOVs of up to about 1.5 mm were scanned in a parallel beam (PB)49

configuration, after moving the mirrors out of the beam path. Finally, small FOVs of up to about 0.4 mm were scanned at50

highest resolution, using a compound optics of KB mirrors and X-ray waveguides (WG) (10, 11) (cone-beam configuration, CB).51

By adjusting the distance z01 between WG and sample, two different voxel sizes of px ' 160 nm and px ' 50 nm were chosen52

in this configuration, providing further zoom. The reconstructed volumes of all recordings could be precisely registered with53

respect to each other, enabling a zoom into specific ROIs. The three configurations with their respective optical components,54

detector technologies, and tomographic acquisition schemes are presented in Tab. S2, and described in more detail below.55

EB Configuration X-rays were focused by Kirkpatrick-Baez (KB) mirrors onto a 3 µm pinhole, fabricated by focused-ion-milling,56

and acting as a spatial filter. This helped to suppress the stripe artifacts typically associated with the KB farfield (9). The57

sample stage was installed in the expanded beam at z01 ≈ 5.1 m behind the focus. The projections were recorded with a58

sCMOS detector (pco.edge, Optique Peter, 50 µm-LuAg scintillator, 6.5 µm physical pixel size and 2× interchangeable lenses)59

at a position of z02 ≈ 5.4 m. This configuration was used for PC-CT measurements of a 8 mm cylindrical tissue sample,60

covering the characteristic anatomical regions, notably the DG and the CA. The sample fit entirely into the FOV 8.3 mm×6.761

mm. Data from this configuration are presented in Fig. 1(c), where the CA1-4 fields, the DG, WM and further GM as well as62

vasculature can be clearly identified.63

PB Configuration After removing the KB mirrors, the pinhole, as well as various foils and windows of the beamline (8), the64

parallel undulator beam was used for PC-CT (Fig. S1). The sample was installed on a fully motorized tomography stage65

with air bearing (UPR-160 Air, Micos, Germany). Given the accuracy and reproducibility of the rotation, it was possible to66

acquire projections in a continuous scan, i.e. projections with a short exposure time were taken during continuous rotation of67

the sample (8). 1501 projections were acquired at a propagation distance z12 = 220 mm with an acquisition time of 0.035 s,68

using the microscope camera system described above with the 10× objective. This resulted in a FOV of 1.7 mm×1.3 mm at69

0.65 µm voxel size. This configuration was used both for punch biopsies of 1 mm diameter covered in a single scan, as well as70

to map multi-mm sized tissue samples by stitching and merging of several individual tomograms (Fig. 2).71
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Table S1. Sample list for neuropathological analysis: Columns give the assignment of sample numbers in the manuscript, the age, the A (Aβ
plaque score), B (NFT stage) and C (Neuritic plaque score), with the Thal phases (1), the Braak stage (2) and the CERAD score (3), respectively,
the cerebral amyloid angiopathy (CAA) and the overall ABC score according to (4), as well as the group assignment based on ABC and, finally,
which hippocampal region has been analyzed from the respective subject.

Subject no. Age Thal phase A Braak stage B CERAD score C CAA ABC-based scoring Group Sex PC-CT analysis of...

1 82 3 A2 3 B2 sparse C1 1 intermediate† AD f DG
2 71 4-5 A3 5 B3 frequent C3 0 high† AD m DG & CA1
3 74 3 A2 6 B3 moderate C2 1 intermediate AD f DG
4 84 3 A2 4 B2 sparse C1 0 intermediate† AD m DG∗

5 66 4-5 A3 6 B3 frequent C3 1 high† AD m DG
6 72 3 A2 6 B3 moderate C2 0 intermediate AD m DG & CA1
7 83 1-2 A1 5 B3 moderate C2 1 intermediate† AD f DG
8 91 4-5 A3 6 B3 frequent C3 1 high† AD m DG
9 70 3 A2 5 B3 moderate C2 1 intermediate AD f DG∗

10 62 4-5 A3 4 B2 moderate C2 0 intermediate AD f DG
11 87 3 A2 5 B3 sparse C1 1 intermediate AD f DG
12 86 0 A0 5 B3 not C0 1 not - m DG & CA1
13 87 1-2 A1 4 B2 not C0 0 low - f DG
14 84 0 A0 2 B1 not C0 0 not CTRL f DG
15 77 3 A2 2 B1 not C0 0 low CTRL m DG
16 74 1-2 A1 2 B1 not C0 0 low CTRL f DG & CA1
17 71 1 A1 1 B1 nd nd nd N-L CTRL m DG & CA1
18 65 0 A0 1 B1 not C0 0 not CTRL m DG
19 83 3 A2 1 B1 sparse C1 0 low CTRL m DG
20 82 0 A0 2 B1 not C0 0 not CTRL m DG∗ & CA1

21 91 4-5 A3 5 B3 moderate C2 0 intermediate AD m CA1
22 37 0 A0 1 B1 sparse C0 0 not CTRL m CA1

† marks a known clinical history of dementia, ∗ the CB data sets which have been excluded from analysis. nd = not determined.
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CB Configuration For cone-beam (CB) PC-CT with high spatial resolution, the beam was focused by KB mirrors to approx.72

310× 320 nm2, and coupled into an X-ray waveguide (WG) for further reduction of beam size, and for coherence and wavefront73

filtering. The waveguides consist of empty channels (102 nm lateral entrance/exit width) fabricated by e-beam lithography and74

wafer bonding (12–15). At low-E X-rays (i.e. ≤ 8 keV), a WG with a 1 mm-guiding layer consisting of Si was selected, at75

high-E X-rays (≥ 13.8 keV), Ge was chosen with 0.2 mm depth; see also Tab. S2 for specifications of the WG systems. The76

WG provides a secondary source of sub-50 nm spot size, and a beam with high spatial coherence and a smooth wavefront,77

which is decoupled from upstream optical components of the beamline. The geometric magnification of M = z02
z01
≈ 41, or78

M ≈ 132, respectively, was adjusted by the motorized sample tower (same as PB configuration). Projections were recorded79

with a fiber-coupled sCMOS Camera (Zyla 5.5 HF, Andor) positioned at z02 ≈ 5.1 m, with 2560 × 2160 pixels of 6.5 µm pixel80

size, and 15 µm-Gadox scintillator. Biopsy punches of 1 mm cross section were scanned with a FOV of 0.4 mm×0.4 mm and81

a voxel sizes of approx. 160 nm (values for M ≈ 41), which allowed investigations with sub-cellular resolution, regarding in82

particular the structure of the DG cell nuclei (cf. Fig. 2(b & c)).83

Phase Retrieval and Object Reconstruction Phase retrieval has been carried out after correcting for empty beam and dark84

images, recorded before and after the tomography scans. For the EB configuration, empty beam recordings were analyzed by85

principal component analysis (PCA) prior to flat-field correction (9). Phase retrieval was performed by either the linearized86

contrast-transfer-function (CTF) scheme or by the non-linear Tikhonov (NLT) algorithm (16). Both are well-suited for the87

holographic regime corresponding to image formation at small Fresnel numbers F = px2

zeffλ
� 1, with wavelength λ, and the88

effective propagation distance zeff = z12/M . For homogeneous objects with coupled ratio δ
β
of the decrements of the index of89

refraction n = 1− δ + iβ, the phase Φ in the object plane is obtained from the flat-field corrected projections Iexp by (17–19)90

Φ( ~r⊥) = F⊥−1

(∑N

n=1 ξn · F⊥ (Iexp(~r⊥, zn)− 1)∑N

n=1 2 · ξ2
n + α(~k⊥)

)
, [1]

ξn = sin(χn) + δ

β
cos(χn) ,

where ~r⊥ denotes the position vector in the object plane, and ~k the squared spatial frequency in natural units χn = λnznk
2
x,y

4π .91

In phase retrieval, the optical property of the tissue δ
β
is treated as an effective parameter, chosen based on inspection. The92

zero-crossings of the denominator are regularized by the function α(~k⊥). To further stabilize phase retrieval, multiple datasets93

(N = 2-4) at different, carefully chosen χn were recorded, based on variation of z01. When the linearization inherent in94

CTF-reconstruction failed, we utilized the iterative NLT-algorithm which can be regarded as a non-linear generalization (16).95

In fact, the NLT was used for most of the data collected in CB configuration, in particular the entire scan series used for96

the statistical DG analysis. After phase retrieval of the projections, tomographic reconstruction was performed by filtered97

back-projection (FBP), or a cone-beam (FDK) algorithm, both as implemented in the ASTRA-toolbox (20–22). Post-processing98

included a ring-filter step as in (23) ("additive"/"A" approach) or (24) ("wavelet"/"W"). Alternatively, in the datasets of99

PB configuration which encompassed full 360◦-scans, ring artifacts were treated by respective "replacement" ("R"). Spatial100

resolution was determined using Fourier-Shell-correlation (FSC) (25), after applying a Kaiser-Bessel-window of 7 pixels and a101

half-bit threshold. If desired, gray values could be converted to electron density ρ (e−/µm3) using tabulated values (26) as102

detailed in (27), based on the X-ray energy and the fact that the tissues were fully penetrated by paraffin (C30H62, 0.9 g/cm3,103

ρ ≈ 3.1 · 102 nm−3, under the assumption that the maximum of the tomographic gray value histogram can be assigned to the104

impregnation material). Based on the image quality metrics, 2/10 AD subjects and 1/10 control CB datasets were excluded105

from the analysis to keep the segmentation quality on a similar level for all data sets (subjects 4, 9 and 20).106

Segmentation of CA1 Neurons Segmentation of pyramidal neurons in the CA1 region required a segmentation algorithm107

compatible with low contrast and variable cellular morphology. At the same time, there was not sufficient data available for the108

deep learning approach, as used for the DG cell nuclei. We therefore turned to the Chan-Vese level-set algorithm (28), which109

determines the object contour (mask) based on minimizing an energy functional, including contributions due to gray value110

deviations from the average values in- and outside the object, its surface and its volume. In this work, the python level-set111

implementation of the simple insight toolkit (29) was used.112

Computation of Local Cell Density Using the segmentation masks, each single object (i.e. cell nucleus) was identified and
represented by its center-of-mass (COM). The resulting 3d-array Mp hence has non-zero entries only at the COM positions.
The local density on a given coarse-graining scale r was then computed by convolution between COM-positions and a sphere
with radius r. The local density at any point is proportional to the number of spheres reaching this point and the volume
of the test sphere. To avoid artifacts from sharp interfaces, the spheres were smoothed by Gaussian filtering. Denoting the
smoothed sphere (convolution kernel) as Mr, the convolution is implemented in Fourier space based on multiplication of the
Fast Fourier transforms (FFT) of Mp and Mr. The cell density ρpr (objects per volume element) in real space is then obtained
by the inverse FFT followed by a proper normalization, which can be written as

ρpr = 1
px3 ·

R
(
F−1 (F(Mp) · F(Mr))

)
R (F−1 (F(J) · F(Mr)))

,
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where J denotes an array of ones of the same size as Mp, F(·) denotes the Fast Fourier transform, and R(·) extracts the real113

part of a complex argument. For the PB data, a radius r = 52 µm, was chosen. This workflow has been adapted from (11).114

Short-range Order of DG Granular Cells Apart from cell density and the shape of the DG band, the local short range order of
granule cells can be analyzed, similar to structural analysis of liquids or amorphous solids in condensed matter. Such an
approach based either on the pair-correlation function g(r) or its Fourier transform given by a structure factor S(q) was already
adapted in (11) for the granule layer of human cerebellum. Here, we used the structure factor

S(q) =

〈
1
N ·

∣∣∣∣∣
N∑

j=1

eiq·pj

∣∣∣∣∣
2〉

φ,θ

,

computed for an array of points q in Fourier space (scattering vectors) based on the spatial COM coordinates p of the DG cell115

nuclei (segmentation masks of PB data), with the total number of cells N . After radial averaging in q-space, the structure116

factors S(q) are presented in Fig. S3(g). Solid lines (red, green) are given by the group-wise (AD, CTRL) median, with117

half-transparent areas covering the 1σ-intervals of each group.118

Segmentation of DG Cell Nuclei For the PB data, segmentation of DG cell nuclei was carried out using the Blobfinder-tool of119

the segmentation and visualization package Arivis (Arivis AG, Germany). To this end, the Draw Object-tool was first used to120

roughly restrict the ROI to the DG. The Blobfinder was then applied to this volume (diameter: 7.2 µm, probability threshold:121

18.3%, split sensitivity: 30.9%). Subsequently, the Feature Filter was used to remove objects of size (≤ 2.5 · 103 µm3), sphericity122

(≤ 0.25) or intensity. Finally, a python script was written to remove cells outside the DG band based on criteria involving123

next-neighbor distances.124

The CB data, in which the DG cell nuclei are much better resolved, required a more detailed object mask, retrieved as125

follows: First, 6 datasets were segmented with the interactive software package Ilastik (30), and a further manual optimization126

based on image filters and object removal based on visual control. These segmentations served as ground truth input for127

machine learning based on convolutional neural networks (CNN) implemented via the Deep-learning V-net, which is the128

three-dimensional generalization of the U-net design (31). Here, the architecture from (32) was adapted, where four data sets129

have been used for training, two for validation. The Adam optimizer together with the dice loss function was monitored in the130

training procedure to cope with the class imbalance between cell and background voxels. In order to account for differences131

in image quality, data augmentation was applied. Further, a revised ground truth was obtained iteratively in parallel with132

V-net training: output probability maps were thresholded (individually for each sample), fine-tuned (manually), and used as133

revised ground truths. Training was carried out on a single NVIDIA Quadro RTX 8000. To fit the GPU memory, data sets134

were rebinned to a size of 5123 voxels, from which single subvolumes of 2563 voxels were used for both training and validation135

data, resulting in a binary dice coefficient on the validation set of 81%.136

Note that for the volume rendering of the DG band and β-amyloid plaques in Fig. 1(d), data segmentation was solely based on137

the Ilastik software.138

Structural Parameters of DG Cell Nuclei For segmented nuclei of the DG cells, five features were selected for further analysis, and
computed based on the segmentation mask for each individual: median (over DG neurons) of the nuclear electron density
ρ, normalized nuclear electron density variance s = σ2/ρ2 (heterogeneity parameter), nuclear volume v, nuclear sphericity
ϕ (shape parameter), and number of neighbors nn in a radius of 13.5 µm, a value selected in between first and second
coordination shell of the pair correlation function g(r), see also (11). The pairwise similarity (or equivalently distance) between
the one-dimensional histograms (separately for each feature, Fig. 6) was computed using the 1d-Wasserstein metric W of
order p = 2, as implemented in (33). In addition, we also computed distances based on the Kullback-Leibler-Divergence (KLD),
defined as (34–36).

KLD[h(β)||h(α)] =
N∑
i=1

h(βi) log
(
h(βi)
h(αi)

)
. [2]

In most cases, this yielded similar results, but with the additional problem of the KLD being ill-defined for zero values of the139

discretized probability distributions (zero bins). The metrics/measures were applied to each two histograms h(α), h(β) with140

N = 70 bins resulting from ∼ 104 objects per subject and feature. Also note that h(α) and h(β) have been normalized prior to141

input.142

Furthermore, based on the PB datasets which span a much larger FOV than the CB, further parameters have been computed143

and are presented in the lower part of Tab. 1 in the main article. These parameters concern the overall DG band structure,144

and not single DG cells. (i) From the 3d local cell density masks (defined in the SI Appendix, Methods "Computation of145

Local Cell Density"), median and standard deviation of the local cell density are denoted by ρ̄n and ζn, respectively. ζn is also146

referred to as "local density fluctuations", and is an indicator for possible local defects. (ii) The DG band width dDG of each147

data set is based on the binary 3d-mask of the DG, to which then a distance analysis tool has been applied: for each voxel148

within the DG, this yields the distance to the closest voxel outside the DG. The central line, extracted by skeletonization,149

indicates the local thickness, from which the median is computed to obtain dDG. (iii) Analysis of the structure factor (see SI150

Appendix, Methods "Short-range Order of DG Granular Cells") yields the next-neighbor distance dNN.151
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Presentation of Gaussian Ellipsoids The point clouds in n dimensions (nd) were described by nd ellipsoids, obtained as follows:152

the n× n-covariance matrix and the respective nd-vector of mean values were obtained for a given point cloud. An ellipsoid153

was then centered around the mean (or equivalently the COM) of the point cloud, with ellipsoidal half axes (magnitude154

and directions) given by the eigenvectors of the covariance matrix (square root of eigenvalue and unit eigen vector). This is155

equivalent to least-square fitting to a multi-dimensional Gaussian distribution, with standard deviation (1σ-interval) represented156

by the half axes of the ellipsoids. The graphical functions were implemented with MATLAB functions presented in (37).157

Analysis based on Optimal Transport In the Gaussian approximation each individual is represented by a normal distribution
N (Σ, µ) with covariance matrix Σ and mean µ. The Bures metric between two covariance matrices is given by (38, 39)

B(Σα,Σβ) =

√
tr

(
Σα + Σβ − 2

(
Σ1/2
α ΣβΣ1/2

α

)1/2
)
,

and the L2-optimal transport distance between two normal distributions N (Σα, µα) and N (Σβ , µβ) can be expressed as (40)

W2
2 (α, β) = ||µα − µβ ||2 + B(Σα,Σβ)2 ,

the optimal transport map from α to β is given by

Tα,β : x 7→ µβ + Σ−1/2
α

(
Σ1/2
α ΣβΣ1/2

α

)1/2 Σ−1/2
α · (x− µα) .

For point clouds, optimal transport plans between the normalized empirical measures were computed with entropic regularization158

and the Sinkhorn algorithm using the implementation of (41), with a final regularization parameter of ε = 10−6 and a plan159

threshold of 10−10 which results in high quality approximate solutions where the scale of entropic blur is considerably below160

the typical nearest neighbour distance of the point clouds. Local linearization of the optimal transport metric is performed as161

described in (42), including the approximate extraction of an optimal transport map T from the optimal transport plan between162

two point clouds. In the Gaussian approximation, the optimal transport center of mass ("barycenter") was used as reference for163

linearization, which can be computed efficiently with the fixed-point algorithm of (43). For point clouds we sampled 104 points164

from the Gaussian barycenter as an approximate reference point. SVM-classification was done with the implementation of (44).165

Note that we only used a linear (i.e. without kernel functions) SVM on four PCA-modes to avoid any risk of overfitting. Our166

main motivation was to extract a robust discriminating axis that lends itself to subsequent medical interpretation.167

SI Additional Datasets and Analysis168

DG Cell Nuclei. Fig. S2 presents additional plots on the statistical analysis of DG cell nuclei (CB data). This includes the169

histograms (violin plots) shown in (a) for the structural parameters ("features") volume v, sphericity ϕ and next neighbors nn170

within a radius of 13.5 µm, which are not shown in the main manuscript, for reasons of space restrictions. In (b), a correlation171

matrix is presented showing the correlation between any two elements of the set of features, for all subjects. Noteworthy are172

a positive correlation between density and volume ρ & v, and a negative one between heterogeneity and sphericity s & ϕ,173

i.e. large nuclei tend to be denser, and nuclei with larger heterogeneity (higher heterochromatin-to-euchromatin-ratio) tend174

to be more elongated and hence less spherical. These correlations are observed for all subjects. In (c), the "distance charts"175

(Wasserstein-metric, W ) between individuals are shown for all features except ρ, which had already been included in the176

main manuscript. These heatmaps again convey the large inter-subject variation within and across groups. This is further177

quantified by the corresponding plots of W values (for each feature), computed for single individuals with respect to their entire178

group population. For the heterogeneity parameter s, the in-control-group distances are found to be significantly smaller than179

distances involving AD-data. A similar trend is found for the sphericity ϕ and the packing parameter nn, where the distances180

within the CTRL group are smaller than for the AD- or the cross-group case. Finally, (e) shows a graph representation (45) of181

distances based on the Bures-cost W. Note that on the group-level, as shown in the main manuscript, the distances are better182

revealed when all features are treated jointly in the five-dimensional feature space, as quantified here by W.183

Next, Fig. S3 presents statistical analysis of DG cell nuclei, as segmented in the large volume reconstructions obtained by184

the PB configuration. The larger field-of-view (FOV) results in a larger section of the DG band which can be captured. Hence,185

in particular the width of the DG band dDG and its standard deviation dσ, as well as the local "packing" parameter nn can be186

well-assessed from this data. In (a), the corresponding box-whisker plots are shown. The width of the DG band is slightly187

widened, but does not significantly change in the AD group with respect to CTRL. Interestingly, nn seems much more tightly188

controlled in the CTRL group, i.e. the physiological regime, while the dispersion of nn values is much higher in the AD group,189

i.e. the local ordering differs substantially between members of this group. In (b), the feature histograms are presented for all190

patients in form of a violin plot. Since the larger FOV compared to CB configuration comes at cost of resolution, a segmented191

nucleus is now sampled by much fewer voxels, and the structural features within the nuclei are no longer well-assessed. In192

particular, we cannot expect the variance in electron density, i.e. the heterogeneity parameter s, to capture the sub-structure193

of the nucleus. Also, volume v and sphericity ϕ can be extracted only with much higher sampling errors. The corresponding194

"sampling artifact" also introduces bias in estimating v and ϕ, as can be seen by comparison with the high-resolution CB data195

which can be regarded as "ground truth". This may also affect the correlation plot of v, ϕ and s, which are shown in (c),196

and the corresponding W -metric, calculated for 1d-feature distributions between each two individuals as shown in (e), and197
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presented as box-whisker-plots for inter- and intra-group behavior, see (d). Contrarily, the results of ρ and nn, also depicted in198

(d-e), can be considered robust with respect to sampling. Here we note that in particular, the distances (W ) within the CTRL199

group are much smaller than within the AD group or across groups, again indicating a much more tightly controlled parameter200

nn in the physiological regime, and a possible positional disordering effect of DG neurons in AD. The smaller distances between201

patients of the CTRL group is confirmed by the distance chart shown in (f), presenting the 5d Bures-cost W. However, we202

have to keep in mind that also poorly sampled features contribute here. In (g) more analysis is included on the local packing.203

Instead of counting the number of neighboring neurons (nuclei) within a certain shell, as for the definition of nn, we now ask for204

the typical distance distribution of neighbors, as described by a structure factor S(q) computed from the nuclear positions, see205

SI Appendix, Methods above. Compared to CTRL, the AD-curve shows a broader dip and a less prominent peak, indicative of206

a reduced short range order of nuclear positions. In addition, the AD group exhibits larger inter-subject variation, as illustrated207

by the shaded 1σ-intervals, again underlining a tighter control of DG structure in CTRL than in AD.208

Cornu Ammonis 1. Fig. S4 summarizes the analysis of pyramidal neurons in the CA1 region. Post mortem biopsy punch209

samples from 8 different subjects were scanned: 3 subjects diagnosed with AD (based on ABC score; subjects 2, 6 and 21, aged210

78± 11 years), 4 subjects of the control group (subjects 16, 17, 20 and 22, aged 66± 20 years), and a further sample (subject211

12). For this purpose, all samples were collected from the same location within the hippocampus. The segmentation of neurons212

was carried out as detailed in SI Appendix, Methods. The segmentation quality is illustrated in Fig. S4(a). Here, gold-rendered213

structures mark voxels included in the segmentation mask. In (b), histograms for the same structural features as for the214

DG-analysis in the main text were evaluated: (1) median of electron density ρ (e−/µm3), (2) its relative variance s = σ2/ρ2, (3)215

object volume v and (4) sphericity ϕ, as well as (5) number of neighboring neurons nn within a radius of 120 µm. Fig. S4(c)216

illustrates the correlations between different features. For example, in all subjects, smaller volume of the pyramidal neurons217

correlates negatively with sphericity. Visual inspection of the histograms in (b) may indicate a slight group-specific segregation218

for ϕ and nn. This is corroborated, when taking the distances between the entire feature histograms into account (W ), either219

in form of the distance chart (Fig. S4(d)), or by comparing distances for single individuals with respect to their overall group220

distribution (Fig. S4(e)). Again, ϕ and nn show a marginally significant pattern, while the other features are dominated by221

the inter-subject variation with no significant effect on the group level. Fig. S4(f) and (g) illustrate the Bures-cost, taking all222

features into account. While this completes the analysis, we must be cautious about drawing conclusions here, since only 3-4223

subjects of each group have been measured, and including a younger patient (aged 37 years). Further, datasets have been224

recorded at slightly different configurations, in particular regarding the X-ray energy and WG-optics, which may result in225

different image quality.226

Multiscale Implementation. The multiscale implementation presented in the main article includes the stitching of many individual227

tomographic scans. For completeness, Fig. S5 presents a full slice through the entire 7 × 7 tomographic reconstructions228

(stitched) covering the entire 8 mm cylindrical punch of hippocampal tissue recorded in PB configuration.229

Hydrated Tissue. While formalin-fixed paraffin-embedded (FFPE) tissue which is the standard in histology and pathology230

has been used for this work, we have also explored the image quality for hydrated (PBS), formalin-fixed tissue. Fig. S6231

shows a corresponding reconstruction (CA1 region, CTRL group, CB configuration). While the noise is higher than for232

FFPE-preparation, we can still well recognize cellular bodies, nuclei and apical dendrites of the pyramidal neurons. Interestingly,233

tissue gaps around neurons are also observed at this stage of sample preparation, without any tissue dehydration or paraffin234

embedding.235

Translation to Laboratory µCT. In view of future applications of the approach presented here for neuro-pathology it is important236

to know to which extent PC-CT can be translated to laboratory µCT instrumentation, more readily available in a clinical237

setting. Fig. S7 shows reconstructions from laboratory datasets, acquired with a µPC-CT setup (46, 47). X-rays were generated238

by a liquid-metal jet source (Excillum Inc.) with Kα,Ga = 9.5 keV. The sample and detector stages were fully motorized. Scans239

were recorded in two different configurations, serving a multiscale implementation: Overview scans with 7.7×9.7 mm2 FOV and240

px = 5 µm, were realized using a Dexela flat panel CMOS detector (150 µm, 75 µm pixels) and large magnification (z01 = 121241

mm, z02 = 1.82 m). In this configuration, the X-ray source was operated at 70 kV, 100 W, and 9× 9 µm2 source spot size242

(circular). 1201 projections were recorded over 185◦, each with 5× 1 s acquisition time. For the high-resolution configuration,243

the sample stage was moved to z01 = 158 mm, and a Rigaku XSight Micron detector (lens-coupled CCD, 10×optics, 5.5 µm244

pixels) was installed at z02 = 193 mm, resulting in a FOV of 1.2× 1.6 mm2 and px = 0.46 µm. Source settings were adjusted245

to 40 kV, 57.7 W, and 10× 10 µm2 source spot size (circular). In this configuration, 1001 projections over 181◦ with 1 s were246

acquired. Phase retrieval was performed with Modified-Bronnikov algorithm (MBA) (48, 49) and Bronnikov-aided correction247

(BAC) (50). For overview scans, α = 0.025, γ = 1 and for high-resolution scans, α = 0.005 and γ = 1 were chosen. Further248

data processing was carried out as presented in the main text, i.e. with the wavelet ring correction in overview scans and the249

additive filter in high-resolution, followed by FDK-based tomographic reconstruction.250
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Table S2. Optical configuration and parameters for multiscale PC-CT.

Configuration EB PB CB

X-ray optics KB & pinhole - KB & Waveguide (Si/Ge)
Detector sCMOS with 50 µm-LuAg-scin., sCMOS with 50 µm-LuAg-scin., sCMOS with 15 µm-Gadox-scin.

2×optics 10×optics
z02 / z01 (mm) 5400 / 5060 220 / 88 · 103 5100 / 125 = M ≈ 41

or 5100 / 40 = M ≈ 128
FOV h×v (mm2) 8.3 × 6.7 1.7 × 1.3 0.4 × 0.4 or 0.13 × 0.13
px (µm) 3.06 0.65 0.162 or 0.051
F 0.3240 0.0220 0.0013 or 0.0008
Number of projections 1 × 2000 1 × 1500 1-4 × 1501
Number of empty beam projections 100 150 1-4 × 2 × 100
Exposure time per projection (s) 1 0.035 (cont.) ≤ 1
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Table S3. Phase retrieval and reconstruction parameters.

Configuration EB PB CB

Energy (keV) 13.8 13.8 8.0 8.0 13.8 8.0 14.8
px (µm) 3.06 0.65 0.65 0.123 0.167 0.200 0.051
Phase retrieval ∗ CTF (1) CTF (1) CTF (1) CTF (1/3) CTF (4) NLT (1) NLT (4)
δ/β 20 33 30 35 / 50 35 130 115
Tomography FBP FBP FBP FBP FDK FBP FBP
Ring removal W A R A/W A A/W A
FSC (µm) 6.4 4.2∗∗ 1.6 0.963 0.385 1.268 0.219
Fig. 1(c) 2(a) - - 5 2(c) 2(d)

∗ number of measurement planes. ∗∗ local tomography (8 mm-biopsy punch).
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Fig. S1. Schematics of the setups. (a) Overview of the GINIX-endstation for multiscale PC-CT: direction of X-rays travel is from right to left. Depending on the configuration
(marked by colored boxes), either of two sample and detector stages is utilized. (b) In EB configuration, the stages installed further downstream are used. Note that the optics
unit - not shown in this zoom-in - shapes the beam via the KB mirrors and a pinhole. (c) In PB configuration, optics from the optics unit are removed, and the upstream stages
are inserted. (d) In CB configuration, again KB mirrors focus the X-rays onto a CB. The sample installed at the upstream sample stage is imaged with the camera > 5 m
downstream. (e & f) Schematics of the X-rays free-space propagation: image formation in (e) parallel-beam geometry as in (c), (f) cone-beam geometry leading to effective
geometrical magnification as exploited in (d).
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Fig. S2. Nuclei of DG granular cells – supplementary analysis of CB data. (a) Violin plots of structural features for each subject, (top to bottom): nuclear volume v, sphericity ϕ
and number of neighboring objects (nn) within a radius of 13.5 µm. The color scheme corresponds to the ABC score. (b) Feature-feature correlation (columns), evaluated for
different subjects (rows). (c) Matrices of Wasserstein-measures (W ), (c, top left) heterogeneity parameter s, (top right) nuclear volume v, (bottom left) sphericity ϕ, (bottom
right) nn, and (d) Scatter plots of W values, calculated for each individual with respect to its entire group (with subject 12 and 13 excluded). (e) Bures-costW in 5d-space
represented as a graph: bold connections and close node proximity correspond to lowerW . Connections between controls are colored "green", between AD-individuals "red"
and inter-groups "gray" (including subjects with no group assignment).
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Fig. S3. Nuclei of DG granular cells – supplementary analysis of PB data. (a) Box-whisker plots of (left) granular cell bandwidth dDG, (center) its variance σd, and (right)
number of neighboring objects (nn) within a radius of 13.5 µm; each (left, red) grouped for AD subjects, (right, green) for controls according to ABC score. (b) Violin plots of
structural features (top to bottom): median electron-density ρ and heterogeneity s, nuclear volume v, sphericity ϕ, and nn within 13.5 µm. The color scheme corresponds to
the respective ABC score. (c) Feature-feature correlation (columns), evaluated for different subjects (rows). (d) Plots of Wasserstein-values (W ), calculated for each individual
with respect to its entire group (with the exclusion of subjects 12 and 13). (e) Matrices of W measures, for all five features. (f) Matrices of W measures. (e) Bures-costW in 5d.
(g) Structure factor S(q) computed from the centers-of-mass of DG cell nuclei masks (see SI Appendix, Methods "Structural Parameters of DG Cell Nuclei"). Lines indicate the
group-wise median, half-transparent areas the 1σ-intervals. The positions of the scattering peak indicate the next neighbor distances dNN, namely dNN = 13.88 µm, and
dNN = 15.04 µm, for AD and CTRL, respectively. However, the modulation of S(q), i.e. the dip and the peak are less pronounced for AD, indicating a reduced short range
order compared to in healthy tissue. (h) Group-averaged cell densities (red: AD, green: CTRL, gray: with no group assignment), obtained from density maps evaluated within the
cell band only by applying a density threshold (105 1/mm3, see SI Appendix, Methods "Computation of Local Cell Density"). AD exhibits a larger variance compared to CTRL.
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Fig. S4. Pyramidal neurons in CA1 – statistical analysis. (a) Virtual sectioning to illustrate segmentation of pyramidal neurons. Scalebar: 50 µm. (b) Violin plots of the five
selected features, where the color scheme indicates the ABC score of the respective subject. (c) Feature-feature correlation (columns), evaluated for different subjects (rows).
(d) Matrices of Wasserstein-measures (W ), for all five features. (e) Plots of W measures, evaluated for single individuals with respect to their entire group distributions (with the
exclusion of subject 12). (g) Bures-costW in 5d. (f & g) Presentation of the Bures-costW (computed in 5d), (f) as graph where thicker and shorter connections indicate lower
cost (red: AD, green: CTRL, gray: with no group assignment), and (g) as distance chart.
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Fig. S5. Stitching of tomographic data sets for multiscale analysis. A full slice through the entire 7 × 7 tomographic reconstructions is shown covering the entire 8 mm
cylindrical punch of hippocampal tissue recorded in PB configuration. Scalebar: 1 mm.
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Fig. S6. Reconstruction of hydrated (PBS), formalin-fixed tissue. The example of a biopsy punch into the CA1 region (CTRL group) recorded in CB configuration) is shown,
demonstrating that cellular bodies, nuclei and apical dendrites of the pyramidal neurons, are also resolved for this preparation, without tissue dehydration and paraffin
embedding. Interestingly, tissue gaps around neurons are also observed at this stage of sample preparation. Scalebars: (a) 50 µm, (b) 30 µm.

M. Eckermann, B. Schmitzer, F. van der Meer†, J. Franz, O. Hansen, C. Stadelmann, T. Salditt 15 of 18



a) b)

BV

DG

BV

Fig. S7. PC-CT with laboratory µCT instrumentation. The same tissue block which was used for demonstrating the multiscale imaging workflow in the main text is show.
Experimental details are described in SI Appendix, Methods. (a) Overview scan of the 8 mm-tissue block, with the higher resolution dataset of the 1 mm-biopsy punch merged
into the volume. (b) Virtual slice through the reconstruction volume of the 1mm-biopsy punch, with labeled anatomical features such as calcified blood vessels (BV) and the DG
cell band. Scalebars: (a) 1 mm, (b) 300 µm.
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