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Soil compaction associated with mechanized wood harvesting can long-lastingly disturb
forest soils, ecosystem function, and productivity. Sustainable forest management
requires precise and deep knowledge of logging operation impacts on forest soils,
which can be attained by meta-analysis studies covering representative forest datasets.
We performed a meta-analysis on the impact of logging-associated compaction on
forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated
hydraulic conductivity (Ksat) affected by two management factors (machine weight and
passage frequency), two soil factors (texture and depth), and the time passed since
the compaction event. Compaction significantly decreased soil MBC by −29.5% only
in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and
reduced total porosity and Ksat by −10.1 and −40.2%, respectively. The most striking
finding of this meta-analysis is that the greatest disturbance to soil bulk density, total
porosity, and Ksat occurs after very frequent (>20) machine passages. This contradicts
the existing claims that most damage to forest soils happens after a few machine
passages. Furthermore, the analyzed physical variables did not recover to the normal
level within a period of 3–6 years. Thus, altering these physical properties can disturb
forest ecosystem function and productivity, because they play important roles in water
and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize
the impact, we recommend the selection of suitable logging machines and decreasing
the frequency of machine passages as well as logging out of rainy seasons especially in
clayey soils. It is also very important to minimize total skid trail coverage for sustainable
forest management.
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INTRODUCTION

Forests cover approximately 30% of the earth’s terrestrial area,
providing several important ecosystem services such as food,
water, raw materials, climate regulation, erosion prevention,
nutrient cycling, biodiversity conservation, and recreation (Groot
et al., 2012; Holden and Treseder, 2013). However, demand for
forest products is increasing, which can severely affect these
ecosystem services and result in a set of massive problems
for the environment and human welfare (Lidskog et al., 2013;
Acharya et al., 2019).

Soils, as non-renewable resources, are crucial components of
forest ecosystems that ensure forest productivity and biodiversity
conservation by regulating water and nutrients cycles (Dominati
et al., 2010). For instance, forest soils store more than 40%
of the total organic carbon in terrestrial ecosystems and are
consequently important regulators of global carbon dioxide
(Certini et al., 2003; Bonan, 2008; Neruda et al., 2010;
Wei et al., 2014).

Abiotic forest-disturbances factors are categorized as fire,
storm with windthrow, and anthropogenic tree harvesting
(Holden and Treseder, 2013). Tree harvesting generally leads to a
reduction in soil carbon stocks (Mayer et al., 2020). Moreover,
mechanized logging and log transport by skidders, forwarders,
and tractors can remarkably damage forest soils and reduce
forest productivity (Horn et al., 2007; Picchio et al., 2011;
Hartmann et al., 2014). Although the efficiency and power of
logging machines have been increased in recent years, they have
also become heavier (Vossbrink and Horn, 2004; Horn et al.,
2007). This suggests that disturbance to forest soils and thereby
to the forest ecosystem function caused by logging operations
can be more severe and long-lasting (Hartmann et al., 2014;
Cambi et al., 2015).

Soil compaction is one of the most pronounced consequences
of mechanized logging operations, caused by imposed vertical
and horizontal stresses on the soil (McNabb et al., 2001; Ares
et al., 2005; Cambi et al., 2015). Created skid trails and ruts
by logging operations (Figure 1) can considerably disturb soils
physical, chemical, and biological properties and severely alter
the forest ecosystem function (Heninger et al., 2002; Powers
et al., 2004; Agherkakli et al., 2010; Cambi et al., 2015). For
example, soil compaction influences between 10 and 70% of the
logged stand, indicating its substantial potential to disturb the soil
ecosystem and forest (Frey et al., 2009; Picchio et al., 2012).

Forest soils usually have low bulk density values due to their
richness in organic matter, specifically in the upper layers (Corti
et al., 2002). Commonly, a low soil bulk density makes the
soil more prone to compaction (Williamson and Neilsen, 2000;
Powers et al., 2004). An increased bulk density of forest soils due
to compaction can reduce the total porosity by 50–60% (Frey
et al., 2009; Picchio et al., 2012; Solgi and Najafi, 2014). Reduction
in soil total porosity dramatically disturbs the soil oxygen
diffusion and water balance, the latter causing waterlogging,
runoff, and erosion (Jansson and Johansson, 1998; Startsev and
McNabb, 2000; Grace et al., 2006; Ampoorter et al., 2007;
Schack-Kirchner et al., 2007). Consequently, oxygen and water
availability to tree roots and soil microorganisms are reduced,

leading to disturbed forest productivity and ecosystem services
(Kozlowski, 1999; Ares et al., 2005; Agherkakli et al., 2010).

Compaction may also affect microbial biomass carbon (MBC)
in forest soils. In general, soil compaction remarkably reduces
soil MBC, due to reduction in total porosity, pore connectivity,
and air and water supply (Wronski and Murphy, 1994; Breland
and Hansen, 1996; Startsev et al., 1998; Tan et al., 2008; Frey
et al., 2009), reducing the availability of key growth resources
(oxygen, dissolved organic carbon, mineral nutrients, etc.) to
soil microorganisms. In contrast, some other studies observed
no significant impact of compaction on MBC (Ponder and
Tadros, 2002; Jordan et al., 2003; Nazari et al., 2020). These
contrasting results might be attributed to site-specific properties
and experimental settings like timespan between the compaction
event and soil sampling (Nazari et al., 2020). It is very plausible
that sampling soil after a short timespan will not result in
a significantly reduced MBC, because compaction does not
directly kill microorganisms but indirectly affects their habitat
and resources availability.

The degree of soil deformation by compaction depends
on several properties such as initial bulk density, texture,
depth, organic matter content, and water content and also on
management factors such as weight and passage frequency of
harvesting machines as well as the time after the harvesting event
(Ballard, 2000; Jamshidi et al., 2008; Cambi et al., 2015; Nazari
et al., 2020). For instance, coarse-textured soils are commonly
more resistant to compaction compared to fined-textured soils
(McNabb et al., 2001; Sakai et al., 2008; Magagnotti et al., 2012).
Fined-textured soils generally hold more water than coarse-
textured ones and thereby make the soil more susceptible to
compaction (Cambi et al., 2015). Another example is that logging
machines affect soil mostly after a few passages and the later
more machine passages have minor impacts on the soil (Wang,
1997; Wallbrink et al., 2002; Han et al., 2006). Nonetheless, the
progressive impact of machine passages also depends on several
factors such as soil texture and depth as well as on machine
configuration (Williamson and Neilsen, 2000; Cambi et al., 2015).
The weight of logging machines is another important controlling
factor of soil compaction. For instance, lighter machines were
found to have lower impacts on soil than heavier ones (Jansson
and Wästerlund, 1999; Picchio et al., 2012).

Forest managers have to minimize the impact of logging
operations on soil for sustainable forestry. A necessary
prerequisite for achieving this goal is the access to precise
and profound knowledge of the influence of logging operations
on forest soils. So far, there have been a few review studies on the
impacts of logging operations on forest soils (i.e., Cambi et al.,
2015; Picchio et al., 2020). Although these review studies provide
readers with valuable, comprehensive and profound information,
they are rather theoretical. Meanwhile, the increasing number of
published papers in recent years on the influence of harvesting
machines on forest soils calls for conducting meta-analysis
studies using all available datasets to provide a universal picture,
which were missing so far (Cambi et al., 2015).

Therefore, this meta-analysis aimed at investigating the
influence of logging machines management factors (machine
weight and passage frequency) and some controlling factors
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FIGURE 1 | Skid trail (left) and rut (right) created by a wheeled skidder (Rottne Solid F14 8WD, middle) during logging operations in a mixed spruce (Picea abies
L.), beech (Fagus sylvatica L.), and fir (Abies alba L.) forest in Kulmbach, Bavaria, Germany. The images clearly illustrate soil compaction and displacement. The
image of the wheeled skidder was adopted from https://www.rottne.com.

(soil texture, depth, time passed since compaction) on MBC,
bulk density, total porosity, and saturated hydraulic conductivity
(Ksat) in forest soils. This study can be regarded as guidance for
forest managers for their decision-making between alternative
management practices.

METHODS

Literature Survey and Selection Criteria
This meta-analysis was conducted using previously published
peer-reviewed studies (1983–2021). We identified papers that
reported bulk density, total porosity, saturated hydraulic
conductivity (Ksat), and MBC in undisturbed (control) and
compacted (treatment) forest soils using the online database
search engines Web of Science and Google Scholar. Keywords
used for literature search were combinations of terms such as
forest, soil, compaction, logging, bulk density, porosity, hydraulic
conductivity, and microbial biomass. The following main criteria
were applied to select appropriate studies: (i) all papers were
based on field experiments rather than laboratory trials, (ii)
all studies were conducted in forest environments, and (iii)
all studies reported results from an undisturbed (control) and
compacted (treatment) soil.

Collection of Data
We reviewed over 500 papers and found that 67 of them met
our selection criteria (Gent et al., 1983; Froehlich et al., 1985;
Allbrook, 1986; Dick et al., 1988; Gayoso and Iroume, 1991;
Shepperd, 1993; Aust et al., 1995; Startsev et al., 1998; Jordan et al.,
2000; Startsev and McNabb, 2000; Williamson and Neilsen, 2000;
Brais, 2001; McNabb et al., 2001; Gomez et al., 2002; Chen et al.,
2003; Li et al., 2004; Teepe et al., 2004; Eliasson, 2005; Shestak
and Busse, 2005; Tan et al., 2005; Busse et al., 2006; Grace et al.,

2006; Mariani et al., 2006; Schnurr-Pütz et al., 2006; Ampoorter
et al., 2007; Makineci et al., 2007; Schack-Kirchner et al., 2007;
Tan and Chang, 2007; Wang et al., 2007; Ziegler et al., 2007;
Jamshidi et al., 2008; Tan et al., 2008; Frey et al., 2009; Agherkakli
et al., 2010; Bagheri et al., 2012; Brevik and Fenton, 2012; Picchio
et al., 2012; Soltanpour and Jourgholami, 2013; Hartmann et al.,
2014; Naghdi and Solgi, 2014; Solgi and Najafi, 2014; Naghdi et al.,
2015, 2016; Cambi et al., 2016a,b, 2017a,b; Eroğlu et al., 2016;
Naghdi and Mousavi, 2016; Proto et al., 2016; Abdi et al., 2017;
Etehadi Abari et al., 2017; Shabaga et al., 2017; Tavankar et al.,
2017, 2021; Bigelow et al., 2018; Hansson et al., 2018; Sohrabi
et al., 2019, 2020; Picchio et al., 2018, 2019, 2020; Venanzi et al.,
2019, 2020a,b; Nazari et al., 2020; Jourgholami et al., 2021). The
studies included in this meta-analysis are indicated by an asterisk
in the references list. In total, 1496 observations or 748 pairs
of observations (effect sizes) were extracted from those studies
meeting our criteria and were used in this meta-analysis. These
datasets consisted of the bulk density, total porosity, and Ksat
of undisturbed and compacted forest soils affected by different
machine weights, machine passage frequency, soil textures and
depths, as well as the time passed since the compaction event
(sampling time). They also consisted of the MBC of undisturbed
and compacted forest soils affected by different soil textures
and depths as well as the time passed since the compaction
event. It is important to note that most of the studies on soil
MBC did not mention machine weight and passage frequency,
whereby these two management factors were excluded from the
analysis of soil MBC.

Machine weights were categorized as light (<13 Mg), medium
(13–20 Mg), and heavy (>20 Mg). Machine passage frequencies
were classified as very few (<4), few (4–7), medium (8–11),
frequent (11–20), and very frequent (>20). Soil textures were
grouped as sandy, loam, and clayey based on the dominant
particle fraction. Four depth groups were considered including
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surface (<10 cm), shallow (10–19 cm), medium (20–30 cm),
and deep (>30 cm). Time periods passed since the compaction
event were categorized as immediate (sampling on day zero),
short-term (sampling after <1 year), medium-term (sampling
after 1–3 years), long-term (sampling after 3–6 years) for the soil
physical characteristics and as short-term (<1 year), medium-
term (1–6 years), and long-term (6–10 years) for soil MBC.

Meta-Data Analyses
Meta-analysis calculates the magnitude of change of a variable
and the significance of this change in response to a treatment.
The magnitude of change is called the effect size. The natural
logarithm of the response ratio (RR) was used to estimate the
effect size (Hedges et al., 1999):

ln (RR) = ln (
XT

XC
)

where XC and XT are the means of the variable in the
control and compaction treatment, respectively. The RR
can be conceptualized as the percentage change after back-
transformation as (eln(RR)

−1) × 100 (Nave et al., 2010). For
generating confidence intervals (CIs) around effect sizes, we
recorded standard deviation (SD) and number of replicates (n) of
soil bulk density, total porosity, Ksat, and MBC for the control and
compaction treatment. Data presented in graphs were digitized
using WebPlotDigitizer 4.4.1 If a study reported standard error
(SE) or coefficient of variation (CV), the SD was calculated
by the formulas SD = SE ×

√
n and SD = CV × mean. The

statistical significance was tested using 95% CI for each effect
size. If the 95% CIs did not overlap with the zero line, the
response was statistically significant at P≤ 0.05. The group means
were significantly different from each other if their 95% CIs
did not overlap. In some of the investigated studies, soil bulk
density, total porosity, and Ksat were reported simultaneously,
based on which regression tests were conducted to detect any
interrelationships. A non-linear regression test was used for soil
total porosity versus bulk density and for Ksat versus bulk density,
because the data were not normally distributed. Data collection
and organization as well as all calculations (i.e., effect size
and CIs) were performed by Microsoft Excel 2019. Regression
analyses and creation of forest plots were conducted using IBM
SPSS Statistics for Windows, version 25 (IBM Corp., Armonk,
NY, United States).

For assessing the presence of publication bias, we
implemented the Spearman rank correlation test in order
to test for the relationship between the replicate number of
each study and the effect size (Holden and Treseder, 2013). In
addition, we visually evaluated funnel plots of the SE versus the
effect size (Egger et al., 1997). Publication bias was assessed in
all soil physical data for all factors except time. No publication
bias was inspected in the soil MBC data for any of the factors. It
is worth noting that the assessed publication bias for the physical
properties could be due to the nature of the findings (Egger
et al., 1997), i.e., compaction probably always has a direct and
significant effect on the physical properties.

1https://automeris.io/WebPlotDigitizer

RESULTS AND DISCUSSION

Soil Microbial Biomass Carbon
Across all studies, soil MBC was not significantly affected
by compaction at α = 0.05 (Figure 2). Compaction neither
significantly affected MBC in soils of different textures (sandy,
loam, clayey) nor at the shallower soil depths (surface 0–9 cm,
shallow 10–19 cm, and medium 20–30 cm), but it significantly
negatively affected MBC at deep (>30 cm) depth (by −29.5%).
Moreover, compaction induced a higher reduction in MBC
(−35.9 and −21.8%) at deep depth than surface and medium
depths, respectively. Time periods passed since compaction
(short-term <1 year, medium-term 1–6 years, long-term 6–
10 years) had no significant impact on soil MBC.

The result of this meta-analysis is in contrast with the existing
common viewpoint that soil MBC is dramatically decreased
by compaction (Torbert and Wood, 1992; Marshall, 2000;
Li et al., 2004; Frey et al., 2009), due to negative alternations in
the soil total porosity and particle connectivity and therefore in
air and water supply (Wronski and Murphy, 1994; Breland and
Hansen, 1996; Startsev et al., 1998). However, in agreement with
the results of our meta-analysis, a few other studies found no
significant impact of compaction on soil MBC at different forest
sites with various soil textures (Hassink et al., 1993; Shestak and
Busse, 2005; Busse et al., 2006). Since microorganisms inhabit
a small portion (about 0.5%) of the surface area in available
soil pores, a decline in porosity may not disturb such minor
habitable areas (Hassink et al., 1993). For instance, bacteria and
fungi prefer to inhabit pores between 0.2 and 30 µm, which
still remain habitable even after large reductions in porosity
at the expense of large pores by compaction (Hassink et al.,
1993; Paz, 2001). Another reason for the lack of change in
soil MBC after compaction is the reduced activity of faunal
predators such as nematodes and protozoa grazing on soil
microorganisms (Paz, 2001; Beylich et al., 2010). In summary,
compaction can reduce porosity without disturbing the habitat
of microorganisms, causing no significant change in soil MBC.

In subsoils (>30 cm), the concentration of organic carbon
and nutrients steeply declines in comparison to upper soil
layers (Turner et al., 2014; Stone et al., 2015). In addition,
the content of iron and aluminum hydrous oxides and clay
minerals is higher in subsoils than in upper soil layers (Mikutta
et al., 2009; Turner et al., 2014), intensifying the sorption of
organic matter and nutrients to reactive minerals. Thus, subsoil
microorganisms have to adapt themselves to such energy and
carbon limited conditions. One major source of growth resources
for microorganisms is the transport of dissolved organic matter
derived through preferential flow paths from the organic layer
to top soil layers and, especially to subsoils in forest ecosystems
(Kalks et al., 2020; Nazari et al., 2020). This major nutritional
source for subsoil microorganisms may substantially decrease in
its availability to subsoil microorganisms, due to the destruction
of preferential flow paths by compaction. Compaction can further
increase the physical protection of already stable subsoil organic
matter and lock it away from microbial decomposition (Gartzia-
Bengoetxea et al., 2011). Another important reason can be the
inability of soil fauna to incorporate topsoil litter and organic
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FIGURE 2 | Soil microbial biomass carbon (MBC) changes due to compaction, influenced by texture, depth, and time passed since compaction. Results are
presented as mean effect sizes ± 95% confidence intervals. Groups with confidence intervals overlapping the dashed reference line (0% change) indicate no
statistically significant change in soil MBC due to compaction at α = 0.05. Groups with confidence intervals overlapping each other are not significantly different at
α = 0.05.

matter into the subsoil (bioturbation), further limiting energy
and nutrients availability to subsoil microorganisms. Last but
not least, decreased subsoil MBC can also be caused by the less
presence of ectomycorrhizal fungi due to decline in tree rooting
following compaction (Hartmann et al., 2014).

Soil MBC is a sensitive indicator of changing soil conditions,
serving as an early warning for many aspects related to soil
health (Powlson and Jenkinson, 1976). Although no significant
effect could be found in upper soil layers, potentially due to
counteracting processes, it needs to be considered that subsoils
contain more than 50% of the global terrestrial organic carbon
and therefore are very important in global carbon storage
(Salomé et al., 2010; Rumpel and Kögel-Knabner, 2011). Thus,
special attention has to be paid to MBC reductions of forest
subsoils by logging operations, which may in the long-term have
even more detrimental implications.

Soil Bulk Density
Influence of Soil Factors and Time
Overall, compaction significantly increased soil bulk density up
to 8.9% at α = 0.05 (Figure 3). In detail, compaction caused
significantly different bulk density changes across all investigated
influencing factors. Bulk density increased by 12.6, 8.6, and
6.4% in clayey, sandy, and loam soils, respectively, due to
compaction, which were significantly different from each other.
Compaction enhanced bulk density at shallow (10–19 cm) and
surface (0–9 cm) depths by 11.9 and 7.4%, respectively, which
were significantly different from each other and also from bulk
density at deep (>30 cm) and medium (20–30 cm) depths.
However, compaction increased bulk density by 5.4 and 4.7% at
deep (>30 cm) and medium (20–30 cm) depths, respectively,
which were not significantly different from each other. Time

passed since compaction affected bulk densities significantly, with
highest and lowest bulk density changes of 13.2 and 5.9% at
medium-term (1–3 years) and short-term (<1 year) time periods
since the compaction event took place.

Increased bulk density is the direct outcome of vertical and
horizontal pressure on soil (Ares et al., 2005). The degree of
enhancement in bulk density by compaction depends on several
factors such as soil initial bulk density, organic matter content,
water content, and texture (Ballard, 2000; Jamshidi et al., 2008).
A higher bulk density enhancement in clayey and sandy than
loam soils could be attributed to the loose nature of sandy
forest soils (Williamson and Neilsen, 2000; Powers et al., 2004).
Clayey soils have a higher water holding capacity and therefore
a greater water content than sandy and loam soils. Increase
in soil water content leads to a decrease in frictional forces
between soil particles, making the soil more susceptible to
compaction (McNabb et al., 2001). It can be deduced that logging
operations have to be performed cautiously in clayey forest soils,
especially in regions with high precipitation (e.g., Europe). An
optimum management practice can be the implementation of
logging operations out of rainy seasons when the soil moisture is
minimum. In case of mechanized coppicing interventions carried
out in autumn and winter (e.g., rainy seasons in Europe), we
recommend checking the soil moisture content of the coppicing
area and selecting days on which the soil moisture is minimum.
Another practical way is to conduct coppicing interventions in
winter when water in the soil is frozen, strengthening the soil
structure and minimizing compaction-associated damage to the
soil (De Schrijver et al., 2018).

Bulk density increased more in the upper soil layers compared
to the lower soil layers. Soils resistance to compaction depends
on soil structure, organic matter content, and the degree of
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FIGURE 3 | Soil bulk density changes due to compaction, influenced by texture, depth, time passed since compaction, machine weight, and machine passage
frequency. Results are presented as mean effect sizes ± 95% confidence intervals. Groups with confidence intervals overlapping the dashed reference line (0%
change) indicate no statistically significant change in soil bulk density due to compaction at α = 0.05. Groups with confidence intervals overlapping each other are
not significantly different at α = 0.05.

aggregation in order to withstand compaction-induced pressure
(Page-Dumroese et al., 2006). Thus, organic matter may enhance
the resistance of soil to deformation by compaction. Although
there is a higher proportion of organic matter in upper soil
layers than in lower ones (Arthur et al., 2013), the lower layers
often contain stronger cementing agents than organic matter
such as iron and aluminum oxides or carbonates, improving
the soil structure and increasing its resistance to compaction
(Yee and Harr, 1977).

Bulk density was not a function of the time passed since the
compaction event and did not recover to the control level (the
zero line) after 3–6 years. It is plausible that the bulk density
recovery of forest soils requires a longer period of time. For
example, it was shown that the bulk density of forest soils did
not significantly recover 5 years (Croke et al., 2001), 10 years
(Rab, 2004), and even 30 years (DeArmond et al., 2019) after
logging operations. We strongly recommend the performance
of long-term studies (i.e., >10 years) in order to shed more
light on the recovery time of bulk density in forest soils after
logging operations.

Influence of Management Factors
Light machines (<13 Mg) increased soil bulk density by
15.2%, which was significantly higher than the bulk density
enhancement of 5.9 and 3.7% caused by heavy (>20 Mg) and
medium machines (13–20 Mg), respectively (Figure 3). Bulk
densities differed significantly from each other depending on
machine passage frequency except medium (8–11) and very
frequent (>20) machine passages. Very few (<4), few (4–7),

medium (8–11), frequent (11–20), and very frequent (>20)
machine passages led to 7, 8.6, 12.2, 9.9, and 12.7% change in bulk
density, respectively.

A significantly higher bulk density increase by heavy machines
(>20 Mg) than by medium machines (13–20 Mg) is in agreement
with the results of several other studies (Jansson and Wästerlund,
1999; Han et al., 2009; Picchio et al., 2012). However, 9.3
and 11.5% greater bulk density caused by light machines
(<13 Mg) compared to heavy (>20 Mg), and medium (13–
20 Mg) machines, respectively, contradicts these findings. The
degree of soil compaction by logging machines depends on
several factors such as contact area of machines with soil, type
of soil-contacting device (i.e., wheel or track), width of soil-
contacting device, logging speed, and machine weight (Bygdén
et al., 2003; Cambi et al., 2015). For instance, wheeled machines,
due to their lower contact area, usually compact and damage
forest soils more severely than tracked ones (Johnson et al., 1991;
Jansson and Johansson, 1998; Neruda et al., 2010). It seems that
other machine and management factors (e.g., soil-contacting
device, machine speed, operator’s expertise) than solely machine
weight play a part in increasing bulk density, which need
to be evaluated in prospective studies. We also suggest that
future studies compare the impacts of different machineries
(i.e., skidders, forwarders, tractors, etc.), harvesting systems,
and forest types.

Medium (8–11), frequent (11–20), and very frequent (>20)
machine passages increased bulk density significantly and more
dramatically than very few (<4) and few (4–7) machine passages.
This is clearly in contrast with the existing claim that most of the
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FIGURE 4 | Soil total porosity changes due to compaction, influenced by texture, depth, time passed since compaction, machine weight, and machine passage
frequency. Results are presented as mean effect sizes ± 95% confidence intervals. Groups with confidence intervals overlapping the dashed reference line (0%
change) indicate no statistically significant change in soil total porosity due to compaction at α = 0.05. Groups with confidence intervals overlapping each other are
not significantly different at α = 0.05.

effect on soil bulk density usually happens in the first few machine
passages, whereas next machine passages slightly increase bulk
density (Wang, 1997; Wallbrink et al., 2002; Han et al., 2006;
Cambi et al., 2015). However, very frequent machine passages can
keep compacting soil and increasing the bulk density if machine
pressure on the soil is greater than the soil strength (Ampoorter
et al., 2012). It is possible that initial machine passages reduce
the quality of soil physical properties such as aggregate stability,
particle connectivity and preferential flow paths, making the soil
vulnerable to further compaction.

Soil Total Porosity
Influence of Soil Factors and Time
In total, compaction significantly decreased soil total porosity
by −10.1% at α = 0.05 (Figure 4). Total porosity significantly
declined in all textures, at all depths, and at all time periods due
to compaction, but there was no significant difference between
the textures, between the depths, and between the time periods
passed since compaction.

Compaction imposed by logging operations may lead to a soil
total porosity reduction between −50 and −60% (Ares et al.,
2005; Ampoorter et al., 2007; Demir et al., 2007; Frey et al., 2009;
Picchio et al., 2012; Solgi and Najafi, 2014). This reduction is
much higher than the reduction derived from our meta-analysis.
The difference can be due to the lower number of studies and
replicates used for evaluation of total porosity in the already
mentioned studies in comparison to the huge dataset used in
our meta-analysis. Soil total porosity is a crucial factor for the

functioning of forest ecosystem and also for maintaining forest
productivity, as it determines the amount of air and water but also
dissolved organic matter delivery to the soil. Thus, it is essential
for the life of tree roots and soil organisms. Reduction in total
porosity can disturb soil water balance, resulting in increased
waterlogging, runoff, and erosion (Grace et al., 2006; Ampoorter
et al., 2007; Schack-Kirchner et al., 2007).

Compaction similarly reduced total porosity in the different
textures and also at the different soil depths. This indicates the
independency of total porosity from texture and depth, probably
due to the homogenizing impact of high pressure imposed by
logging machines. All time periods passed since compaction were
indicated to similarly affect total porosity. Moreover, the reduced
total porosity, similar to the increased bulk density, did not
recover to the control level within the investigated time periods
in this meta-analysis. Rab (2004) indicated that soil total porosity
reduction in native forests in the Victorian Central Highlands of
Australia did not recover after 10 years from compaction imposed
by logging operations.

There was a significant negative relationship between
percentage changes in bulk density and total porosity in response
to compaction (Figure 5). Overall, total porosity is reduced
by −10% with 17.8% increase in bulk density due to logging-
associated compaction. This implies an increase in the ratio of
soil solids to pore space. Organic matter constitutes about 5% of
mineral soil solids in forests, which can be physically protected by
compaction (Gartzia-Bengoetxea et al., 2011), increasing the ratio
of soil solids to pore space. Possible benefits and drawbacks of soil
organic matter protection by compaction should be targeted in
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FIGURE 5 | Relationship between percentage change in soil total porosity and percentage change in soil bulk density (n = 272). The relationship was statistically
significant at α = 0.05.

prospective studies. Considering the importance of total porosity
as a crucial pillar of forest ecosystem health and productivity,
special attention has to be paid to it by forest managers in order
to minimize the disturbance.

Influence of Management Factors
Light machines (<13 Mg) significantly reduced soil total porosity
by−9.1%, which was greater than the change caused by medium
machines (13–20 Mg) but did not significantly differ from
the change caused by heavy machines (>20 Mg) (Figure 4).
Heavy machines (>20 Mg) also led to a significantly reduced
total porosity (−5.3%), but this change was not significantly
different from that caused by medium machines (13–20 Mg).
Medium machines (13–20 Mg) did not significantly influence
total porosity. Very frequent (>20) machine passages led to
the highest soil total porosity reduction by −65%, which was
significantly −59.6, −58.1, −57.6, and −51.4% greater than
the total porosity change caused by very few (<4), medium
(8–11), few (4–7), and frequent (11–20) machine passages,
respectively. Furthermore, frequent machine passages (11–20)
resulted in −8.1 and −6.6% greater reduction in total porosity
in comparison to very few (<4) and medium (8–11) machine
passages, respectively.

In addition to a lack of significant impact on the total
porosity of forest soils by medium machines (13–20 Mg), logging
operations with medium machines (13–20 Mg) also led to the
lowest disturbance to the bulk density. This indicates that such
machines might possess specific configurations that minimize the
damage to soil. It has already been shown that soil disturbance
by logging machines depends on several factors such as contact
area and contacting device of machines (Bygdén et al., 2003;
Cambi et al., 2015). Another possible reason can be the small
size and high number of wheels in medium-weight machines,
distributing the logging-induced pressure over a larger soil
area. However, these assumptions require further experimental
evaluation using medium-weight machines with various wheel

and track configurations in different soils and forest types.
Such experiments can shed light on possible reasons of a non-
significant disturbance to total porosity after logging operations
by medium-weight machines.

The greatest reduction in total porosity (−65.6%) occurred
by very frequently (>20) passing via logging machines. This
finding is in contrast with the already existing claims that the
majority of total porosity reduction happens after less than 5
machine passages (Jourgholami et al., 2014; Cambi et al., 2015).
It seems that initial machine passages reduce the ability of soils to
withstand the impact of further compaction. For instance, initial
machine passages can impose adequate pressure to break down
and disrupt soil aggregates (Cambi et al., 2015), exposing the
soil to subsequent machine passages and damage. Since −65.6%
is a considerably huge reduction, serious measures have to be
taken into account in order to diminish the frequency of machine
passages in logging operations. A lack of attention along with the
fact that total porosity does not recover in a short time span after
compaction can cause serious hazards to global forest ecosystems.

Soil Saturated Hydraulic Conductivity
Influence of Soil Factors and Time
Compaction decreased soil saturated hydraulic conductivity
(Ksat) by −40.2% at α = 0.05 across all studies (Figure 6).
Ksat significantly responded to all soil textures, depths, and
time periods passed since compaction. However, there was no
significant difference between the magnitude of Ksat reduction
between the soil textures in response to compaction. Compaction
resulted in the highest Ksat reduction (−55.3%) at deep depth
(>30 cm), which was a significantly greater reduction of Ksat
than at shallower soil layers. Ksat reduction was significantly
affected by the time passed since the compaction event, with
medium-term (1–3 years) and long-term (3–6 years) time periods
passed since compaction leading to the highest Ksat reductions
of −63.2 and −50.3%, respectively, and immediate (day zero)
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FIGURE 6 | Soil saturated hydraulic conductivity changes due to compaction, influenced by texture, depth, time passed since compaction, machine weight, and
machine passage frequency. Results are presented as mean effect sizes ± 95% confidence intervals. Groups with confidence intervals overlapping the dashed
reference line (0% change) indicate no statistically significant change in soil saturated hydraulic conductivity due to compaction at α = 0.05. Groups with confidence
intervals overlapping each other are not significantly different at α = 0.05.

time passed since compaction resulting in the lowest Ksat
reduction of−31.7%.

A −40.2% reduction in soil saturated hydraulic conductivity
(Ksat) is much larger than the bulk density enhancement and
total porosity reduction due to compaction in our meta-analysis,
indicating that Ksat is highly sensitive and susceptible to logging-
associated compaction. A major reason for the decrease of Ksat
by compaction is reduction in macropores, which play a key
role in soil drainage (Ampoorter et al., 2007). The Ksat reduction
was not significantly different between the investigated textures,
but the reduction was significantly greater at deep soil layers
(>30 cm) than at shallower soil depths. This can be due to the
higher clay content coupled with the high cementation ability
of subsoils, those that become more compact after compaction
and therefore conduct less water. Another reason can be the
decrease of bio-pores due to reduction in the rooting of trees
and other plant species. The Ksat reduction was significantly
different between the time periods passed since compaction, with
medium-term (1–3 years, −63.2%) and long-term (3–6 years,
−50.3%) time periods passed since compaction leading to a
significantly higher Ksat reduction than immediate (day zero,
−31.7%) time passed since compaction. This indicates that the
Ksat response to logging-associated compaction is not a direct
effect of compaction but rather an indirect impact, resulting from
a chain of altering processes. Lack of a significant relationship
between the Ksat and bulk density (Figure 7) and also between
the Ksat and total porosity (Figure 8) proves the indirect impact
of compaction on Ksat. Two main indirect drivers of the Ksat
reduction seem to be less faunal activity and tree rooting caused

by compaction (Beylich et al., 2010; Hartmann et al., 2014).
Moreover, Ksat did not recover to the control level within the
investigated time period in our meta-analysis, empowering the
assumption that, like soil bulk density and total porosity, it also
requires a longer period of time to recover or maybe even a much
longer time than bulk density and total porosity, if the recovery
follows the same indirect pathway.

Trees require water as a major metabolic agent for growth
and development, implying the importance of soil hydraulic
conductivity in forests. Soil Ksat determines the proportion of
precipitation entering the soil and is also an indicator of soil
infiltration capacity (Zimmermann et al., 2006; Tetzlaff et al.,
2007; Price et al., 2010), whose reduction may contribute to
enhanced waterlogging in flat areas or runoff and erosion
on slopes (Jansson and Johansson, 1998; Grace et al., 2006).
Therefore, a severe reduction in Ksat can seriously disturb forest
ecosystem function and productivity.

Influence of Management Factors
Soil Ksat significantly responded to all management factors
(Figure 6). Light machines (<13 Mg) led to−22.1% significantly
higher reduction in Ksat than medium machines (13–20 Mg).
However, there was no significant difference between light
(<13 Mg) and heavy (>20 Mg) machines and between heavy
(>20 Mg) and medium (13–20 Mg) machines in the reduction
of Ksat. The lowest reduction in Ksat belonged to frequent (11–
20) machine passages (−17.8%), while the highest reduction
was related to very frequent (> 20) machine passages (−45.6).
Very frequent (> 20) machine passages resulted in −27.7%
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FIGURE 7 | Relationship between percentage change in soil saturated hydraulic conductivity and percentage change in soil bulk density (n = 92). The relationship
was not statistically significant at α = 0.05.

FIGURE 8 | Relationship between percentage change in soil saturated hydraulic conductivity and percentage change in soil total porosity (n = 22). The relationship
was not statistically significant at α = 0.05.

significantly greater reduction in Ksat compared to frequent
(11–20) machine passages. Moreover, few (4–7) and medium
(8–11) machine passages resulted in significantly −16.4 and
−14.6% higher reduction in Ksat than very few (<4) machine
passages, respectively.

It seems that other machine characteristics than solely
machine weight influences the disturbance degree of soil Ksat
by compaction. Such characteristics may include wheel or track
width, type, and contact area, which require experimental proof
in future studies. Nevertheless, it has been reported that wheeled
machines more dramatically damage forest soils than tracked
ones (Johnson et al., 1991; Jansson and Johansson, 1998; Neruda
et al., 2010).

On the one hand, it seems that very few (<4) machine
passages do not impose adequate pressure on soil that can
lead to huge declines in the proportion of macropores and
bio-pores. On the other hand, very frequent (>20) machine
passages probably impose a strong pressure on soil, by which
not only macropores and bio-pores are dramatically disturbed
and declined but also are soil preferential flow paths. However,
these assumptions require experimental proof in prospective
studies. In regards to the importance of Ksat for supplying
water to tree roots and soil microorganisms, special endeavors
are needed by forest managers and operators to reduce the
frequency of machine passages beside the selection of appropriate
logging machines.
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Ecological and Economic Consequences
of Forest Soil Compaction
Logging-associated soil compaction can have several negative
effects on forest ecosystem and function. Compaction noticeably
reduces the volume of macropores and also destroys pore
continuity, hampering regular soil-atmosphere gas exchanges
(Cambi et al., 2015; De Schrijver et al., 2018). This can
cause serious problems for soil organisms and disturbance of
biochemical processes. For instance, oxygen cannot properly
enter the compacted soil, thus limiting soil life and root growth
of plants and trees (Ampoorter et al., 2012). Compaction also
decreases the number of capillary pores in soil and thereby
water conductivity and infiltration and increases surface runoff
and erosion (Lousier, 1990; Malmer and Grip, 1990; Lüscher,
2010). Moreover, compaction can diminish the biodiversity of
forest soils fauna (i.e., mites, earthworms), due to increased soil
bulk density and limited oxygen diffusion (Siepel, 2015; Cambi
et al., 2017b). Mycorrhizal fungi, as important symbionts of tree
roots, are also negatively affected by decreased air supply due
to compaction, limiting nutrient uptake by tree roots (Smeltzer
et al., 1986; De Schrijver et al., 2018).

Soil compaction harms the above-mentioned complex
components of forest soil ecosystem and can thereby negatively
affect forest productivity (Kozlowski, 1999). For example, trees
close their leaf stomata in case of compaction-derived water
shortage, reducing photosynthesis and tree growth. Specifically,
compaction limits the growth of young seedlings, because it is
difficult for them to penetrate compacted soils for taking up
water and nutrients (Bassett et al., 2005; Cambi et al., 2017a).
The negative impact of compaction on seedlings are also visible
in later stages, i.e., after 10 and 32 years since the logging event
(Wert and Thomas, 1981; Heninger et al., 2002).

Although there is little research on the economic impacts of
logging-associated soil compaction, compaction can potentially
influence the quantity and quality of harvestable timber.
For instance, Potvliet (2016) modeled the economic impact
of compaction for a Scots pine (Pinus sylvestris) forest
in the Netherlands and found an increased revenue per
hectare by 14.3% caused by the scenario of avoiding soil
compaction. Moreover, Borchert et al. (2008) reported that soil
compaction caused root damage and thereby timber rotting,
decreasing timber prices by −20% in 2007 in Germany. We
suggest conducting future interdisciplinary studies to investigate
economic consequences of forest soil compaction in order to
expand our understanding of the context.

CONCLUSION

This meta-analysis evaluated the influence of logging-associated
compaction on the physical properties and MBC in forest
soils affected by two management factors (machine weight and
passage frequency), two soil factors (texture and depth), and
the time passed since the compaction event. Despite an overall

insignificant effect, MBC is significantly decreased in subsoils
(>30 cm) due to compaction. Since forest subsoils play an
important part in global terrestrial carbon cycle and generally
show slow recovery kinetics, specific measures have to be taken
by forest managers and operators for minimizing the impact.

Compaction leads to an overall increase of 8.9% in soil
bulk density, which is significantly greater in clayey soils than
in sandy and loam soils. Accompanied with the fact that
clayey soils hold more water and are more susceptible to
compaction, specific attention should be paid when logging
operations are implemented on clayey soils in regions with high
precipitation (e.g., Europe). Compaction results in −10.1 and
−40.2% reduction in soil total porosity and saturated hydraulic
conductivity, respectively. Very frequent (>20) machine passages
cause the greatest change to soil bulk density, total porosity, and
saturated hydraulic conductivity, indicating the need for a serious
action to minimize the frequency of machine passages in logging
operations. Since these physical variables play important roles in
water and air supply as well as nutrient cycling in forest soils,
the consideration by forest managers and operators can prevent
long-term disturbance to forest ecosystems and productivity.

For sustainable forest management, it is essential to minimize
total skid trail coverage. However, to minimize the logging
impact, we recommend the selection of appropriate logging
machines that can diminish the disturbance to soil and forest
ecosystem. Otherwise, when the current logging machines are
used, decreasing the frequency of machine passages and logging
out of rainy seasons especially in clayey soils are recommended.
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