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Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime
dimension to the spatial super-resolution provided by SMLM. Independent of intensity and
spectrum, this lifetime information can be used, for example, to quantify the energy transfer
efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local
environment with dyes that change their lifetime in an environment-sensitive manner, or
to achieve image multiplexing by using dyes with different lifetimes. We present a thorough
theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and
compare different lifetime-fitting approaches. In particular, we investigate the impact of
background and noise, and give clear guidelines for procedures that are optimized for FL-
SMLM. We do also present and discuss our public-domain software package
“Fluorescence-Lifetime TrackNTrace,” which converts recorded fluorescence
microscopy movies into super-resolved FL-SMLM images.

Keywords: FLIM (fluorescence lifetime imaging microscopy), CRLB (Cramér-Rao lower bound) analysis,
fluoresence lifetime fitting, super-resolution microscopy, lifetime uncertainty, SMLM (single molecule
localisation microscopy)

1 INTRODUCTION

The advent of super-resolutionmicroscopy (Hell, 2007; Huang et al., 2009) has revolutionized optical
microscopy over the last ca. 30 years, pushing the limits of spatial resolution by three orders of
magnitude down to the molecular length scale. The first of these super-resolution methods was
STimulated Emission Depletion (STED) microscopy (Hell and Wichmann, 1994; Klar et al., 2000),
developed by Stefan Hell and co-workers since the nineties of the last century, and later extended to
Ground State Depletion IMaging (GSDIM) (Fölling et al., 2008; Hell, 2009) and REversible Saturable
OpticaL Fluorescence Transitions (RESOLFT) imaging (Keller et al., 2007; Schwentker et al., 2007).
This spurred also the development of alternative methods that use single-molecule localization in
wide-field images (Single-Molecule Localization Microscopy or SMLM) (Klein et al., 2014). Among
these methods are PhotoActivated Localization Microscopy (PALM) (Betzig et al., 2006), Stochastic
Optical Reconstruction Microscopy (STORM) (Rust et al., 2006), fluorescence PALM (fPALM)
(Hess et al., 2006), direct STORM (dSTORM) (Van de Linde et al., 2011), Point Accumulation for
Imaging in Nanoscale Topography (PAINT) microscopy (Sharonov and Hochstrasser, 2006), and its
most common variant DNA-PAINT (Schnitzbauer et al., 2017; Auer et al., 2018). These methods rely
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on the fact that one can localize the center position of an emitting
molecule with much higher accuracy than the width of the
molecule’s image, the latter being defined by the optical
resolution of the used microscope. Roughly speaking, this
localization accuracy scales as the diffraction-limited resolution
divided by the square root of the number of detected photons, so
that, for example, a molecule that delivers 104 detectable photons
can be localized ca. 100 times better than the classical resolution
limit (neglecting here, for simplicity, all kinds of details such as
noise, background, or detector pixelation) (Ram et al., 2006). By
recording many images of well-separated molecules (by using
fluorescent labels that can be switched between non-fluorescent
and fluorescent states), one can generate a super-resolved image,
the resolution of which is only limited by the number of photons
detectable from a single molecule.

One powerful extension of fluorescence microscopy is
fluorescence lifetime imaging microscopy (FLIM) (Bastiaens
and Squire, 1999; van Munster and Gadella, 2005; Chang
et al., 2007) which measures, besides the intensity of the
fluorescence signal, also its lifetime. This lifetime information
can be, for example, used for multiplexing by using fluorophores
with different lifetimes (Niehörster et al., 2016), for Förster
Resonance Energy Transfer (FRET) imaging (Llères et al.,
2017), or to probe different environmental characteristics
when using fluorophores that change their lifetime as function
of specific parameters (e.g. pH, ion concentration, viscosity)
(Klymchenko, 2017). The two most common FLIM techniques
are based on a confocal microscope equipped with a pulsed laser
source, single-photon sensitive detectors and electronics for
Time-Correlated Single Photon Counting (TCSPC) (Becker,
2005; O’Connor, 2012), or on phase fluorometry using a time-
modulated excitation source and a wide-field detector with time-
modulated detection gain (Venetta, 1959; Spencer and Weber,
1969; Dong et al., 1995). However, both these approaches are
usually not suitable for SMLM: Confocal microscopy was until
recently rarely used for SMLM due to the limited frame rate, and
phase-fluorometry systems are by far to insensitive for single-
molecule imaging. In contrast, single-molecule sensitive wide-
field detectors such as emCCD or sCMOS cameras that are
generally used for SMLM do not provide any lifetime
information. Only recently, it has been shown that one can
use rapid-scanning confocal TCSPC microscopy for
fluorescence-lifetime SMLM (FL-SMLM) (Thiele et al., 2020).
In this case, one rapidly records confocal images with single-
molecule sensitivity and then analyses the stack of recorded scan
images in the same way as is done in conventional wide-field
SMLM. A drawback is that the light-throughput (or dwell-time
per position) in a confocal microscopy is much lower than that of
a camera-equipped wide-field microscope, but the advantage is
that one can obtain the lifetime information for each imaged and
registered molecule, and that the z-sectioning capability of the
confocal microscope can help to do SMLM even deeper into a
sample, where out-of-focus background light becomes a problem.
Alternatively to confocal TCSPC microscopy, new single-photon
sensitive wide-field cameras that can measure lifetime
information with TCSPC are more and more emerging. One
type of such cameras is based on an array of single-photon

avalanche diodes (Ulku et al., 2018; Morimoto et al., 2020)
and shows great promise for future SMLM applications. A
second type of wide-field TCSPC detectors is the commercially
available LINCam (PhotonScore GmbH, Magdeburg, Germany),
that has been successfully used for FL-SMLM (Oleksiievets et al.,
2020). Although this system has a relatively low quantum yield of
detection (5–15%), it shows nearly complete absence of any
readout or other camera noise, thus assuring sufficient high
signal-to-background ratios for successful single-molecule
imaging.

Thus, with the advent of FL-SMLM, the question arises what is
the most optimal and efficient way of TCSPC-based fluorescence-
lifetime determination for SMLM. Within the context of single-
molecule spectroscopy, different fitting methods have been
discussed and evaluated with experimental data, indicating
that maximum likelihood estimations outperform least-square
minimization techniques (Maus et al., 2001; Santra et al., 2016),
and theoretical limits have been derived analytically (for
background-free case) (Köllner and Wolfrum, 1992) and
numerically (for a large range of experimental parameters)
(Bouchet et al., 2019; Trinh et al., 2021). Here, we compare
the performance of different commonly used fit algorithms by
using simulated and experimental data, and we derive an analytic
expression for their theoretical limits. With experimental data, we
analyze the impact of sample inhomogeneity (intrinsic
fluorescence lifetime variation of dye molecules) on obtained
lifetime distributions, and we finally demonstrate that pattern-
matching algorithms can be much more efficient than full
lifetime-fitting in lifetime-based multiplexing.

2 THEORY OF LIFETIME DETERMINATION

In a TCSPC lifetime measurement, the sample is excited with a
train of sufficiently short laser pulses (ca. 100 femtoseconds to few
dozen picoseconds) with fixed inter-pulse time period T
(repetition period). For each detected photon, the arrival time
t with respect to the last excitation pulse is recorded. The
fluorescence lifetime τ can then be directly estimated from
these arrival times as the mean (or standard deviation) of
these t-values. However, this is only exact for a background-
free measurement and for sufficiently large values of the
repetition period T (T ≫ τ). For a precise lifetime
determination with background and finite T, photon detection
events are aggregated according to their arrival times, yielding the
so-called TCSPC histogram, which is then fitted with a suitable
model. Most fluorophores show a mono-exponential fluorescent
decay behavior, so that one used a mono-exponential decay
function with single decay time for fitting the TCSPC
histogram (Lakowicz, 2006). In that case, the probability p for
a photon to be detected at the time t is given by

p(t) � (1 − b) exp(−t/τ)
τ(1 − exp(−T/τ)) +

b

T
(1)

where b is the relative background amplitude (constant
background). Experimentally, photon arrival times are grouped
into K discrete TCSPC time channels ti of finite width Δt. In
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modern TCSPC systems, this time resolution Δt of measuring
photon detection times is usually much smaller than both the
lifetime τ and the width of the so-called instrument response
function (IRF) σIRF, which is the experimentally measured
TCSPC histogram for an ideal sample with infinitely fast
fluorescence decay time. Therefore, any error that may be
introduced by the TCSPC channel width is negligible, and the
probability to detect a photon within one TCSPC channel is
given by

pi � Δt (1 − b) exp −ti/τ( )
τ(1 − exp(−T/τ)) +

b

K
. (2)

For a total number N̂ of expected photons, the expectation
value for each bin is then given by

m̂i � N̂pi � N̂Δt (1 − b) exp −ti/τ( )
τ(1 − exp(−T/τ)) + N̂

b

K
. (3)

Here, m̂i denotes the expected number of photons falling into
the ith detection channel. It is important to note that the above
equation is only correct for an infinitely narrow, delta-function
like IRF, or when considering only TCSPC channels after a cut off
of the part containing the IRF (TCSPC histogram starting some
time tcut after the peak of the IRF). This cut off eliminates the
impact of the IRF on a TCSPC histogram and is a common
approach when working with IRFs sufficiently narrow compared
to the fluorescence lifetime. The values of τ, b, and, depending on
the method, N̂ are fitted by minimizing a suitable score function.
Table 1 summarizes the defined symbols.

2.1 Least-Square Estimators
The default score function for curve fitting with unknown error
distribution is the sum of least-squares, i.e. the sum of the squared
difference between data and estimate (L2-norm):

χ2LS � ∑K
i�1

m̂i −mi( )2 (4)

For single-photon detection, the number mi of detected photons
in channel i follows a Poissonian statistics, so that its variance is equal
to its mean value (expectation value). In a weighted least-square
minimization, each value in the χ2-sum is weighted by the inverse
of its variance, which requires to estimate, from the experimental
data, the value of this variance. Pearson’s χ2 used the model-fitted
values m̂i as an estimate for the variance, which leads to

χ2P � ∑K
i�1

m̂i −mi( )2
m̂i

. (5)

In contrast, Neyman’s χ2 directly uses the experimentally
measured values mi as an estimate of the variance,

χ2N � ∑K
i�1

m̂i −mi( )2
mi

. (6)

However, this expression becomes infinite whenever one of
the values mi becomes zero. Therefore, the denominator is either
set to one in these cases (χ2N1), or the sum skips all i where mi � 0

(χ2N2). In this work, we exclusively use χ2N1, because we observed
that χ2N2 leads to unstable fit results.

2.2 Maximum Likelihood Estimator
Unlike measurement in bulk or on densely labeled structures,
single molecule measurements are always limited by the number
of detected photons. Especially for low photon count numbers,
the variance of these numbers significantly deviates from a
Gaussian distribution which is, however, the basic assumption
behind all least-square estimators. A maximum likelihood
estimator (MLE) solves this problem by calculating the
probability that a given set of parameters leads to an
experimentally measured photon detection distribution. When
assuming that the probability of detecting a photon in the ith
channel of a TCSPC histogram is pi, then the likelihood of
measuring a TCSPC histogram {mi} is given by (Baker and
Cousins, 1984)

L � N!∏K
i�1

pi( )mi

mi!
. (7)

This likelihood function takes extremely small values that are
numerically difficult to handle and not very practical for
comparing different parameter sets. To facilitate computation,
constant factors are neglected, and one uses the negative
logarithm of L instead of L itself. This leads to the negative
log-likelihood function λ defined by

λ � −∑K
i�1

mi lnpi. (8)

A similar estimator is the Poisson deviance which is derived
from the likelihood ratio and relies on the estimated (fitted)
values m̂i instead of the probability (Baker and Cousins, 1984):

χ2λ � 2∑K
i�1

mi ln
mi

m̂i
− mi − m̂i( )( ) (9)

By minimizing λ, the estimated number of photons N̂ is
implicitly fixed to the detected number of photons N. When
replacing m̂i � N̂pi and fixing N̂ � N, Eq. 9 becomes Eq. 8with a
constant offset.

In the limit of high photon detection numbers N, both
weighted least-square methods as well as the MLE give similar
results (Bajzer et al., 1991).

2.3 Goodness of Fit
A widely used parameter for estimating the goodness of a fit is the
reduced χ2/] with degrees of freedom ] � K—3 (minus three
because we have the three fit parameters τ, b, and N̂). For a
perfect fit, χ2/] should be close to one. Smaller values indicate
over-fitting, which is in the case of a mono-exponential model
unlikely, and larger values indicate that the model does not
describe the data completely. Both Pearson’s χ2P and the MLE
χ2λ asymptotically approach the χ2 distribution. However, for low
number of counts per time bin (〈mi〉i≲ 1), the expectation value
of χ2λ/] deviates from the value one while the expectation value of
χ2P/] stays close to one at the cost of an increased variance. In
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practice, an increased variance is usually preferable over a count-
dependent expectation value. The bias of the expectation value of
χ2λ/] can be reduced by grouping adjacent time bins and thus
decreasing the time resolution.

2.4 Lifetime Uncertainty
The Cramér-Rao lower bound (CRLB) uses the Fisher
information of a measurement to calculate a lowest bound for
the variance that an unbiased estimator can have. The amount of
information conveyed by a measurement is shared between all
unknown parameters θ. For a mono-exponential decay with N
photons and the probability distribution p(t) of Eq. 1, the Fisher
matrix is given by:

I(θ)[ ]j,k � ∫T

0

z ln(Np(t))
zθj

z ln(Np(t))
zθk

Np(t) dt (10)

The CRLB for each parameter is then given by the
corresponding diagonal element of the inverse Fisher matrix:

σ2j � I(θ)−1[ ]
jj

(11)

For TCSPC-measurements, typically both the lifetime and
background need to be estimated: θ � {τ, b}. As discussed by
Köllner and Wolfrum (1992), an unknown number of photons
does not affect the uncertainty as off-diagonal elements IN,k≠N
become zero. A step-by-step derivation of the CRLB σ2τ for the
lifetime is provided in the supplemental information.

2.5 Pattern Matching
Pattern matching is an alternative to lifetime fitting when the core
task is to determine to which species a detected molecule belongs,
among a discrete number of different species. Unlike lifetime
fitting, pattern matching does not make any assumptions about
the shape of the decay, and the only prerequisite is that reference
decays of the separate species are available. To identify the most
likely species to which a molecule belongs, the different negative
log-likelihood values λα are calculated according to Eq. 8 by setting
{pi} equal to the normalized probability distributions {pi,α} for each
species α. The species with the lowest value of λ is then chosen as
the most likely species. The rate of misidentifications depends on
the number of photons N and the similarity of the patterns, see
discussion in Enderlein and Sauer (2001) for details. The relative
probability fα for species α among a total of S species is given by

fα � exp −λα( )
∑S

β�1 exp −λβ( ). (12)

This equation is useful for rejecting molecules that cannot be
classified with a high probability (Thiele et al., 2020). The relative
probability is equivalent to the posterior probability of a Bayesian
model comparison when assuming equal prior probabilities. In
contrast to likelihoods or Bayes factors, the posterior probability
can be averaged over multiple molecules or many time points.

Unlike the situation in usual fitting, the {pi,α} are the same for
all TCSPC histograms. Therefore, the logarithms can be
calculated in advance, and Eq. 8 can be implemented as a
simple matrix multiplication. For this purpose, first the K × S-

dimensional pattern matrix Pln is calculated which contains the
logarithm of the normalized patterns as row vectors. Second, the
negative log-likelihood matrix Λ is obtained by multiplication
withmatrixM, which is the J ×K-dimensional matrix constructed
from the J TCSPC histograms (column vectors):

Λ � −M · Pln (13)

The resulting J × S-dimensional matrix Λ with entries λj,α
allows for a fast calculation of the relative probabilities fj,α with
Eq. 12, or to directly determine the most likely pattern xj for each
TCSPC histogram with

xj � arg
α

min λj,α. (14)

The a priori calculation of Pln, together with the single matrix
multiplication step, enables efficient calculation of λj,α for
thousands of TCSPC histograms in parallel and for many
species. By employing a library of calculated decays {pi,α}, this
approach allows for quick determination of the most likely
parameter set using a grid-based search. We provide example
code of pattern matching for classification and as well as for grid-
based fitting in the supplementary material (Thiele, 2021b).

2.6 Fitting Using the Instrument Response
Function
For lifetime values similar or shorter than the width of the IRF, it
can be necessary to explicitly take the shape of the IRF into
account. This is achieved by convolving the probability
distribution {pi} (1) or expectation values {m̂i} (Eq. 3) with the
normalized IRF {qi}:

p̂p
i � p̂i;qi, m̂p

i � m̂i;qi (15)

Here, ; denotes a discrete, circular convolution.
Subsequently, the score function is minimized with the
convolved probability distributions {p̂p

i } or expectation values
{m̂p

i }, respectively. This can be either performed for the tail of the
decay only, or, more commonly, for the entire decay curve.

The IRF can be measured experimentally, or it can be
approximated with a model. Typically, a Gaussian distribution
or a shifted Gamma distribution, which reflects a potential
asymmetry of the IRF, are used as parametric models. In this
work, we employed a shifted Gamma distribution of the form

qi � 0 ti ≤ t0
Δtκρ ti − t0( )ρ−1 exp −κ ti − t0( )[ ]/Γ(ρ) ti > t0

{ (16)

where the distribution depends on the following three parameters:
starting time of the peak t0, shape parameter ρ, and rate parameter κ.

3 METHODS

3.1 Simulations
The different least-square estimators and the maximum-
likelihood estimator were tested on simulated data. If not
stated otherwise, the following parameters were used: lifetime
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τ � 2 ns, background b � 0.2, repetition period T � 25 ns, TCSPC
time resolution Δt � 0.016 ns. Using these parameters and the
average total number N of detected photons, the expectation
values {m̂i} were calculated for each time bin following Eq. 3. To
generate a simulated decay {mi}, Poisson-distributed random
variables with expectation value {m̂i} were drawn. The
simulated data was fitted with the model function (Eq. 3) by
minimizing each estimator (Eqs 5, 6 and 8) with a Nelder-Mead
simplex algorithm. Initial fit values were calculated by
multiplying the true value with a random number between 0.5
and 1.5 to obtain a low-precision initial guess value. Simulation
and fitting was repeated 105 times to obtain a sufficiently large
distribution of fit results. The simulation was implemented in
Matlab (R2020a, The MathWorks Inc.).

To investigate the influence of the IRF on the fitted lifetime, a
dedicated simulation was performed. First, the experimental IRF
of the confocal microscope described in (Thiele et al., 2020) was
determined bymeasuring backscattering from a coverglass coated
with a 10 nm gold film. The substrate preparation is described in
detail in (Ghosh et al., 2021). A normalized experimental IRF is
obtained from the measured TCSPC histogram by subtracting the
background, defined as the average count level in the second half
of the TCSPC histogram, and dividing by its sum. A parametric
IRF was obtained by fitting the TCSPC histogram with (1 − b)qi +
b/K, where qi is defined as in Eq. 16, by minimizing the negative
log-likelihood (Eq. 8) for the parameters t0, ρ, κ, and b with a
Nelder-Mead simplex algorithm. Subsequently, the parametric
IRF was calculated with these t0, ρ, and κ.

Similar to the previous simulation, a decay with background
b � 0.2, repetition period T � 25 ns, and time resolutionΔt � 0.016
ns was calculated, while its lifetime was varied from 0.025 ns to
2.0 ns in 0.025 ns increments. The calculated decay was convolved
with the experimental IRF, and 105 TCSPC histograms with a
mean value of 2000 photons were simulated. From the TCSPC
histograms, the lifetime values were determined by an MLE grid
search based on the pattern matching described in Section 2.4
with 500 lifetime values linearly spaced from 0.01 ns to 3.00 ns
and 60 different background values. The reference decays were
calculated in three different ways: (1) mono-exponential decay
without IRF, (2) mono-exponential decay convolved with the
experimental IRF, and mono-exponential decay convolved with
the parametric IRF. For case (1), the likelihood was calculated
using the tail of the decay starting tcut � 0.2 ns after the maximum
of the sum of all decays. The correspondingly shortened reference
decays were normalized prior to calculating the likelihood values.
For case (2) and (3), the likelihood was calculated with the entire
TCSPC histogram.

3.2 Experimental Data
For checking the different lifetime-fitting approaches on real
experimental data, we used dSTORM images of three different
structures: Alexa 647-labeled microtubules, Atto 655-labeled
clathrin pits in fixed COS7 cells, and 3 µm polystyrene beads
decorated with Alexa 647-labeled DNA. All experimental data
were taken from (Thiele et al., 2020), where details on the sample
preparation and measurement can be found. The data was
processed with TrackNTrace (see below) to extract single-

molecule TCSPC histograms. The tail of the single-molecule
decay curves, starting 0.2 ns after the maximum in the sum of
all decays, were fitted by minimizing the negative log-likelihood
function (Eq. 8) with a Nelder-Mead simplex algorithm. Initial fit
values were determined by using a pattern matching of the decay
curves. For this purpose, 500 lifetime values linearly spaced from
0.01 to 5.00 ns and 60 different background values were used.

For the analysis of the experimentally obtained lifetime
distributions (Figure 3), the single molecule data was sorted
according to the number of photons per TCSPC histogram, and
then divided into 30 equally-sized groups. Only molecules with
an image size (standard deviation) between 100 and 180 nm, with
at least 25 photons in the TCSPC histogram, and with a reduced
Pearson’s χ2P/] of their lifetime fit between 0.8 and 1.2 were
included in the final analysis.

For each group, the standard deviation σ of the single molecule
lifetimes and the analytic CRLB based on the average number of
photons 〈N〉, the lifetime 〈τ〉 and the background 〈b〉, was
calculated. The width of the sample-intrinsic lifetime variation
σsample was determined by fitting the σ for 〈N〉 > 100 with an
decay of the form σ � a〈N〉−k + σsample with empirical fit
parameters a, k, and intrinsic sample-related variance σsample

by minimizing χ2LS with a Nelder-Mead simplex algorithm.
For exemplifying and checking the pattern-matching algorithm,

we used data obtained from COS7 cells labeled with either Alexa
647 or Atto 655, from which synthetic data with mixed labeling
were generated. Only molecules with an image size between 100
and 180 nm and at least 50 photons in the TCSPC histogram were
used for further analysis. As reference patterns, we used normalized
decay curves of pure samples of Alexa 647 and Atto 655,
respectively. With these reference patterns, the relative
probability that a localized molecule was either Alexa 647 or
Atto 655 was calculated, following Eq. 12. Based on these
relative probabilities and the known identities of the samples,
the receiver operating characteristic (ROC) and the area under
curve (AUC) were calculated. As comparison, the same curveswere
calculated using MLE fitted lifetime values as classification score.

4 RESULTS

4.1 Simulations and Analytical Results
The CRLB yields the minimum variance that can be attained by
an unbiased estimator. For a mono-exponential decay with
background and an infinite time resolution, an analytical
expression for the CRLB can be given. It has recently been
shown numerically that the TCSPC channel discretization does
not considerably affect the CRLB as long as the time bins are
much narrower than the lifetime (Trinh et al., 2021). In contrast,
background substantially affects a CRLB (Köllner and Wolfrum,
1992). The full expression of the CRLB for the variance σ2τ of the
lifetime τ as function of τ itself, the number of photons N, the
background fraction b, and the repetition period T, is given in the
supplementary information (see Supplementary Equation S1). It
is, however, useful to analyze some limiting cases. In the limiting
case of an infinitely large repetition period T, the estimator is only
limited by Poisson noise:
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lim
T→∞

σ2τ �
τ2

N

1
1 − b

(17)

Here, N(1 − b) photons correspond to the fluorescence signal
while the Nb background photons do not carry any lifetime
information. Since the off-diagonal elements of the Fisher matrix
vanish ([I(θ)]τ,b � 0) for T → ∞, the knowledge of the
background does not affect the result. For a finite value of T,
these off-diagonal elements become non-zero and do increase the
value of σ2τ . Therefore, it makes a difference whether the
background level needs to be estimated independently as an
additional fit parameter, or whether it is known in advance. If
it is known that the background is zero one finds

lim
b→0

σ2τ �
τ2

N

2(1 − cosh(χ))
2 + χ2 − 2 cosh(χ) with χ � T

τ
(18)

while for an unknown but zero background one finds the
generally larger value

lim
b→0

σ2
τ �

τ2

N

4 sinh χ
2( ) χ2 − 2 cosh(χ) + 2( )

χ4 + 12χ2 + 12( )sinh χ
2( ) − 4χ3 cosh χ

2( ) − 4 sinh 3χ
2( ).
(19)

A comparison between known and unknown background levels
and calculations for different combinations of background and
repetition period T are provided in Supplementary Figure S1.

To validate the performance of the different estimators,
simulated TCSPC histograms were fitted and the fit results
compared to the ground truth. Especially at low photon
counts, there is a striking difference between the estimators. In
Figure 1A, it is apparent that weighted least-square estimators are
biased and do not reproduce the correct decay curve. The
distribution of fitted lifetime values (Figure 1B) emphasizes
this count-dependent bias. In contrast, the median lifetime
value recovered by the unweighted LSQ and the MLE are very
close to the ground truth. However, the MLE achieves this with
much less uncertainty. The distribution of the fitted number of
photons, background level, and bias of median lifetime values in
dependence of the number of counts are given in Supplementary
Figure S2. As shown in Figure 1C, the standard deviation of the
lifetime values obtained with weighted LSQ and MLE do
approach the theoretical limit of the CRLB. However, solely
MLE provides a performance close to the CRLB with no
substantial bias of the lifetime values, even for photon
detection numbers of only a few hundred. This behavior is not
specific for the chosen simulation parameters. In the
supplementary material, see Supplementary Table S1, we
present additional simulations for lower lifetimes, for shorter
repetition rates, and for higher and lower background values,
confirming our results described above. In good agreement with
our results, Santra et al. (2016) found no bias for MLE but
substantial bias for least-square estimators when fitting
solution measurements and neglecting background.

4.1.1 Influence of the Instrument Response Function
The simulations so far neglected the influence of the IRF which is
equivalent to assuming a dirac-like IRF. In reality, the IRF has a

finite width and can influence the fitted lifetime. Figure 2 shows
an experimental IRF obtained by recording the back-scattered
light form a gold-covered coverslip, together with its parametric
fit. The parametric IRF was obtained by fitting the scattering
measurement and has a full width at half maximum (FWHM) of
0.58 ns. The good fit quality confirms that the shifted Gamma
distribution is an excellent model for the true IRF.

To evaluate the effect of the IRF, we simulated TCSPC
measurements using the experimental IRF and for sample
lifetimes (ground-truth) between 0.025 and 2.0 ns. The
computed TCSPC curves were then fitted with and without
IRF using an MLE grid search. Figure 2B shows that the tail
fit leads to a bias towards larger lifetime values when the actual
lifetime comes closer to the width of the IRF. For lifetime values
close to zero, the bias reaches 0.2 ns. This bias can be eliminated
by taking the IRF explicitly into account. Fits with the IRF, both
with the experimental IRF (which was used for the TCSPC
simulation) as well as with its parametric form, lead to
negligible bias for all tested lifetimes.

With a FWHM of above 0.5 ns, the IRF we used for the
simulation was rather broad due to the employed diode laser. For
a narrower IRF, e.g. with a typical white light laser, the influence
of the IRF will be even less pronounced and the bias of tail-fit
results reduced.

4.2 Experimental Results
4.2.1 Estimation of the Intrinsic Lifetime Distribution
In real measurements, single-molecule lifetime values are not
only affected by Poisson noise but also by intrinsic sample
inhomogeneity (variation of intrinsic lifetime values). Figure 3
compares two samples: Alexa 647 in a cellular environment
exhibits a broader lifetime distribution that cannot be
explained solely by the CRLB, while the lifetime distribution
of DNA-conjugated Alexa 647 on a polymer bead surface is close
to the CRLB. Unlike the CRLB, this sample-dependent
contribution to the lifetime variance does not dependent on
the number of detected photons. Therefore, it can be
estimated as the asymptotic limit of the standard deviation of
the lifetimes as a function of the number of detected photons, as
shown in Figures 3C,F. When taking this additional intrinsic
sample-related variance into account, the theoretical estimate
(green line in Figures 3B,E) does closely match the measured
lifetime distribution. By simulating a sample with a known
lifetime inhomogeneity (Supplementary Figure S13), we can
confirm this method recovers the intrinsic variance. In the
cellular environment, we observe a small dependence of the
average lifetime on photon number (Supplementary Figure
S14). This adds to the overall width of the lifetime
distribution (Figure 3B), but does not affect our estimation of
the intrinsic variance as the standard deviation is independent of
the mean.

The clear difference between the average lifetimes in the two
different samples matches results in the literature that the lifetime
of cyanines like Alexa 647 sensitively depends on the
environment (Buschmann et al., 2003; Klehs et al., 2014).

For experimental data, all lifetimes in this work are determined
with mono-exponential tail-fits. The interval of the TCSPC
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histogram which is used for lifetime fitting starts at or short time
(cut off tcut) after the maximum of the TCSPC histogram.
Figure 4C illustrates that the cut off does not notably affect
the resulting lifetime distribution for a mono-exponential sample.

4.2.2 Pattern Matching
A pattern matching compares the TCSPC histogram with a
library of reference patterns. This allows one to classify single
molecules without fitting their lifetime and setting a lifetime
threshold. Figure 4 compares the performance of pattern
matching (A) with lifetime-fitting based classification (B).
Pattern matching offers a higher sensitivity and specificity
which is reflected in the larger area under the curve (AUC) as
compared to lifetime-fitting based classification. The reference

patterns, shown in Supplementary Figure S15A, reveal that the
decay curves are not strictly mono-exponential. Therefore,
overlapping lifetime distributions (Supplementary Figure
S15B) can be separated better by pattern matching than by
lifetime fitting. The specificity can be improved by removing
molecules with low number of photons.

Pattern matching is also useful for quickly finding good guess
values over a limited parameter space using a parallel grid search.
Figure 4C shows that the lifetimes obtained by pattern matching
closely resemble the distribution obtained from MLE fitting. For
highest precision, the lifetime values could be refined with a
subsequent precise MLE fit.

5 DISCUSSION AND CONCLUSION

Using Monte-Carlo simulations, we have demonstrated that
MLE-based fitting outperforms common LSQ-based fitting and
achieves close to shot-noise limited accuracy. An analytic
expression for this limit, the CRLB for a mono-exponential
decay with unknown background and finite repetition period
was derived. In SMLM, the localization uncertainty derived from
the CRLB has become an indispensable parameter for data
filtering. We suggest to use the lifetime uncertainty in a
similar fashion for filtering lifetime-resolved single-molecule
data, to improve separation between different species or states,
and to estimate experimental limitations. To facilitate its
application, we provide a Python implementation of the CRLB
calculation (Thiele, 2021a).

Our simulations confirmed that the fit uncertainties
originating from photon statistics, background, and finite
repetition period can be well estimated by the CRLB.
However, in actual single-molecule lifetime experiments,
additional sources of uncertainty need to be considered. Many

FIGURE 1 | Performance of different lifetime estimators: Based on a calculated decay with 2 ns lifetime and 20% background photons, 105 decay curves with
Poissonian noise were simulated for different numbers of photons and fitted using different estimators. (A) Ground truth (black) and fit results of simulated decays with
200 photons (expectation value). The thick, colored lines indicate the median, and the thin, dashed lines the 5 and 95% quantiles. (B) Distribution of fitted lifetime values
for decays with 200 photons (left half) and 2000 photons (right half). (C) Standard deviation of the lifetime distributions and calculated CRLB as a function of the
number of photons in the decay.

TABLE 1 | Definitions of frequently used symbols.

Parameter Description

τ fluorescence lifetime
b background fraction
N total number of photons
T repetition period
t time since last pulse
K number of TCSPC time bins
Δt width of TCSPC time bins
p photon detection probability
mi counts in time bin i
m̂i expected counts in time bin i

N̂ expected total number of counts

tcut cut-off time for tail-fits
χ2LS least square error

] degrees of freedom (here, K − 3)
λ negative log-likelihood
σ2τ lifetime uncertainty (CRLB)

t0, ρ, κ parameters of model IRF
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fluorophores are known to be sensitive to their local environment.
This can be a desired effect, e.g. for lifetime-based environmental
sensing (Klymchenko, 2017). However, for many applications,
including lifetime-based multiplexing or FRET, the intrinsic

lifetime variation should be as narrow as possible because any
broadening increases final uncertainties of the results. Therefore,
it is important to quantify the intrinsic lifetime variation across a
single species of labels/dyes which is, unlike the CRLB,

FIGURE 2 | Influence of a non-ideal IRF on the fitted lifetime: (A) Experimental IRF measured from gold scattering (blue dots) and parametric IRF (green line). The
parametric IRF is described by a shifted Gamma distribution with the parameters given in the plot. (B)Median fitted lifetime for simulated decays with the experimental IRF
and different lifetimes. The fitted lifetimewas determined by fitting the tail of the decays with a mono-exponential function (tail fit) and by fitting the entire decay curve using
either the experimental IRF or the parametric IRF. The inset shows the absolute difference between the fitted and the true lifetime in dependence of the true lifetime.
All fits are grid-based MLE fits, and tail fits use a cut off tcut � 0.2 ns.

FIGURE 3 | Lifetime-resolved dSTORM of two different samples with Alexa 647: (A, B, C) immunostained microtubules in fixed COS7 cells and (D, E, F) DNA-
functionalized micro-beads. (A,D) Super-resolved FL-SMLM image. (B, E) Distribution of the single molecule lifetime values (red), CRLB-limited distribution assuming
equal lifetime values for all molecules, and CRLB-limited distribution with an additional broadening. (C, F) Dependence of the standard deviation of the fitted lifetime on
the number of photons. With an increasing number of photons, the standard deviation (red) approaches a limit which is caused by sample inhomogeneity (intrinsic
variation of lifetime values). In contrast, the corresponding CRLB (blue) approaches zero. The green line represents the square root of the sum of the variance as
predicted by the CRLB and the intrinsic variance of the sample.
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independent on the number of detected photons. We have shown
that this intrinsic lifetime variation can be extracted from the
photon-number dependence of the experimentally determined
lifetime distribution. As presented in Figure 3, the same
fluorophore but in different samples can show very different
lifetime variation, with measurements in cells exhibiting a
considerably broader variation. This suggests that single-
molecule lifetime measurements in cells might not always be
limited only by the instrument response function or the photon
statistics, but can be also limited by intrinsic lifetime variations of
a sample itself.

In FLIM experiments, the fluorescence lifetime is often used to
identify different states, e.g. high or low FRET efficiency, or
distinguish between different species with different lifetimes.
FL-SMLM extracts this information from single molecules and
allows for a discrete classification of imaged molecules based on
their lifetimes. For such an application, full lifetime fitting is not
always the most efficient way for classification. As demonstrated
in Figure 4, pattern matching outperforms lifetime-based
classification. Pattern matching compares a measured TCSPC
histogram with reference histograms, which can be done
extremely fast, and which does not require any specific
knowledge about the character of a fluorescence decay (e.g.
mono-exponential decay) while utilizing all photons of a
TCSPC histogram. When using a large number of calculated
decays, pattern matching can serve as a way of unbiased lifetime
estimation within a fixed parameter space. Since this is very fast, it
is attractive for initial parameter guesses and might be useful
when many thousands of lifetimes need to be determined, e.g. in
pixel-wise time-resolved data.

To facilitate the analysis of FL-SMLM data, we have amended
our open source software package TrackNTrace (Stein and
Thiart, 2016) with the ability to extract TCSPC histograms
and to fit lifetime values. It conveniently covers all required
computational steps, from reading raw data to reconstructing
FLIM images, all within a single GUI-based app. In this app,
lifetime values can be determined with fast pattern matching and,
optionally, by subsequent refinement with precise MLE-based
fitting.
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FIGURE 4 | Pattern matching as alternative to lifetime fitting: Receiver operating characteristic (ROC) curve for classifying a mixture of two different fluorophores
(Alexa 647, Atto 655) with different lifetimes. In (A), the classification is based on pattern matching, in (B) on the MLE fitted single molecule lifetimes. The data was
generate by combining measurements of two samples, each labeled with one fluorophore. (C)Comparison of the lifetime distribution obtained byMLE lifetime fitting (red)
and an MLE grid search based on pattern matching (dark green) for different cut off values tcut relative to the TCSPC maximum. Based on the same measurement
as Figure 3A.

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 7402819

Thiele et al. Advanced Data Analysis for FL-SMLM

https://projects.gwdg.de/projects/cfl-smlm/repository
https://doi.org/10.5281/zenodo.5093591
https://doi.org/10.5281/zenodo.5093591
https://doi.org/10.5281/zenodo.5423457
https://doi.org/10.5281/zenodo.5423457
https://github.com/scstein/TrackNTrace
https://www.frontiersin.org/articles/10.3389/fbinf.2021.740281/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.740281/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


REFERENCES

Auer, A., Schlichthaerle, T., Woehrstein, J. B., Schueder, F., Strauss, M. T.,
Grabmayr, H., et al. (2018). Nanometer-scale Multiplexed Super-resolution
Imaging with an Economic 3d-Dna-Paint Microscope. ChemPhysChem 19,
3024–3034. doi:10.1002/cphc.201800630

Bajzer, e., Therneau, T. M., Sharp, J. C., and Prendergast, F. G. (1991). Maximum
Likelihood Method for the Analysis of Time-Resolved Fluorescence Decay
Curves. Eur. Biophys. J. 20, 247–262. doi:10.1007/BF00450560

Baker, S., and Cousins, R. D. (1984). Clarification of the Use of CHI-Square and
Likelihood Functions in Fits to Histograms. Nucl. Instr. Methods Phys. Res. 221,
437–442. doi:10.1016/0167-5087(84)90016-4

Bastiaens, P. I., and Squire, A. (1999). Fluorescence Lifetime Imaging Microscopy:
Spatial Resolution of Biochemical Processes in the Cell. Trends Cel Biol 9,
48–52. doi:10.1016/s0962-8924(98)01410-x

Becker, W. (2005). Advanced Time-Correlated Single Photon Counting Techniques,
Vol. 81. Berlin, Germany: Springer Science & Business Media.

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino,
J. S., et al. (2006). Imaging Intracellular Fluorescent Proteins at Nanometer
Resolution. Science 313, 1642–1645. doi:10.1126/science.1127344

Bouchet, D., Krachmalnicoff, V., and Izeddin, I. (2019). Cramér-Rao Analysis of
Lifetime Estimations in Time-Resolved Fluorescence Microscopy. Opt. Express
27, 21239–21252. doi:10.1364/OE.27.021239

Buschmann, V., Weston, K. D., and Sauer, M. (2003). Spectroscopic Study and
Evaluation of Red-Absorbing Fluorescent Dyes. Bioconjug. Chem. 14, 195–204.
doi:10.1021/bc025600x

Chang, C. W., Sud, D., and Mycek, M. A. (2007). Fluorescence Lifetime Imaging
Microscopy. Methods Cel Biol 81, 495–524. doi:10.1016/S0091-679X(06)
81024-1

Dong, C. Y., So, P. T., French, T., and Gratton, E. (1995). Fluorescence Lifetime
Imaging by Asynchronous Pump-Probe Microscopy. Biophys. J. 69, 2234–2242.
doi:10.1016/S0006-3495(95)80148-7

Enderlein, J., and Sauer, M. (2001). Optimal Algorithm for Single-Molecule
Identification with Time-Correlated Single-Photon Counting. J. Phys. Chem.
A. 105, 48–53. doi:10.1021/jp002358n

Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., et al. (2008).
Fluorescence Nanoscopy by Ground-State Depletion and Single-Molecule
Return. Nat. Methods 5, 943–945. doi:10.1038/nmeth.1257

Ghosh, A., Chizhik, A. I., Karedla, N., and Enderlein, J. (2021). Graphene- and
Metal-Induced Energy Transfer for Single-Molecule Imaging and Live-Cell
Nanoscopy with (Sub)-nanometer Axial Resolution. Nat. Protoc. 16,
3695–3715. doi:10.1038/s41596-021-00558-6

Hell, S. W. (2007). Far-field Optical Nanoscopy. Science 316, 1153–1158.
doi:10.1126/science.1137395

Hell, S. W. (2009). Microscopy and its Focal Switch. Nat. Methods 6, 24–32.
doi:10.1038/nmeth.1291

Hell, S. W., andWichmann, J. (1994). Breaking the Diffraction Resolution Limit by
Stimulated Emission: Stimulated-Emission-Depletion Fluorescence
Microscopy. Opt. Lett. 19, 780–782. doi:10.1364/ol.19.000780

Hess, S. T., Girirajan, T. P., and Mason, M. D. (2006). Ultra-high Resolution
Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J.
91, 4258–4272. doi:10.1529/biophysj.106.091116

Huang, B., Bates,M., and Zhuang, X. (2009). Super-resolution FluorescenceMicroscopy.
Annu. Rev. Biochem. 78, 993–1016. doi:10.1146/annurev.biochem.77.061906.092014

Keller, J., Schönle, A., and Hell, S. W. (2007). Efficient Fluorescence Inhibition
Patterns for Resolft Microscopy. Opt. Express 15, 3361–3371. doi:10.1364/
oe.15.003361

Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell, S. W. (2000). Fluorescence
Microscopy with Diffraction Resolution Barrier Broken by Stimulated Emission.
Proc. Natl. Acad. Sci. U S A. 97, 8206–8210. doi:10.1073/pnas.97.15.8206

Klehs, K., Spahn, C., Endesfelder, U., Lee, S. F., Fürstenberg, A., and Heilemann, M.
(2014). Increasing the Brightness of Cyanine Fluorophores for Single-Molecule
and Superresolution Imaging. ChemPhysChem 15, 637–641. doi:10.1002/
cphc.201300874

Klein, T., Proppert, S., and Sauer, M. (2014). Eight Years of Single-Molecule
Localization Microscopy. Histochem. Cel Biol 141, 561–575. doi:10.1007/
s00418-014-1184-3

Klymchenko, A. S. (2017). Solvatochromic and Fluorogenic Dyes as Environment-
Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 50,
366–375. doi:10.1021/acs.accounts.6b00517

Köllner, M., and Wolfrum, J. (1992). How many Photons Are Necessary for
Fluorescence-Lifetime Measurements? Chem. Phys. Lett. 200, 199–204.
doi:10.1016/0009-2614(92)87068-Z

Lakowicz, J. R. (2006). “Time-Domain Lifetime Measurements,” in Principles of
Fluorescence Spectroscopy. Editor J. R. Lakowicz (Berlin, Germany: Springer
US), 97–155. doi:10.1007/978-0-387-46312-4_4

Llères, D., Bailly, A. P., Perrin, A., Norman, D. G., Xirodimas, D. P., and Feil, R.
(2017). Quantitative FLIM-FRET Microscopy to Monitor Nanoscale
Chromatin Compaction In Vivo Reveals Structural Roles of Condensin
Complexes. Cell Rep 18, 1791–1803. doi:10.1016/j.celrep.2017.01.043

Maus, M., Cotlet, M., Hofkens, J., Gensch, T., De Schryver, F. C., Schaffer,
J., et al. (2001). An Experimental Comparison of the Maximum
Likelihood Estimation and Nonlinear Least-Squares Fluorescence
Lifetime Analysis of Single Molecules. Anal. Chem. 73, 2078–2086.
doi:10.1021/ac000877g

Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A. C., Antolovic, I. M.,
Bruschini, C., et al. (2020). Megapixel Time-Gated Spad Image Sensor
for 2d and 3d Imaging Applications. Optica 7, 346–354. doi:10.1364/
optica.386574

Niehörster, T., Löschberger, A., Gregor, I., Krämer, B., Rahn, H. J., Patting, M., et al.
(2016). Multi-target Spectrally Resolved Fluorescence Lifetime Imaging
Microscopy. Nat. Methods 13, 257–262. doi:10.1038/nmeth.3740

O’Connor, D. (2012). Time-correlated Single Photon Counting. Cambridge,
Massachusetts: Academic Press.

Oleksiievets, N., Thiele, J. C., Weber, A., Gregor, I., Nevskyi, O., Isbaner, S., et al.
(2020). Wide-Field Fluorescence Lifetime Imaging of Single Molecules. J. Phys.
Chem. A. 124, 3494–3500. doi:10.1021/acs.jpca.0c01513

Ram, S., Ward, E. S., and Ober, R. J. (2006). Beyond Rayleigh’s Criterion: a
Resolution Measure with Application to Single-Molecule Microscopy.
Proc. Natl. Acad. Sci. U S A. 103, 4457–4462. doi:10.1073/
pnas.0508047103

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit Imaging by
Stochastic Optical Reconstruction Microscopy (Storm). Nat. Methods 3,
793–795. doi:10.1038/nmeth929

Santra, K., Zhan, J., Song, X., Smith, E. A., Vaswani, N., and Petrich, J. W.
(2016). What Is the Best Method to Fit Time-Resolved Data? A
Comparison of the Residual Minimization and the Maximum
Likelihood Techniques as Applied to Experimental Time-Correlated,
Single-Photon Counting Data. J. Phys. Chem. B 120, 2484–2490.
doi:10.1021/acs.jpcb.6b00154

Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F., and Jungmann, R.
(2017). Super-resolution Microscopy with Dna-Paint. Nat. Protoc. 12,
1198–1228. doi:10.1038/nprot.2017.024

Schwentker, M. A., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C., Hell, S.
W., et al. (2007). Wide-field Subdiffraction Resolft Microscopy Using
Fluorescent Protein Photoswitching. Microsc. Res. Tech. 70, 269–280.
doi:10.1002/jemt.20443

Sharonov, A., and Hochstrasser, R. M. (2006). Wide-field Subdiffraction Imaging
by Accumulated Binding of Diffusing Probes. Proc. Natl. Acad. Sci. U S A. 103,
18911–18916. doi:10.1073/pnas.0609643104

Spencer, R. D., and Weber, G. (1969). Measurements of Subnanosecond
Fluorescence Lifetimes with a Cross-Correlation Phase Fluorometer. Ann.
NY Acad. Sci. 158, 361–376. doi:10.1111/j.1749-6632.1969.tb56231.x

Stein, S. C., and Thiart, J. (2016). TrackNTrace: A Simple and Extendable Open-
Source Framework for Developing Single-Molecule Localization and Tracking
Algorithms. Sci. Rep. 6, 37947. doi:10.1038/srep37947

Thiele, J. C., Helmerich, D. A., Oleksiievets, N., Tsukanov, R., Butkevich, E., Sauer,
M., et al. (2020). Confocal Fluorescence-Lifetime Single-Molecule Localization
Microscopy. ACS Nano 14, 14190–14200. doi:10.1021/acsnano.0c07322

[Dataset] Thiele, J. C. (2021a). CRLB for Mono-Exponential Fitting. doi:10.5281/
zenodo.5093591

[Dataset] Thiele, J. C. (2021b). FL-SMLM Pattern-Matching. doi:10.5281/
zenodo.5423457

Trinh, A. L., Esposito, A., Esposito, A., and Esposito, A. (2021). Biochemical
Resolving Power of Fluorescence Lifetime Imaging: Untangling the Roles of the

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 74028110

Thiele et al. Advanced Data Analysis for FL-SMLM

https://doi.org/10.1002/cphc.201800630
https://doi.org/10.1007/BF00450560
https://doi.org/10.1016/0167-5087(84)90016-4
https://doi.org/10.1016/s0962-8924(98)01410-x
https://doi.org/10.1126/science.1127344
https://doi.org/10.1364/OE.27.021239
https://doi.org/10.1021/bc025600x
https://doi.org/10.1016/S0091-679X(06)81024-1
https://doi.org/10.1016/S0091-679X(06)81024-1
https://doi.org/10.1016/S0006-3495(95)80148-7
https://doi.org/10.1021/jp002358n
https://doi.org/10.1038/nmeth.1257
https://doi.org/10.1038/s41596-021-00558-6
https://doi.org/10.1126/science.1137395
https://doi.org/10.1038/nmeth.1291
https://doi.org/10.1364/ol.19.000780
https://doi.org/10.1529/biophysj.106.091116
https://doi.org/10.1146/annurev.biochem.77.061906.092014
https://doi.org/10.1364/oe.15.003361
https://doi.org/10.1364/oe.15.003361
https://doi.org/10.1073/pnas.97.15.8206
https://doi.org/10.1002/cphc.201300874
https://doi.org/10.1002/cphc.201300874
https://doi.org/10.1007/s00418-014-1184-3
https://doi.org/10.1007/s00418-014-1184-3
https://doi.org/10.1021/acs.accounts.6b00517
https://doi.org/10.1016/0009-2614(92)87068-Z
https://doi.org/10.1007/978-0-387-46312-4_4
https://doi.org/10.1016/j.celrep.2017.01.043
https://doi.org/10.1021/ac000877g
https://doi.org/10.1364/optica.386574
https://doi.org/10.1364/optica.386574
https://doi.org/10.1038/nmeth.3740
https://doi.org/10.1021/acs.jpca.0c01513
https://doi.org/10.1073/pnas.0508047103
https://doi.org/10.1073/pnas.0508047103
https://doi.org/10.1038/nmeth929
https://doi.org/10.1021/acs.jpcb.6b00154
https://doi.org/10.1038/nprot.2017.024
https://doi.org/10.1002/jemt.20443
https://doi.org/10.1073/pnas.0609643104
https://doi.org/10.1111/j.1749-6632.1969.tb56231.x
https://doi.org/10.1038/srep37947
https://doi.org/10.1021/acsnano.0c07322
https://doi.org/10.5281/zenodo.5093591
https://doi.org/10.5281/zenodo.5093591
https://doi.org/10.5281/zenodo.5423457
https://doi.org/10.5281/zenodo.5423457
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Instrument Response Function and Photon-Statistics. Biomed. Opt. Express 12,
3775–3788. doi:10.1364/BOE.428070

Ulku, A. C., Bruschini, C., Antolovic, I. M., Charbon, E., Kuo, Y., Ankri, R., et al.
(2018). A 512×512 SPAD Image Sensor with Integrated Gating for Widefield
FLIM. IEEE J. Sel Top. Quan. Electron 25, 1–12. doi:10.1109/
JSTQE.2018.2867439

Van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann,
M., et al. (2011). Direct Stochastic Optical Reconstruction Microscopy with
Standard Fluorescent Probes. Nat. Protoc. 6, 991–1009. doi:10.1038/
nprot.2011.336

van Munster, E. B., and Gadella, T. W. (2005). Fluorescence Lifetime Imaging
Microscopy (Flim). Adv. Biochem. Eng. Biotechnol. 95, 143–175. doi:10.1007/
b102213

Venetta, B. D. (1959). Microscope Phase Fluorometer for Determining the
Fluorescence Lifetimes of Fluorochromes. Rev. Scientific Instr. 30, 450–457.
doi:10.1063/1.1716652

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Thiele, Nevskyi, Helmerich, Sauer and Enderlein. This is an open-
access article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 74028111

Thiele et al. Advanced Data Analysis for FL-SMLM

https://doi.org/10.1364/BOE.428070
https://doi.org/10.1109/JSTQE.2018.2867439
https://doi.org/10.1109/JSTQE.2018.2867439
https://doi.org/10.1038/nprot.2011.336
https://doi.org/10.1038/nprot.2011.336
https://doi.org/10.1007/b102213
https://doi.org/10.1007/b102213
https://doi.org/10.1063/1.1716652
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Advanced Data Analysis for Fluorescence-Lifetime Single-Molecule Localization Microscopy
	1 Introduction
	2 Theory of Lifetime Determination
	2.1 Least-Square Estimators
	2.2 Maximum Likelihood Estimator
	2.3 Goodness of Fit
	2.4 Lifetime Uncertainty
	2.5 Pattern Matching
	2.6 Fitting Using the Instrument Response Function

	3 Methods
	3.1 Simulations
	3.2 Experimental Data

	4 Results
	4.1 Simulations and Analytical Results
	4.1.1 Influence of the Instrument Response Function

	4.2 Experimental Results
	4.2.1 Estimation of the Intrinsic Lifetime Distribution
	4.2.2 Pattern Matching


	5 Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


