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Abstract
Context The SZZ algorithm is the de facto standard for labeling bug fixing commits and 
finding inducing changes for defect prediction data. Recent research uncovered potential 
problems in different parts of the SZZ algorithm. Most defect prediction data sets provide 
only static code metrics as features, while research indicates that other features are also 
important.
Objective We provide an empirical analysis of the defect labels created with the SZZ algo-
rithm and the impact of commonly used features on results.
Method We used a combination of manual validation and adopted or improved heuristics 
for the collection of defect data. We conducted an empirical study on 398 releases of 38 
Apache projects.
Results We found that only half of the bug fixing commits determined by SZZ are actu-
ally bug fixing. If a six-month time frame is used in combination with SZZ to determine 
which bugs affect a release, one file is incorrectly labeled as defective for every file that is 
correctly labeled as defective. In addition, two defective files are missed. We also explored 
the impact of the relatively small set of features that are available in most defect prediction 
data sets, as there are multiple publications that indicate that, e.g., churn related features 
are important for defect prediction. We found that the difference of using more features is 
not significant.
Conclusion Problems with inaccurate defect labels are a severe threat to the validity of the 
state of the art of defect prediction. Small feature sets seem to be a less severe threat.

Keywords SZZ · Bug fix labeling · Bug inducing changes · Defect prediction data · Data 
set
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1 Introduction

Defect prediction is an active direction of software engineering research with hundreds of 
publications. The systematic literature review by Hall et al. (2012) already found 208 stud-
ies on defect prediction published between 2000 and 2010, many more have been pub-
lished since then. Many of these studies were enabled by the sharing of data, highlighted 
by the early efforts from the PROMISE repository (Menzies et al. 2015), which is nowa-
days known as Seacraft (Menzies et al. 2017). Only few publications on defect prediction 
collect new data. Instead, most researchers rely on well-known data sets, e.g., the NASA 
data (NASA 2004), the SOFTLAB data (Turhan et al. 2009), or the data about Java pro-
jects from Jureczko and Madeyski (2010) often referred to as PROMISE. A recent litera-
ture review on cross-project defect prediction highlights that these and other data sets have 
become the de facto standard for defect prediction research (Hosseini et al. 2017). While 
sharing and re-using data is a good thing in general, heavy re-use may also lead to prob-
lems with the external validity of results (Trautsch et al. 2017). The biggest problem out-
lined by Trautsch et al. (2017) is that if there are problems that affect the validity of shared 
data, these problems lead to threats to the validity of all research that re-used this data. 
Unfortunately, there is evidence that shared defect prediction data is affected by two prob-
lems: 1) problems with the defect labels; and 2) limitations regarding the features used by 
researchers.

The first problem is related to the defect labels, that were determined by different pub-
lications that consider different aspects of the defect labeling process. The focus of these 
publications is mostly on the SZZ algorithm (Śliwerski et al. 2005), which was applied by 
most of the currently used data sets (see Section 2).1 Research revealed several problems 
with SZZ, e.g., due to ignoring the affected version field of issue reports (Da Costa et al. 
2017) or the identification of irrelevant changes (Mills et al. 2018). The use of a six-month 
time frame for the assignment of defects to releases has also recently been identified as a 
problem (Yatish et al. 2019). Moreover, SZZ relies on the correct labeling of issues as bug 
by the developers in the issue tracking system. However, research shows that about 33% 
of bug reports are mislabeled and are actually improvements or other issues, like outdated 
documentation  (Herzig et  al. 2013). Additionally, SZZ was designed for version control 
systems that used a mostly linear development process on a main development branch. Due 
to the success of Git, this is often not the case anymore and there are many new challenges 
that need to be considered (Bird et al. 2009b). For example, prior research found that data, 
which takes branches into account, leads to better results (Kovalenko et al. 2018).

The second problem with the re-use of the existing data is the limited feature space that 
researchers use to create defect prediction models. If a data set does not contain certain 
features, it is unlikely that they are added by other researchers, even if research indicates 
that these features may be useful. For example, multiple publications indicate that features 
based on code changes potentially outperform static metrics as features (Moser et al. 2008; 
D’Ambros et al. 2012). Regardless, researchers mostly rely on data sets that only consist of 

1 Please note that we use the term SZZ for both phases of SZZ, i.e., the issue linking and the identification 
of inducing changes. While we are aware that parts of the research community restrict the term SZZ to the 
identification of inducing changes, i.e., only the second phase of the original SZZ algorithm, this has not 
been the case in the literature on defect prediction data. Here, the opposite is the case and many data sets 
use the term SZZ and only apply the first phase of SZZ (see Section 2).
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static features (Hosseini et al. 2017). Thus, many publications are using a potentially infe-
rior set of features, which could alter their results.

Thus, we know from the related work about many separate problems with defect predic-
tion data, especially with respect to the way software artifacts are labeled as defective, but 
also due to a potential lack of relevant features. However, each of the prior publications 
on this topic focuses on a single problem with defect prediction data. What is missing is 
a view on the impact of the problems if they are not considered in isolation, but together. 
Within this article, we close this gap and consider the following research question. 

RQ: What is the overall impact of the numerous problems with defect labeling and the 
usually small set of features on defect prediction data and the results of prediction?

We provide insights into the quality problems that existing data may have, with a focus on 
the defect labeling. To this aim, we performed an in-depth analysis of the weaknesses of 
existing defect labeling strategies with a focus on SZZ. The original SZZ is still commonly 
used for the labeling defect prediction data (see Section 2) and, hence, the state of practice. 
We also compare and discuss our results with respect to newer SZZ variants that are state 
of the art and discuss how the results change. We analyze all aspects of the defect labe-
ling process, i.e., the links between commits and issues, the impact of mislabeled issues, 
the identification of affected files and the inducing changes, as well as the assignment of 
defects to releases. Additionally, we use the large sample of data we generate to assess the 
impact of the lack of features on the performance of defect prediction results.

The primary contribution of our article are the following findings with respect to the 
current state of practice for the generation of defect prediction data.

– About one quarter of the links to defects detected by SZZ is wrong, both due to missed 
links as well as false positive links.

– We confirm the results by Herzig et al. (2013) and found that for every issue that is cor-
rectly labeled as a bug, there are 0.74 mislabeled bug issues.

– Due to the combination of wrong links and mislabeled issues, only about half of the 
commits SZZ identifies are actually bug fixing and SZZ misses about one fifth of all 
bug fixing commits.

– The assignment of defects to releases based on a six months time frame, as well as 
based on the affected versions field of issue tracking systems is unreliable. With SZZ 
and a six months time frame, we found that for every file, that is correctly labeled as 
defective, there are roughly two files that are incorrectly labeled as defective, and two 
files that are incorrectly labeled as non-defective. Moreover, the quality of the data in 
the affected version field is questionable for mining purposes without prior manual vali-
dation, due to many missing, incomplete, or wrong values.

– The difference of using many features of different types over using only static fea-
tures of the source code is not statistically significant when we consider the cost sav-
ing potential of classifiers for release-level defect prediction. Moreover, we found that 
mislabels during training do not have a significant impact, but mislabels in test data can 
significantly alter evaluation results.

As a secondary contribution, we provide all data we generated through manual validation 
and repository mining to study the state of practice of defect prediction data generation. As 
a result, we provide a new defect prediction data set with 4198 features, including change 
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metrics (Moser et al. 2008; Hassan 2009; D’Ambros et al. 2012), and different aggregation 
strategies (Zhang et al. 2017). The data set contains defect data for 398 releases of 38 pro-
jects from the Apache ecosystem.

The remainder of this paper is structured as follows. We discuss the state of practice 
for the collection of defect prediction data with respect to existing data sets in Section 2, 
followed by an analysis of problems with the established data collection methods reported 
in the state of the art in Section 3. Afterwards, we discuss our suggested improvements to 
the state of practice in Section 4.1. Section 5 presents the results of our empirical study 
on defect labeling and the impact of feature sets. We discuss our results in Section 6 and 
address the threats to the validity of our work in Section 7. Finally, we conclude the article 
in Section 8.

2  Existing data sets

This article is about the state of practice regarding the collection of defect prediction data. 
Therefore, the related work are articles that collected defect prediction data. Articles that 
only discuss specific aspects of this data collection are instead discussed together with the 
problems of the currently established ways for the collection of defect prediction data in 
Section 3. We discuss the prior defect prediction data sets with respect to the following 
criteria:

– the number of distinct projects, as well as the number of releases;
– the level of abstraction of the data set, e.g., modules, files, or classes;
– the features that are provided; and
– the defect labeling strategy and the labels that are provided.

Overall, we are aware of fifteen publicly available data sets for defect prediction as of 
August 2019. The NASA  (NASA 2004), ECLIPSE  (Zimmermann et  al. 2007), SOFT-
LAB (Turhan et al. 2009), PROMISE (Jureczko and Madeyski 2010), RELINK (Wu et al. 
2011), AEEEM (D’Ambros et al. 2012), NETGENE (Herzig et al. 2013), MJ12A (Madey-
ski and Jureczko 2015), SHIPPEY (Shippey et al. 2016), GITHUB (Tóth et al. 2016), UNI-
FIED (Ferenc et al. 2018, 2020b), RNALYTICA (Yatish et al. 2019) contain release-level 
data and the JIT  (Kamei et  al. 2013), AUDI  (Altinger et  al. 2015), MT  (McIntosh and 
Kamei 2018), and FJIT (Pascarella et al. 2019) just-in-time data. The BUGHUNTER (Fer-
enc et al. 2020a) contains release-level data for all bugfixing commits, i.e., is neither a tra-
ditional release level data set, nor a just-in-time data set. Table 1 gives an overview about 
the data sets. The data contains mostly open source projects (OSS), but also proprietary 
projects (PROP). The PROMISE data is actually a mix of 15 open source projects with 48 
releases, 6 proprietary projects with 27 releases, and 17 student projects with 17 releases.

These data sets can be distinguished between data for release-level defect prediction and 
just-in-time defect prediction. There are two major differences between the release-level 
and just-in-time data sets. 1) Release-level data contains features for all software artifacts 
for a certain revision (usually a release) of a project, while just-in-time data contains data 
for every commit of a project, possibly restricted to the main development branch. 2) The 
release-level data consists mostly of features that measure the source code directly, e.g., its 
size, structure, or coupling. Just-in-time data consists mostly of features that measure the 
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changes, e.g., the number of lines that are changed. The second difference has a major con-
sequence regarding the programming languages that are considered: the collection of data 
about the source code structure requires language-specific tooling for the (static) analy-
sis of source code, while the collection of data about code changes and ownership can be 
done directly using the version control system. This is reflected directly in the languages of 
the projects: while most release-level data sets are only for one specific programming lan-
guage, two out of three just-in-time data sets are for a diverse set of languages.

We note that there is a strong focus on Java in the release-level data sets. Although 
we have no scientific evidence for this, we believe that the reason for this is likely the 
good tool support for the static analysis of Java. Moreover, we note that the features for 
the release level data sets are mostly static product metrics of the types that measure the 
size (SIZE), code complexity (COM), or aspects of object orientation (OO), e.g., using 
Chidamber and Kemerer’s metrics (Chidamber and Kemerer 1994). The GITHUB, UNI-
FIED, and BUGHUNTER data sets also contain other features based on static product met-
rics, i.e., regarding the code documentation (DOC) and code clones (CLONE). The notable 
exceptions are the AEEEM, MJ12A, and RNALYTICA data, which also contain features 
based on code changes, e.g., added and deleted lines (CHURN). The AEEEM data even 
contains features that measure the entropy of code changes as proposed by Hassan (2009) 
and D’Ambros et al. (2012). The ECLIPSE, AEEEM, and MJ12A data also contain metrics 
regarding prior bug fixes. The MJ12A data is an extension of a subset of the PROMISE 
data with CHURN metrics. The UNIFIED data is a special case: this data set is actually 
a combination of the PROMISE (only OSS projects), AEEEM, ECLIPSE, and GITHUB 
data. All data is conserved as is in the data set and augmented with additional metric data 
to create the UNIFIED data set (Ferenc et al. 2018, 2020a). Most data sets for release-level 
defect prediction are using the file, class, respectively module level. These are all very sim-
ilar, as they encompass the complete contents of a single file in most cases, with the excep-
tion of anonymous and inner classes, that can lead to differences. The notable exceptions 
are the SHIPPEY and BUGHUNTER data, which also contain method-level data.

For the just-in-time defect prediction data, we note that JIT, MT, and FJIT are inde-
pendent of the programming language, which is a big advantage for generalizing the defect 
prediction approach. These data sets are using metrics that can directly be inferred from the 
version control system. MT also uses metrics about code REVIEW. An important differ-
ence between the data sets is that the JIT and MT data only contain the information which 
commits induced a defect, while FJIT contains information which changes to files (hereaf-
ter referred to as file actions) induced a defect. The AUDI data set is not comparable to the 
other two data sets: the data is about source code that was not written by developers, but 
instead generated from Simulink models developed by engineers. Moreover, the data con-
tains not only information that is collected from the version control system, but also static 
product metrics about SIZE and COM.

The identification of defective artifacts is a major aspect of defect prediction data that 
can greatly affect the quality of the data. For example, Yatish et al. (2019) recently found 
that labeling based on the affected releases leads to large differences in comparison to labe-
ling based on keywords and a six-month time window as proposed by Fischer et al. (2003) 
as it was used by Zimmermann et al. (2007). The SZZ algorithm first identifies bug fix-
ing commits and then the corresponding inducing changes. However, the identification of 
inducing changes is, to the best of our knowledge, so far ignored by all release-level data 
sets. Instead, only bug fixing commits are identified using SZZ and then the six-month time 
window as proposed by Fischer et al. (2003) is used by Zimmermann et al. (2007). This 
approach was used for the collections of the ECLIPSE, AEEEM, NETGENE, SHIPPEY 
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and GITHUB data sets. The BUGHUNTER data uses the links on GitHub between com-
mits and issues to determine bug fixing commits. To determine which methods, classes, 
and files contribute to the bug fix, they use a SZZ variant similar to the work by Williams 
and Spacco (2008) that determines ranges of lines based on diffs and match these ranges 
to the code artifacts. The authors manually validated this approach and find that this works 
well in over 99% of the cases. We note that the manual validation only covered if changed 
source code was matched correctly, and not if the changes contributed to the bug fix.

The just-in-time defect prediction data sets JIT, AUDI, MT, and FJIT data2 use SZZ 
including the identification of inducing commits, usually with the addition to ignore white-
space and comment only changes. The RELINK data was created as a case study for an 
issue linking approach. The authors created manually validated issue links and used these 
links for the identification of bug fixing commits. All files that were implicated in any bug 
fix are considered as defective, without using a time window. The PROMISE and MJ12A 
data identify bug fixing commits using regular expressions applied to commit messages 
and a six-month time window. For the NASA and SOFTLAB data, no information on how 
the defects are linked to source code is given. Since the UNIFIED data is an aggregation 
of other data sets that reuses defect labels, there is no defect identification approach. The 
RNALYTICA data uses an approach for the identification of defects based on the affected 
version field of the bug tracking system. The authors establish links between commits and 
issues based on references from issues to the commits in which they were addressed. They 
then use the hunks changed in these commits to identify which files were changed. The 
authors then use the affected version field of the issue tracker to assign the defect for the 
file to releases.

We note that there may be additional data sets, that we did not discuss above. For exam-
ple, we excluded the data used by Zhang et al. (2014) based on the census data by Mockus 
(2009). The reason for this exclusion is that this data is, to the best of our knowledge, 
not publicly available anymore, because the links in both papers do not work anymore. 
Regardless, these data sets would not add anything regarding the methodology for collect-
ing defect prediction data, as the approach is almost exactly the same as for PROMISE and 
MJ12A: the defect identification is based on commit messages and a six month time win-
dow, the metrics are SIZE and COM, and in case of Zhang et al. (2014) also CHURN. Data 
like Defects4J is out of scope of our discussion of defect prediction data. While Defects4J 
contains detailed information about a subset of defects from a project, the data neither 
contains features, nor examples for changes without defects. As a consequence, such data 
would only consist of positive labels and not be suited for any defect prediction experiment.

3  Problems with existing data sets

The sharing of public data sets in defect prediction is a success story that enabled defect 
prediction researchers to conduct many experiments with the data. Moreover, the use of 
the same data by different authors enables comparisons between approaches through meta 
studies, as was, e.g., done by Hall et al. (2012) who exploited that many papers are based 
on the NASA data. However, there are a number of potential problems that researchers 

2 According to the replication kit, the FJIT data may use only a subset of SZZ for identification of bug fix-
ing commits, i.e., a pure keyword based approach.
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found regarding the data collection procedures used for the creation of the defect predic-
tion data sets. Within this section, we summarize problems regarding algorithms for defect 
labeling and the features available in current data sets.

3.1  Defect labeling

Defect labels are the key component of any defect prediction data set. These labels mark 
artifacts as defective, e.g., files in a release or in a commit. These labels are the dependent 
variable that defect prediction models try to predict based on the independent variables, 
i.e., the features. In the existing defect prediction data, labels are either binary or defect 
counts. Noisy defect labels may negatively affect the training of defect prediction models 
or make the evaluation of results unreliable. Especially the impact of the noise on the eval-
uation of results is problematic. For example, if a defect labeling approach marks too many 
instances as defective, i.e., produces false positives, the commonly used measures recall, 
precision and F-measure are not trustworthy anymore, because values may change if the 
distribution between defective and non-defective instances changes. Consider an example 
with 100 software artifacts, 25 artifacts are actually defective, but the defect labeling algo-
rithm introduces noise and labels 50 artifacts as defective. A trivial model that predicts 
everything as defective will overestimate the precision as 0.5 instead of the actual 0.25, 
which would also affect the F-measure which would be 0.7 instead of 0.4.

As we discussed above, the de facto standard for labeling defective instances is the use 
of the SZZ algorithm  (Śliwerski et  al. 2005) in the variant used by Zimmermann et  al. 
(2007). The SZZ algorithm works in two steps. First, bug fixing commits are identified. 
The SZZ algorithm tries to find a matching issue, based on the numbers found in the com-
mit messages. In case any number is found, the algorithm tries to find an issue for the 
project that has the same number. If an issue is found, semantic checks for the following 
properties are performed (Śliwerski et al. 2005):

– The issue was resolved as FIXED at least once.
– The author of the commit is assigned to the issue.
– The title or description of the issue is contained in the commit message.
– One or more files that are changed by the commit are attached to the issue.

A commit is identified as bug fixing if there is at least one linked issue, that passes at least 
two of the above semantic checks. In case only one semantic check is passed, the commit 
is labeled as bug fixing, if the commit message contains a term like “bug” or “fix”, or it is 
clear that a number in the commit is a link to an issue, e.g., because the number starts with 
“Bug #111”, or the commit contains only a list of numbers.

Once a commit is identified as bug fixing, the second part of the SZZ algorithm is the 
identification of the inducing changes. SZZ identifies the last changes to each line that was 
touched as part of a bug fixing commit as candidate for an inducing change. All candidates, 
that took place before the reporting date of the issue are immediately considered as bug 
inducing changes. Changes that took place after the reporting date of the issue are suspect, 
because they were performed after the bug was already in the software. However, because 
of the chance of bad fixes or partial bug fixes, the changes are not automatically discarded. 
If the suspects are part of a bug fixing commit (partial fix) or the commit contains changes 
that are inducing for a different bug (weak suspect), they are considered as inducing. The 
remaining suspects are considered to be hard suspects and not inducing for the bug fix. 
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The identification of the bug inducing commits is only used for the just-in-time data. For 
the release level data sets, defects are assigned to releases based on the reporting date: 
all bugs that were reported in the first six months after the release are assigned to a 
release (Zimmermann et al. 2007).

While our focus is on defect prediction data, a study by Rodríguez-Pérez et al. (2018) 
further highlights the relevance of SZZ beyond defect prediction data. The study highlights 
that the original SZZ is commonly used, i.e., 38% of the identified literature. Another 40% 
of the identified literature refers to some adoption of SZZ, without specifying what this 
adoption is. Only 14% of the publications that use SZZ specifically mentioned that they use 
a variant that ignores cosmetic changes, like documentation changes.

In recent years quality problems with the labels produced by SZZ came into focus. The 
impact of using all changes in a bug fixing commit as foundation for the defect labeling 
was investigated in detail by Mills et al. (2018). The authors manually validated which files 
that were modified in a bug fixing commit were actually part of the bug fix and found that 
about 64% of file changes made in bug fixing commits are not part of the bug fixes, but 
other changes. They found that mistakenly identified files are due to code that is only added 
and not modified or deleted (46.58% of all cases), changes are performed on test code 
(30.90%), refactorings (8.73%), and changes of comments (8.49%). SZZ already ignores 
pure additions for the identification of inducing changes, because there is no prior commit, 
where the code was last changed. To the best of our knowledge, none of the SZZ imple-
mentations used to create the defect prediction data sets ignores test code, refactorings, or 
comments. This means that based on the estimation of Mills et al. (2018), about 34% of 
files in bug fixing commits are false positives, i.e., incorrectly identified as defective.

Another potential source of false positives of SZZ are commits that are mistakenly iden-
tified as bug fixes. With SZZ, there are two main sources for this problem: the first is due 
to the strategy for the identification of links between commits and issues, that works based 
on numbers. If a core developer of a project fixes a bug with an issue number like one, 256 
or other frequently occurring numbers, every commit by this developer that contains this 
number will be identified as a bug fixing commit. While Bird et al. (2009a) found that this 
problem can be mitigated through additional filters, e.g., based on the date of the com-
mit and the issue resolution, this is not part of the standard SZZ algorithm. There are also 
approaches that try to recover links between commits and issues, that are not explicit, e.g., 
ReLink (Wu et al. 2011). Such links also cannot be captured by SZZ. The second source of 
false positive for bug fixing commits are the issues themselves. According to Herzig et al. 
(2013), about 33% of issues that are reported as a bug in the issue tracking system are actu-
ally requests for new features, bad documentation, or simply result in refactorings. They 
found that due to this 39% of the identified defective files were actually not defective. A 
smaller study on this topic was conducted by Antoniol et al. (2008), who came on a smaller 
sample to a similar result.3 To the best of our knowledge, only the NETGENE data is based 
on manually validated issues. That both happen in practice can, e.g., be seen with the issue 
NUTCH-1.4 This test issue created by a core developer was not for any real bug in the 
software. However, all commits by this developer for the Apache Nutch project, where the 

3 Unfortunately, Antoniol et al. (2008) did not specify their criteria for the differentiation between bugs and 
enhancements and only stated that bugs are corrective changes. Due to the uncertainty of this term, we only 
compare our results to Herzig et al. (2013) in the following, as they provide clear guidelines for the identifi-
cation of different issue types.
4 https:// issues. apache. org/ jira/ browse/ NUTCH-1
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message contains the number one will be mistakenly identified as bug fixing. Moreover, 
Herzig et al. (2013) note that these mislabels are mostly irrelevant for developers, but very 
important for data miners:

“The question of whether an issue is a bug or not is a hard one. And the definition 
of a bug not only differs between users and developers but also between develop-
ers themselves. In principle, if an issue bothers the user, the developer should fix it, 
whether or not he considers it to be a bug or not. From this perspective, the issue 
report category does not matter. But a data miner building a defect prediction model 
must distinguish between bugs and non-bugs. Otherwise, the prediction model would 
predict changes, not defects.” Herzig et al. (2013)

Another aspect related to this is to differentiate between intrinsic and extrinsic bugs, a 
notion recently introduced by Rodríguez-Pérez et al. (2020). This notion extends the con-
cept that not all bugs have inducing changes (Rodríguez-Pérez et al. 2018). Intrinsic bugs 
are “introduced by one or more specific changes to the source code” (Rodríguez-Pérez et al. 
2020) and extrinsic bugs were introduced, e.g., “from external requirements or changes to 
the requirements” (Rodríguez-Pérez et al. 2020). In the sense of Herzig et al. (2013) and 
our study, we only consider intrinsic bugs, because issues due external dependencies and 
changing requirements are not bugs, but feature requests for improvements. Thus, extrinsic 
bugs are not within the scope of defect prediction. Regardless, it is valid for the develop-
ers to label extrinsic bugs as bugs within the issue tracker. Thus, both the work by Herzig 
et al. (2013) and Rodríguez-Pérez et al. (2020) indicate that there are likely many issues 
mislabeled as bug in issue trackers, at least from the point of view of defect prediction that 
is interested in intrinsic bugs.

The assignment of the identification of the inducing file actions has also come under 
scrutiny. Da Costa et al. (2017) investigated how well SZZ identifies inducing commits and 
found that SZZ implementations perform better, if they ignore changes that only modify 
whitespaces. This is in line with the findings by Mills et al. (2018). Moreover, they suggest 
that using the affected versions field of issue tracking systems can improve the validity of 
SZZ results. Developers can use this field to mark versions of a software that are affected 
by a specific defect. Regardless, all data sets we discussed in Section 2 use a basic SZZ 
variant that does not ignore whitespace changes or use the affected version field. However, 
Da Costa et al. (2017) do not suggest how the affected version should be integrated into the 
SZZ algorithm. Rodríguez-Pérez et al. (2020) went one step further with their investiga-
tion of the bug inducing changes of SZZ and manually validated the inducing changes of 
86 bugs for two projects.5 They found that about 70% of the correct inducing changes can 
be found.6 However, they also find that of all inducing changes identified by SZZ only 24% 
are actually true positives. However, they only consider the first change that is related to 
the introduction of the bug as inducing. Additional changes that are made later, which may 
have also contributed to the bug are also identified as false positive. Regardless, these find-
ings indicate that SZZ may overestimate the number of bug inducing commits.

Yatish et al. (2019) directly used the affected version field to assign defects to releases. 
Theoretically, this could lead to a perfect assignment of defects to releases. However, this 
depends on the maintenance of this field in the issue tracker by the developer. In practice, 
the value of this field is usually set by the reporter of an issue as the version of the software 

5 These are the intrinsic bugs from their article.
6 76% for the Nova project, 63% for the ElasticSearch project
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that the reporter currently uses. An analysis if this defect was already in the software in ear-
lier versions is often not performed and, consequently, the field is not updated. An example 
for this is the issue CAY-1657.7 The affected version of that issue is 3.1M3. However, as 
part of the description, the author writes “I am sure this affects ALL versions of Cayenne, 
but my testing is done on 3.1 M3/M4”. That this is not an isolated problem is also sug-
gested by further anecdotal evidence, e.g., on the Apache Spark mailing list.8 Additionally, 
the affected version field is often not used at all. For example, Da Costa et al. (2017) report 
that only 1,268 of the 32,033 linked bug reports contained data in the affected versions 
field, i.e., less than 4% of the issues. Thus, this approach is likely to lead to many false 
negatives, i.e., mistakenly not assigned defects to releases that are affected, because the 
field is not maintained properly.

Regarding the six month time frame that was proposed by Zimmermann et al. (2007) for 
the release assignment with SZZ, we could not find an empirical basis for this in the litera-
ture. Yatish et al. (2019) already broke with this rule and demonstrated that there are both 
defects within the six-month time that were introduced after the release, leading to false 
positives, as well as defects that were fixed more than six months after the release, lead-
ing to false negatives. Thus, the work by Yatish et al. (2019) provides a strong indication 
that the complete history of a project after the releases should be considered for assigning 
defects to releases. We are not aware of other studies that evaluate the impact of the six 
month time frame.

Finally, the mislabels in data we discuss above may be acceptable, if they do not affect 
the prediction models. The literature indicates that the there is a threat to the validity of 
the results due to this kind of noise in the data. According to Herzig et al. (2013), the mis-
labeled issues translate into bad estimation of defect proneness of files, because 16% to 
40% of the top 10% of files with most defects change due to the correction of issue types. 
Additionally, Tantithamthavorn et al. (2015) found that while the models trained on noisy 
data may achieve similar precision as models trained without noise, their recall is typically 
reduced by 32%-44%, suggesting a degradation in prediction performance due to the noise. 
We note that the studies by Herzig et al. (2013) and Tantithamthavorn et al. (2015) both 
only consider mislabels due to wrong issue types. The other potential reasons for mislabels 
are not considered.

3.2  Incomplete feature sets

The features (or independent variables) are at the core of every learning algorithm: they 
are the information that is available to make a decision or they can be correlated with the 
outcome. If good features are missing in defect prediction data, this can lead to a loss in 
performance. This loss in performance can vary between algorithms used for training pre-
diction models. This leads to a troubling question: if researchers find a difference between 
defect prediction approaches on data that does not contain all important features, would 
the difference still be there if all relevant features are available? As a consequence, conclu-
sions regarding the performance of defect prediction algorithms based on data that does 
not contain features that were demonstrated to be valuable have a severe problem with the 
external validity of the findings. We note that the curators of data sets are not to fault for 

7 https:// issues. apache. org/ jira/ browse/ CAY- 1657
8 https:// hdl. handle. net/ 21. 11101/ 0000- 0007- E183-6
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features that are not within their data sets. Most data sets are collected based on what is 
currently known in the state of the art and contain the currently relevant features. However, 
this problem can easily manifest if the data is used for years and, in the meantime, the state 
of the art progresses and suggests that important features may be missing from older data 
sets. The defect prediction literature suggest that there are at least several such kinds of 
such features: CHURN related features, as well as different variants of aggregated features.

CHURN related features are based on the findings that defects are more likely in 
often changed parts of a software, especially in case a prior change already removed 
defects (Rahman et al. 2011). Moreover, such features may also include information about 
past defects (BUG), e.g., the number of prior defects that were already corrected in a file. 
Publications that include CHURN features consistently find that CHURN features are 
among the most important predictors for defects. This already started with the pioneer-
ing work by Ostrand et  al. (2005) at Bell labs and was later confirmed, e.g., by Moser 
et al. (2008) and D’Ambros et al. (2012) proposed to use the concepts of entropy and linear 
decay to further improve the impact of CHURN features, which was also confirmed by 
D’Ambros et  al. (2012). Another strong indicator for the importance of CHURN related 
features is that they are the main features in the just-in-time defect prediction data sets in 
combination with code ownership. Regardless, the only release-level data sets that contain 
CHURN features are ECLIPSE, AEEEM, MJ12A, and RNALYTICA.

However, there is another problem that is known related to CHURN features, i.e., those 
that take the history into account. The current data sets collect this data only based on 
the main development branch of a repository. However, due to the advent of Git as ver-
sion control system, features are often developed on branches. These feature branches are 
merged through a single merge commit into the main development branch. If only the 
main branch is considered, information about the history of the development is ignored. 
Only the RNALYTICA data may consider branches for the CHURN feature, as the authors 
state that “one must focus on the development activities of interest that correspond to the 
release branch” (Yatish et al. 2019). However, Yatish et al. (2019) do not discuss further 
how branches are handled, which is why we are not sure if and how different branches 
affect the collection of the CHURN metrics or if the branches are used for the assignment 
of defects to releases. To the best of our knowledge, the other current defect prediction data 
sets only use the main development branch. Kovalenko et al. (2018) evaluated the impact 
of using feature branches as part of the data collection on results of various software min-
ing approaches, including defect prediction. They found that the performance of defect pre-
diction may improve slightly, if data from branches is included in the mining process. In 
particular, they found that the results are never worse. Thus, while this problem probably 
does not have the same impact as the general lack of CHURN features, this could still lead 
to underestimating the performance of defect prediction approaches.

There are other types of features, which are ignored by current defect prediction data 
altogether. Zhang et  al. (2017) found that how measurements from lower level software 
artifacts are aggregated into metrics for higher level artifacts impacts the performance of 
defect prediction models. A popular example of such a metric is the Weighted Method 
per Class (WMC) metric from the Chidamber and Kemerer’s metrics for object-oriented 
software (Chidamber and Kemerer 1994). This metric measures the complexity of a class 
by summation of the complexity of the methods. However, Zhang et al. (2017) found that 
aggregation through a single marker, like summation, can actually lead to inferior defect 
prediction models. Instead, they recommend to use different aggregation strategies to pro-
vide multiple aggregations such as summation, median, and the standard deviation and 
later use feature reduction techniques to remove redundancies. We note that while Zhang 
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et al. (2017) found that using all aggregation schemes leads to the best results overall, they 
also observed that using only summation is a close second, i.e., the advantage of using 
multiple summation schemes may be negligible. Regardless, to the best of our knowledge, 
none of the current publicly available data sets support this kind of analysis.

Plosch et al. (2008) analyzed the correlation between warnings produced by the static 
analysis tools FindBugs9 and PMD.10 They found that the warnings have a stronger correla-
tion with bugs than OO and SIZE metrics. In contrast, Rahman et al. (2014) found that fea-
tures from static analysis tools do not improve the performance of defect prediction mod-
els. Due to the contradictory results, we believe that more data is required, e.g., through 
additional studies that evaluate the impact of such features. Bird et al. (2011) found that 
code ownership is correlated with defects and may be used to improve defect prediction 
models. Palomba et al. (2019) found that it may be useful to derive code smells from static 
metrics, to improve defect prediction models. We note that this data need not be actually 
part of the data sets, but can be derived as long as static source code metrics like number of 
methods are available. Bowes et al. (2016) found that dynamically collected features from 
mutation testing can also improve defect prediction models. A notable difference between 
the mutation features by Bowes et al. (2016) and all other features we discuss is that they 
require that the software can be compiled and executed. Moreover, Thongtanunam et al. 
(2016) found a correlation between code review activity and defects, however, they did 
not study if this correlation can improve defect prediction models. Similarly, Spadini et al. 
(2018) found that smelly test cases are correlated with defects, but have also not studied if 
this correlation can improve prediction models.

4  Improving defect prediction data collection

We now outline how we believe that defect prediction data can be improved to avoid the 
problems discussed in the literature. Table 2 summarizes the key problems we discussed 
in Section 3 as well as the solutions we suggest within this section. In the following, we 
describe the improvements in detail. Wherever possible, we re-use or adapt existing solu-
tions from the literature and rather propose to combine the separate findings and solutions.

4.1  Improving defect labeling

In principle, we believe that the SZZ algorithm (Śliwerski et al. 2005) provides a very good 
foundation for the labeling of defects. Thus, we do not propose a radically new algorithm, 
but rather modify the SZZ algorithm to work well together with the Jira issue tracking sys-
tem, as well as take the problems from the state of the art into account.

As we described in Section 3.1, the SZZ algorithm may suffer from misidentified defect 
links due to often occurring numbers like 1, that are not related to an issue number. We 
note that SZZ was designed with the Bugzilla issue tracker in mind. Here, issues identi-
fiers are just a single number, i.e., there is no good resolution for this. This is different in 
Jira, where the issue identifiers have the structure <PROJECTID>-<NUMBER>. Thus, 
we modified the identification of linked issues to take this structure into account to define a 

9 http:// findb ugs. sourc eforge. net/
10 https:// pmd. github. io/
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new linking approach we call JL11. JL is conceptually identical to SZZ, the difference is the 
focus on Jira instead of Bugzilla.

JL exploits the semantics of the string descriptor of Jira, i.e., we search for the complete 
identifier in commit messages, and not just any number. The drawback of this is that spell-
ing problems in the project identifier would mean that we miss issue links. To account for 
this, we manually check all strings that are a combination of a string followed by an integer 
and supply a list with all wrong spellings, such that they can be corrected by the linking 
algorithm. While this requires manual effort, this can be done in a matter of minutes. The 
problem with JL is that it also captures links to commits, where an issue is only mentioned, 
but not actually addressed. Moreover, if the numbers are alone, i.e., not part of a Jira identi-
fier, JL may miss links. SZZ can detect such links, because the algorithm works only on 
numbers. Thus, to account for links that SZZ detects but JL misses, we semi-automatically 
analyze all messages of commits that contain a link determined by JL or SZZ. The goal of 
this additional step is to create a validated set of links from commits to issues. For many 
commits, this is not a problem. In case we determined only one link from a commit to an 
issue, and this link is established because the exact name of the issue occurs at the start 
of the commit message, we assume that this commit addresses the mentioned issue. An 
example for such a commit message from the ant-ivy project is “IVY-1391 - IvyPublish 
fails when using extend tags with no explicit location attribute”. An expert must inspect all 
remaining commit messages for which a link was detected regarding two criteria: 1) are the 
links correct, i.e., are the issues actually mentioned by the commit message and 2) which 
issues were actually addressed by the commit and which issues were only mentioned. Only 
correct links that were actually addressed in the commit are then validated by the expert. 
We refer to the combination of JL with the validated data as JLM12.

For both JL and JLM we use rules similar to SZZ (Śliwerski et al. 2005) to determine if 
a commit is bug fixing:

– a bug fixing commit must have a validated link to an issue that is validated as BUG; and
– the linked issues must have been in a closed or resolved state at any point in its lifetime.

The major assumption behind JLM is that the labeling of issues as bugs in the issue tracker 
is correct. Since we know from the results by Herzig et al. (2013) that this is often not the 
case, we propose that the type of issues should be manually validated. Taking pattern from 
Herzig et al. (2013), we used the following five categories.

– BUG for null pointer exceptions, runtime or memory issues caused by defects, or 
semantic changes to the code to perform corrective maintenance task. This is the same 
as the BUG category from Herzig et al. (2013).

– IMPROVEMENT for feature requests or the non-corrective improvement of existing 
features. This bundles the categories RFE (Feature Request), IMPR (Improvement 
Request), REFAC (Refactoring Request) from Herzig et al. (2013).

– TEST for issues that only require changes to the software tests. This category was not 
used by Herzig et al. (2013).

– DOC for requested changes to the documentation of the software. This is the same as 
the DOC category from Herzig et al. (2013).

12 Short for Jira Links Manual
11 Short for Jira Links
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– OTHER for all other issues, e.g., questions or brainstormings. This is the same as the 
OTHER category from Herzig et al. (2013).

Our reasons for the differences between our work and Herzig et al. (2013) are mainly due 
to the efficiency, i.e., a faster manual validation process. The different types of IMPROVE-
MENT are often very hard to distinguish based on the description of an issue, while they 
all lead to improvements of the software. We kept the DOC and OTHER and added TEST 
because these are clearly distinguishable from the other issue types. For maximal effi-
ciency, one could also use a simple binary classification, i.e., BUG, and not BUG. For our 
research, we decided against this to facilitate research using this data regarding the auto-
mated correction of issue types.

We propose that the manual validation should be done in two steps. First, all linked 
issues of type BUG should be independently labeled by two experts. The experts have 
access to the description and comments of the issue, as well as the source code that was 
changed as part of the commits that were linked to this issue. If both experts agree, we 
assume their assessment is correct. In case of disagreement, the issues should be presented 
to a panel of at least two experts, one of which did not participate in the initial labeling. 
The experts then decide the issue type based on the blinded labels determined by the two 
experts, the issue description and comments, and the source code changes. This validation 
should be based on the principle “innocent unless proven guilty”, i.e., in case there is doubt 
whether the issue is a BUG or not, the experts should not modify the label, i.e., always 
label such issues as BUG.

While other issues of type other than BUG could also be manually analyzed, the work 
by Herzig et  al. (2013) showed that bugs are almost always correctly labeled as BUG. 
Thus, we suggest to restrict the manual labeling to issues of type BUG, due to the time 
intensive nature of the manual labeling step. In the following, we use JLMIV13 to refer to 
bug fix labeling that accounts for the manual validation of issue types.

The results by Da Costa et al. (2017) and Mills et al. (2018) indicate problems with the 
way SZZ determines bug inducing changes. Both studies highlight that changes that only 

Table 2  Summary of problems with defect prediction data creation and the improvements we consider

The problems are described in detail in Section 3, the improvements are described in Section 4. The identi-
fiers refer to the SZZ variant that implements the improvement

Problem Improvement Identifier

Wrong links to bugs Exploit Jira identifier pattern JL
Manually validate correctness of links JLM

Wrong issue types Manually validate issue types JLMIV
Too many inducing changes Exclude non-production code, whitespace and 

documentation changes
JLMIV+

Ignore refactorings JLMIV+R
6-month time-window Use affected versions field JLMIV+RAV

Use commit graph IND-JLMIV+R
Lack of features Provide a large set of features -

13 Jira Links Manual Issues Validated

Empirical Software Engineering (2022) 27: 42 Page 15 of 49 42



1 3

affect the whitespaces or modify comments should be ignored during the identification of 
bug inducing changes. To address this concern, we use a regular expression approach to 
identify changes that only modify comments or whitespaces and ignore them, similar to 
what Kim et al. (2006) proposed. Mills et al. (2018) also found that changes to tests are 
also inadvertently covered during the search for bug inducing changes. Since bugs can, by 
definition, only be in production code, these changes are all false positives. We extend this 
notion to changes to examples or tutorials, which may contain code files. These are also not 
production code, but documentation of the project. We are not aware of an SZZ variant that 
takes this into account. Additionally, we ignore changes that can be explained by refactor-
ings similar to the work by Neto et al. (2018, 2019). Based on the results by Mills et al. 
(2018), these modifications should be able to account for about 94.6% of the false positive 
bug inducing changes. We refer to this improvement of the detection of inducing changes 
as JLMIV+R.

Da Costa et al. (2017) also noted that SZZ should take the affected version field of issue 
tracking systems into account, because this gives further information about the time when 
the software was defective. In their study, Da Costa et al. (2017) mark all changes after the 
release of the earliest affected version as incorrect. Yatish et  al. (2019) assign bug fixes 
directly to releases based on the affected version field and do not use SZZ at all. In com-
parison to Yatish et al. (2019) and Da Costa et al. (2017), we do not consider the affected 
version label as ground truth, due to the reasons we discussed in Section 3.1. Because we 
assume that the affected version field is likely missing completely or at least missing older 
releases that were also affected by a bug, we believe that the approaches by Da Costa et al. 
(2017) and Yatish et al. (2019) are too strict for real world data and would lead to false 
negatives, i.e., not assigning bugs to affected releases because the affected versions field is 
incomplete. A less strict variant that takes the affected version field into account would be 
to integrate the affected version in the strategy to determine inducing changes of the SZZ 
algorithm, based on how the bug reporting date in the issue tracker is used. SZZ assumes 
that changes after the reporting date of a bug are suspect, but may still be inducing for the 
bug fix, e.g., because they are bad fixes or partial fixes. The same logic can be applied to 
changes that happen after the release of an affected version. Thus, our proposal to utilize 
the affected version field to enhance the SZZ algorithm is to extend the notion of suspect 
changes and use the minimal date of the release of all affected versions and the reporting 
date of the bug as the boundary for suspects. We refer to this approach as JLMIV+RAV.

For release level-data, there is another problem to consider, i.e., how we decide which 
releases were affected by which bugs and label files within releases accordingly. We already 
discussed that the six month timeframe has no empirical foundation and leads to mislabels, 
as demonstrated by Yatish et al. (2019). However, since we believe that the affected ver-
sion field is unreliable (see sections 3.1 and 5.6) , we propose a different approach than 
Yatish et  al. (2019). We propose an approach that is directly based on the bug inducing 
changes. If the bug inducing changes are determined correctly, this means that the bug 
was in the software, when the last non-suspect bug inducing change took place. Suspect 
changes have to be excluded here, because there is confirmation in the issue tracking sys-
tem that the bug already affected the system, when this change took place. Similarly, we 
can determine when the bug was fixed as the last bug fixing commit for the bug. Conse-
quently, a bug affects a release, if all non-suspect inducing changes took place before the 
release, i.e., there is a path in the commit graph from all inducing changes to the release, 
and at least one bug fixing commit took place after the release. We refer to this approach 
as IND-JLMIV. This approach is in line with the theory of how bugs are introduced by 
Rodríguez-Pérez et al. (2020), which is based on the idea that an intrinsic bug is within the 
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software once the changes that lead to the bug are performed. Assuming that all inducing 
changes are required to produce the bug, the last inducing change is the point in time where 
the bug was introduced into the software.

4.2  Reducing the lack of features

The remedy for the lack of features is straight forward: collect data for more features based 
on prior work from the state of the art. This requires no change in the general approach 
for data collection, i.e., to to compute features from repositories mostly using off-the-shelf 
static analysis tools. The only required change is that more tools are used to collect these 
features to obtain a broader feature set.

5  Empirical study

Within this section, we describe the results of an empirical study we conducted. The goal 
of this study was two-fold. On the one hand, we want to determine the impact of the prob-
lems we discussed in Section 3. On the other hand, we want to determine if our proposed 
improvements can effectively resolve these problems. Figure  1 outlines our experiment. 
First, we go step by step through the defect labeling. Then, we use the resulting defect 
prediction data to evaluate the effect of mislabels and the lack of features on the prediction 
performance of a defect prediction model.

For all of these analyses we only presented aggregated results for all projects we ana-
lyzed. The detailed tables with all data, including all code required for an exact replication 
of our work as well as the collected release-level and just-in-time defect prediction data 
sets, are part of the supplemental material.14

5.1  Data

We conducted our study on projects from the Apache Software Foundation.15 Apache pro-
jects must have reached a certain level of maturity in order to be considered as a top-level 
project. Especially the use of Jira as issue tracking system is highly recommended and fol-
lowed by most Apache projects. Additionally, Bissyandé et al. (2013) found that “Apache 
developers are meticulous in their efforts to insert bug references in the change logs of 
the commits”. This is an important property for the projects under consideration because 
it removes the need for link recovery and we can safely assume that links from commits 
to issues are available in the data. Yatish et al. (2019) also used a convenience sample of 
Apache projects for the same reason. A similar reasoning was also used for studies other 
than defect prediction, e.g., by Di Penta et  al. (2020). To further ensure the maturity of 
projects, we used the criteria listed in Table 3. In addition, we had a soft criterion that we 
focused on projects with less than 10.000 commits on the main development branch. The 
reason for this is the very high demand on the resources for the collection of the metric 

14 https:// doi. org/ 10. 5281/ zenodo. 56750 24
15 http:// www. apache. org
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data for every commit in the Git repository.16 Please note that the total number of commits 
can still be larger than 10.000 commits, because of we collect the data for all branches.

Table 4 lists the 38 projects for which we collected data, including the versions of the 
398 releases for which we collected release-level data. The releases were determined using 
the project homepages. For each release, we looked up the commit of the release in the Git 
repository. For most releases, there was a related tag in the Git repository. If this was not 
the case, we manually analyzed the commit history to determine the release commit, using 
the information we found on the project homepage, as well as related tags and branches.

We collected all data using the SmartSHARK (Trautsch et al. 2017, 2020) platform. The 
advantage of this approach is that we aggregate all collected data in a single MongoDB 
database, including the results of our manual validations. Details regarding the collection 
of this data can be found in Appendix 1.

The data for just-in-time defect prediction is provided through the MongoDB. Addition-
ally, we prepared release-level defect prediction data. As features we collected static code 
metrics, clone metrics, PMD warnings, AST node counts, the number of the different kinds 
of changes (Fluri et al. 2007) and refactorings (Silva and Valente 2017) from the last six 
months, and churn metrics proposed by Moser et al. (2008), Hassan (2009), and D’Ambros 
et al. (2012), and all thirteen aggregations that were proposed by Zhang et al. (2017) for the 
software metrics are not on the file level, i.e., class, method, interface, enum, attribute and 
annotation metrics. The data set contains a total of 4198 features. We decided not to add 
features with code smells (Palomba et al. 2019) to the data set, because these can be cal-
culated indirectly from the available source code metrics and definition of smells like god 
class may change over time. Additionally, features based on mutation testing are not avail-
able, because retrospective execution of tests is, unfortunately, often not possible (Tufano 
et al. 2017). We also have not added features regarding test smells (Spadini et al. 2018) and 
review activity (Thongtanunam et al. 2016), because current results only show correlation 
with defects, but have not yet shown that these features may actually improve defect predic-
tion models.

The defect labels are assigned using the JLMIV+IND approach. For each file, we stores 
the number of bugs that were fixed in this file. Moreover, the data contains a matrix that 
has as columns the issues and as rows the files. This matrix contains the value one, if the 
issue affected a file. This allows a fine-grained analysis which issues affected which file in 
a release and also which issues affected multiple files and is required for the analysis of 
costs (Herbold 2019). The column names of this matrix contain the identifier of the issue, 
the severity of the issue, and the date of the last bug fixing commit for the issue. This meta 
data allows for later filtering, e.g., to exclude trivial bugs or to ensure that there is no data 
leakage, e.g., to exclude bugs that were not yet fixed at the time of a release for which a 
prediction model is trained.

5.2  Evaluation criteria

For the evaluation of the different aspects of defect labeling, we determine baselines 
and then determine how well other approaches perform with respect to the baseline. The 
concrete baselines are discussed at the beginning of sections  5.3, 5.4, 5.5, 5.7, and 5.8. 

16 While this criterion is irrelevant for the evaluation of the defect labeling, we selected the projects also 
with the goal to provide a new defect prediction data set.
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We evaluate two aspects: how many artifacts determined by the baseline are correctly 
identified and how many additional artifacts are identified. Artifacts are, for example, 
links from commits to issues, commits, or files. This approach is similar to the concept 
of true positives and false positives. For example, if a baseline determines n artifacts as 
defective, and an approach for comparison A identifies ntp of these artifacts as defective 

Fig. 1  Overview of the Experi-
ment. The human figure indicates 
that we used manual validation
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Table 3  Criteria for the inclusion of projects

Criterion Rational

Uses Git Most projects either already use a Git repository, or provide a Git 
mirror of a SVN repository.

Java as main language Our static analysis only works for Java code.
Uses Jira The Jira of the Apache Software Foundation is the main resource 

for tracking issues of most Apache projects.
At least two years old Project as a sufficient development history.
Not in incubator stage Project has been fully accepted by the Apache Software Foundation.
> 100 Issues in Jira Project is mature and actively uses Jira
> 1000 Commits Project has a sufficient development history.
> 100 Files Project should have a reasonable size.
Activity since 2018-01-01 Project is still active in both Jira and Git.
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as well, but also nfp additional artifacts, we say that A identifies ntp
n

 artifacts correctly 
as true positives and nfn

n
 additional false positive artifacts. For these comparisons, we 

report the median and the Median Absolute Difference (MAD) which is defined as 
MAD = 1.4826 ⋅ median(|xi − median(X)|) for a sample X = {x1, ..., xm}  (Rousseeuw and 
Croux 1993). The median and the MAD have the advantage over the mean value and the 
standard deviation that they are robust in case of non-normal distributions, which is the 
case for most data in our empirical study. The value 1.4826 is a scaling factor for MAD 
that makes the values of MAD similar to the standard deviation of normally distributed 
data (Rousseeuw and Croux 1993).

We use two independent researchers for the labeling of issue types of bug issues. We 
report Cohen’s � (Cohen 1960) to estimate the reliability of the consensus, which is defined 
as

where p0 is the observed agreement between the two raters and pe the probability of ran-
dom agreements. pe depends on the number of categories k and is defined as

where N is number of issues and n1
i
 , resp. n2

i
 is the number of times researcher 1, resp. 2 

labeled an issue as category i. We use the table from Landis and Koch (1977) for the inter-
pretation of � (see Table 5).

We also evaluate defect prediction models as part of our empirical study, to evaluate 
the impact of mislabels and feature sets. To evaluate the practical relevance of differences 
between the models, we evaluate how training on noisy data or fewer features impacts the 
cost effectiveness of defect prediction models based on the cost model by Herbold (2019). 
The advantage of using the cost model by Herbold instead of commonly used metrics like 
recall, precision, or F-measure is that the values of these metrics are not reliable meas-
ures with respect to the cost saving potential of defect prediction models Herbold (2019). 
Moreover, Yao and Shepperd (2020) found that many commonly used measures are not 
able to reliably determine if models are better than random predictions and suggest to use 
Matthews Correlation Coefficient. However, since the relationship between MCC and costs 
is also unclear, which is why we decided to directly evaluate costs.

The cost model estimates boundaries on the ratio between costs of quality assurance 
and costs of defects. Defect predictions can save costs for a project based on the ratio C 
between the costs for quality assurance and the cost of defects. The cost model estimates 
lower and upper boundaries for C that must be fulfilled to allow the defect prediction 
model to save costs. For cost ratios C less than the lower boundary, it would be better to 
not perform any additional quality assurance, because the quality assurance would be more 
expensive than the cost of the defects. The lower boundary increases with more predictions 
of files as defective (regardless whether the predictions are correct) and decreases with 
more defects being predicted. Thus, the lower boundary penalizes false positive predictions 
and rewards true positive predictions. For cost ratios C greater than the upper boundary, it 
would be better to apply additional quality assurance everywhere, because the costs for the 
defects would be higher than the investment for the quality assurance. The upper boundary 
increases with fewer predictions of files as defects (regardless whether the predictions are 

(1)� =
p0 − pe

1 − pe

(2)pe =
1

N2

k∑

i=1

n1
k
⋅ n2

k

Empirical Software Engineering (2022) 27: 4242 Page 22 of 49



1 3

correct) and decreases with more defects missed by the predictions. Thus, the upper bound-
ary penalizes false negatives and rewards true negatives. An additional caveat of the cost 
model is that it accounts for the m-to-n relationship between files and defects, i.e., that each 
file may be affected by multiple defects and the each defect may affect multiple files. As a 
result, the cost model does not use the confusion matrix for the estimation of true predic-
tions of defects, but rather the bug-issue matrix to evaluate if all files that are affected by a 
defect are predicted by the defect prediction model. We use the size in logical lines of code 
as proxy for the effort for the quality assurance of the artifacts. Moreover, we assume that 
quality assurance is perfect, i.e, that all predicted defects are actually found by subsequent 
quality assurance measures. Following Herbold (2019), we can thus compute the bounda-
ries on C as

S is the set of files for which defects are predicted, h is the defect prediction model, D is the 
set of defects all d ∈ P(S)17, DPRED = {d ∈ D ∶ ∀s ∈ d | h(s) = 1} is the set of predicted 
defects, and DMISS = {d ∈ D ∶ ∃s ∈ d | h(s) = 0} is the set of missed defects.

We use Demsar’s guidelines (Demšar 2006) for the comparison of classifiers to evaluate 
if differences of the lower boundary and upper boundary are significant. The cost bounda-
ries are not normally distributed and can even be infinite.18 Therefore, we use the Friedman 
test (Friedman 1940) with the post-hoc Nemenyi test (Nemenyi 1963) to evaluate signifi-
cant differences. In case differences are significant, we use Cliff’s � (Cliff 1993) to estimate 
the effect sizes. According to Romano et al. (2006), the effect is negligible if 𝛿 < 0.147 , 
small if 0.147 ≤ 𝛿 < 0.33 , medium if 0.33 ≤ 𝛿 < 0.474 and large if � ≥ 0.474 Since there 
is no guarantee that the defect prediction model can actually save costs, i.e., that the lower 
boundary of the model is less than the upper boundary, we also report the percentage of 
releases for which the defect prediction cannot save costs because the lower boundary is 
greater or equal to the upper boundary.

5.3  Identification of issue links

The first step of defect labeling is the identification of links between commits and issues. 
We restricted the analysis only to links to issues of type BUG that were closed and fixed 
at least once in their lifetime. Thus, we restrict this analysis to the links to issues that are 
relevant for defect labels.

Our JLM approach that is based on a semi-automated validation of the links found by 
SZZ and JL identified 18,721 correct links from commits to issues. 5,311 of these links 
were manually validated by the first author of this article, the remaining 13,410 links were 
validated by our heuristic, i.e., had a link to a single issue directly at the beginning. We 
sampled 1000 of the links that were validated by our heuristic to evaluate the correctness 
of the heuristic. The heuristic was correct in all cases. Moreover, we randomly sampled 
1000 commits from the all commits for which neither SZZ nor JL found a link to a Jira 
issue. We found no links to Jira that we failed to identify. However, we found 40 links to 

(3)
∑

s∈S∶h(s)=1 size(s)

�DPRED�
< C <

∑
s∈S∶h(s)=0 size(s)

�DMISS�

17 In the cost model, a defect is defined by the set of files that it affects.
18 For example, the upper bound is infinite if no defects are missed and a single file is not predicted as 
defective.
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the Bugzilla19 of the Apache Software Foundation. Since the data is not available anymore, 
we could not validate, if these issues are bugs or improvements. Therefore, about 4.0% of 
the commits for which we found no link may also be bug fixing, but cannot be determined 
as such anymore because the issue data is missing. Otherwise, we found no errors in our 
data. Thus, while we believe that there may still be missed or invalid links in the data, the 
amount of data that is affected would be very small. Therefore, we can consider JLM as 
ground truth for the links between commits and Jira issues. We note that these findings are 
in line the empirical study by Bissyandé et al. (2013) on issue links in Apache projects.

We evaluate the performance of SZZ and JL with respect to the ground truth data deter-
mined with JLM. Figure 2 summarizes the results. JL finds almost all correct links with 
a median of 99.7% (MAD=0.4%). In the worst case, JL still identifies 96.2% of all links. 
However, JL finds a median of 1.7% (MAD=1.9%) additional links that are wrong. In the 
worst case, JL identifies 59.4% additional links. This happened for the commons-jcs pro-
ject and was due to the very frequent usage of version numbers within commit messages. 
Further investigation revealed that the usage of version numbers was the main reason for 
the false positive links by JL for all projects.

SZZ finds a median of 85.4% (MAD=19.6%) of the correct links to issues. We note 
that the results of SZZ strongly vary, in the worst case SZZ only finds 18.8% of the cor-
rect links. This happened for the commons-collections project. When we evaluated this, 
we found that for commons-collections, many issues were never assigned to a developer 
in the Jira. This breaks the semantic check of SZZ for the equality of the assignee in the 
issue tracker and the author of the commit. Further investigation revealed that this seman-
tic check did not hold for all missed links by SZZ. Moreover, SZZ identifies a median of 
12.3% (MAD=15.5%) additional links that are wrong. We note that while the median is 
relatively low, there is a long tail of projects with many additional links. There are even 
two outliers which are not shown in Figure 2. The outliers are for parquet-mr (430.4% addi-
tional links) and cayenne (124.3% additional links). In both cases, the broken links are 
due to links to pull requests on Github, which have the pattern #<NUMBER>. Since SZZ 
cannot distinguish between different issue tracking systems, all these numbers are checked 
against the Jira of the projects and lead to additional links. Further investigation revealed 
that links to pull requests were the most frequent reason for additional links in general. 
Commonly used numbers were also problematic, but not as frequent.

Table 5  Interpretation of 
Cohen’s � according to Landis 
and Koch (1977)

� Interpretation

<0 Poor agreement
0.01 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 1.00 Almost perfect agreement

19 https:// bz. apache. org
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5.4  Issue type validation

The second part of the validation of the quality of the issue data is a partial conceptual 
replication (Shull et al. 2008) of the results by Herzig et al. (2013). Based on the data for 
five projects by Herzig et  al. (2013), we expect that between 27.4% and 42.9% of BUG 
issues are mislabeled with 99.5% confidence and that between 0.4% and 3.5% of issues 
of other types than BUG should actually be bugs. The first and third author of this article 
manually labeled the types for all linked issues of type BUG, regardless of whether the link 
was established by SZZ, JL, or JLM. The inter-rater reliability between the first and the 
third author was substantial ( � = 0.62 ) with an agreement on 77% of the issues. All three 
authors determined the correct label as committee for the remaining 23% of the issues. 
This way, we manually validated the issue type for all 11,295 issues that were linked by 
commits and labelled as BUG in the issue tracker.

Figure  3 summarizes the results of the evaluation. Overall, we found that a median 
of 42.3% (MAD=13.3%) of linked BUG issues are mislabeled: 29.0% (MAD=6.4%) are 
actually IMPROVEMENT, 5.2% (MAD=3.6%) are DOC, 3.0% (MAD=2.0%) are TEST, 
and 3.8% (MAD=3.1%) are OTHER.20 Thus, our results replicate the findings by Herzig 
et al. (2013) regarding the misclassification of BUG issues, even though we are close to 
the upper bound of the confidence interval. Another way to read these numbers is that for 
every correctly labeled BUG issue, there are a median of 42.3%

57.7%
= 0.73 incorrectly labeled 

issues. Figure 3 demonstrates that all projects are affected by this kind of noise in the data, 
i.e., even in the best case about one fifth of the bugs are mislabeled.

We also randomly sampled 50 issues that are not of type BUG for each project, i.e., a 
total of 1833 issues.21 These issues were manually validated by the first and second author 
of this article and the first three authors resolved conflicts as committee. A mean of 1.3% 
of these issues were actually bugs. Thus, our results also replicate these findings by Herzig 
et al. (2013). Overall, there are 11980 resolved linked issues that are not of type bug in our 
data. Thus, we expect that we miss about 1.3% ⋅ 11980 = 155.7 bugs in our data. Since we 
have found 6367 validated bugs, we are missing about 2.4% of the bugs in the data, i.e., the 
impact on our results is small.

Fig. 2  Results of the valida-
tion of the link correctness. For 
the additional links with SZZ, 
outliers were cut of which were 
located at 124.3% and at 430.4%

20 The sum of the median values for for IMPROVEMENT, DOC, TEST, and OTHER is 41.0%, i.e., less 
than the median of not being a BUG, which is 42.5%. This is possible because the median is not linear.
21 The projects commons-bcel, commons-digester, commons-jcs, and commons-validator had fewer than 
50 issues that were linked by commits, which is way we do not have 38*50=1900 issues.
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5.5  Bug fixing commits

Neither the broken links, nor the wrong issue types have direct impact on defect predic-
tion. The impact on defect prediction research only manifests, if there are false positives 
or false negatives for the labeling of bug fixing commits based on this data. To validate 
how the bug fixing commits change, we compare SZZ, JL, JLM, and JLMIV with each 
other, using JLMIV as baseline. JLMIV constitutes our ground truth for this evaluation, 
because it is based on the validated links and the validated issues. JLMIV labels a median 
of 5.6% (MAD=3.3%) of the total commits of a project as bug fixing. Figure  4 sum-
marizes the actual bug fixes that are detected correctly (true positives) and the wrongly 
detected bug fixing commits (false positives). The results for the true positives mirror the 
results of the detection between the commits and issues. SZZ identifies a median of 86.9% 
(MAD=18.2%) of all bug fixing commits, JL is almost perfect with a median of 100% 
(MAD=0.4%). JLM identifies all bug fixes identified by JLMIV, because JLMIV uses the 
same links as JLM and only reduces the bug fixing commits, because fewer issues are con-
sidered as BUG.

Regarding the false positives, our results are mostly influenced by the issue type valida-
tion. SZZ finds a median of 81.1% (MAD=40.0%) false positive bug fixing commits, JL 
finds a median of 86.3% (MAD=40.4%), and JLM finds a median of 78.9% (MAD=39.3%). 
While these numbers are very high, they are expected given that there are a median of 0.73 
wrong BUG issues for every correct bug issue. There are also additional false positives 
for SZZ and JL due to additional issue links that are wrong. We note that SZZ has a lower 
median than JL. This is counter intuitive, because SZZ should have more false positives, 
because SZZ has more additional issue links than JL. However, this is offset by the correct 
links that SZZ missed. These not only cause SZZ to miss true positives, but also to miss 
false positives due to wrong issue labels.

5.6  Ground truth for inducing changes and affected releases

We were able to establish ground truth data for all our empirical data so far. Unfortunately, 
this was not possible for us for the bug inducing changes and the assignment of bugs to 
releases, including the quality of the data in the affected versions field of Jira. When we 
considered if we could achieve this through manual validation, we came to the conclu-
sion that this is impossible on this scale for a group of researchers (Section  6.4). Even 

Fig. 3  Results of the manual 
validation of linked bug issues
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on a smaller scale, we could often not be sure if our assessment is correct, because we 
lack understanding of the details of the source code within the projects. We could also 
not re-use an established approach from the literature. Mills et al. (2018) determined simi-
lar ground truth data, but only for the file actions addressed in bug fixing commits, not 
their inducing counterparts. The projects that are part of our empirical study that were also 
investigated by Mills et  al. (2018) are mahout and tika. Mills et  al. (2018) sampled 34 
issues for mahout and 22 issues for tika, 23 of these issues are validated bug fixes in our 
data. We cross-checked our data with these 23 issues to determine if all files that were 
found to be part of the bug fix would be detected as such by our approach. This is the case, 
if there is an inducing change for the file. We found that we correctly detect which file 
actions were actually part of the fix for 21 of the issues. For the issue TIKA-1110, we fail 
to identify one file, that Mills et al. (2018) say is part of the fix. However, this is the dele-
tion of a file, because there are no further references to it. Since the deletion does not cause 
any change to the logic of the code, this is not a problem of our data. The cases where we 
miss changes are for TIKA-1070 and TIKA-961. In both cases, there is a pure addition of 
source code. Since pure additions do not have inducing changes, we cannot identify an 
inducing commit and would, therefore, miss the related file. Overall, our approach was cor-
rect for 21 of 23 issues, i.e., 91% of the file actions.

For the bug inducing changes, only Rodríguez-Pérez et al. (2020) created manually vali-
dated data regarding bug inducing changes. However, they target different projects than our 
work. To provide an indication about the inducing changes in our work, we wanted to rely 
on developers for this task. Thus, we looked for information in our data, which we could 
use to accurately determine inducing changes. We then compared the results to the work by 
Rodríguez-Pérez et al. (2020).

Moreover, we require an approach different from the suggested framework for evaluat-
ing SZZ variants suggested by Da Costa et al. (2017). In their work, they suggest to use 
indicators for potential mislabels such as the disagreement with the affected versions field, 
the number of subsequent bug fixes, or the age of the bug, to identify potential mislabels. 
However, such anomalies only indicate that something may be wrong, but are not defini-
tive indicators of mislabels, i.e., ground truth. Consequently, their results cannot be directly 
compared to our work.

We were able to extract knowledge about inducing changes from our data by exploiting 
the false positive links of our JL approach. One reason for false positives is that an issue 
is referenced in a commit message as the cause of a bug. Thus, we scanned all bug fixing 
commits identified by JLMIV for false positive issue links. We manually checked the com-
mit messages and found twenty commits which clearly state that one issue was the cause of 

Fig. 4  Results of the validation 
of the link correctness
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another issue and that also indicate that this is not just re-opening of the same issue again. 
For example, we found the following commit message: “FIX: ChainResolverTest failures 
(IVY-882): The problem was due to the changes introduced in IVY-857. [...]”22 Thus, we 
can say that IVY-857 is the inducing issue of IVY-882. It follows that the bug was in the 
software, when the work on the inducing issue was finished. Thus, we looked up the com-
mits in our data, which were also linked to the inducing issue. In case there were multiple 
commits for the work on the inducing issue, we manually validated which of the commits 
on the inducing issue was the latest change that was related to the work on the fixed issue 
and marked this commit as the inducing commit. Then, we manually validated that these 
were indeed the commits that introduced the bugs. In all but one case, this was the lat-
est commit on the inducing issue. The exception is the work on TIKA-2483,23 where the 
inducing change was not in the latest change,24 but one of the prior changes.25 We note that 
a similar approach was suggested in parallel work by Rosa et al. (2021), who also looked 
for fixing commits where the message indicates when the bug was introduced. In their 
study, they found 129 such commits that referenced issues within a sample of 19,603,736 
commits.

Table 6 lists the data we retrieved. We first note that ten of the issues we found only 
existed for less than five days in the projects. This is expected, because this data is not an 
unbiased sample from all bug fixing commits, but rather a sample of commits were devel-
opers identified a concrete issue as the reason. In these cases, a developer immediately 
noticed and fixed the problem and referenced the prior work. The other ten issues lived 
longer, one issue even existed for more than one year. We use this data to evaluate three 
aspects: 1) the accuracy of the detection of the latest inducing change with JLMIV+R; 2) 
the quality of the data in the affected versions field of the issue tracking system; and 3) the 
correctness of the assignment of the bugs to releases based on a six month timeframe (6M), 
the affected versions field (AV), and the inducing changes determined by JLMIV+ (IND).

JLMIV+R finds the correct latest commit regarding the inducing file action for sixteen 
of the twenty issues. This is in line with the expectation from Rodríguez-Pérez et al. (2020) 
who also determined a precision of about 70%. In four cases, JLMIV+R finds a commit 
that is newer than the actual inducing change. This is an expected weakness of JLMIV+R 
and of strategies that use the blame mechanism to find the most recent change in a version 
control system in general. This happens if there is a change on the defective source code 
between the inducing change and the bug fixing change.

Regarding the affected versions field, we note that there are nine cases, in which the 
field was not used in the issue tracker. In seven of those cases, this is correct, as the bugs 
never affected a release, i.e., they were introduced and fixed between releases. In the other 
two cases, we validated that the bugs affected multiple releases of the software. Of the 
eleven cases, where the affected version field is defined, only one entry is completely cor-
rect (VALIDATOR-376). For two issues, the affected version fields contain a partially 
correct entry (TIKA-599 and TIKA-2483). In both of these cases, only the latest release 
is mentioned, the older releases which are also affected are ignored. The remaining eight 
entries of the affected version field are wrong, i.e., they list releases which are not affected 
by the bugs. In six cases, the bugs were fixed prior to the release (IVY-882, NUTCH-683, 

22 https:// github. com/ apache/ ant- ivy/ commit/ 6d6d34
23 https:// github. com/ apache/ tika/ commit/ 06486c
24 https:// github. com/ apache/ tika/ commit/ 6930ff
25 https:// github. com/ apache/ tika/ commit/ 3aab15
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PARQUET-214, LENS-538, GIRAPH-88, GIRAPH-34), in the other two cases the bugs 
were only induced after the release (KYLIN-3223, EAGLE-573). In the first six cases, the 
developers assigned the version number of the release that is currently a work in progress, 
in the last two cases they assigned the version number of the latest release.

The problems with the affected version field are more severe than we expected. Overall, 
the bugs in this sample affect 10 releases, the affected version field only mentions three 
releases correctly. We expected that we would find this kind of error in the data of the 
affected version field, even though we expected fewer differences. Our analysis revealed 
that the affected versions field may also contain affected versions that are wrong, which we 
did not expect. The case were the version of the work in progress release is used, is rela-
tively harmless for defect prediction: since the bug fixing commit is before the release, the 
commit will not be considered during the labeling of the release and the wrong value of the 
field will, consequently, be ignored. Similarly, our proposed improvement for the detection 
of inducing changes JLMIV+RAV would just use the date of the reporting of the bug and, 
therefore, also not be affected. The second case, where the latest release is entered, even 
though the bug was never in that release, is problematic. This leads to an additional assign-
ment to a release and also breaks JLMIV+RAV as the actually inducing changes are after 
the date of this wrongly mentioned release and would, therefore, be flagged as suspect.

The last aspect is the assignment to releases. Assignment based on bug fixes six months 
after the release is correct for twelve issues, assignment based on affected versions is cor-
rect for eleven issues, and assignment based on the inducing changes for all twenty issues. 
The correctness of the six month time frame depends on two factors: the time to fix and the 
activity of the project. In case the time to fix was more than six months, the correct release 
was missed. In case the project was very active, e.g., with multiple releases within the last 
six months, the bug would be assigned to a release in which it was not yet introduced into 
the software. With the exception of VALIDATOR-273, the release assignment based on the 
affected version field is correct if no release was affected and the affected versions either 
contained a not yet released version or was empty. The assignment based on inducing 
changes is correct, even in the four cases where a wrong change is identified as inducing. In 
one of these cases, there is only a small deviation of less than one week between the actual 
time to fix and the determined inducing change. In case of PARQUET-214 and VALIDA-
TOR-376 the inducing change is relatively far off and it is pure chance due to the project 
activity that the assignment is correct.

5.7  Bug inducing changes

For just-in-time data, the identification of bug fixing commits is only the precursor for 
finding the inducing changes, which are then the target of the prediction. Moreover, we 
described how the inducing change can be used for assigning defects to releases in Sec-
tion 4.1. To this aim, we compare four approaches for the identification of bug inducing 
changes: 1) the standard SZZ algorithm  2) JLMIV, i.e., our improved linking with the 
issue validation, but standard SZZ to determine inducing changes; 3) JLMIV+R, i.e., the 
improvement to ignore changes to non-java files, whitespace only changes, documentation 
changes, and refactorings; 4) JLMIV+AV that further extends JLMIV by using the affected 
versions field; and 5) SZZ-RA, i.e., a state of the art variant of SZZ based on the work 
by Neto et al. (2018, 2019). Our variant of SZZ-RA differs from the original work only 
in details: we added a filter that ignores test and documentation files, and use the links 
between commits and issues based on the Jira issue pattern.
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We do not have ground truth data for this analysis, as discussed in Section 5.6. Instead, 
we use JLMIV+R as a baseline and analyze the differences between SZZ, JLMIV, 
JLMIV+AV and SZZ-RA with respect to JLMIV+R. The reason for this is two-fold. First, 
the inducing changes of JLMIV+R are a subset of JLMIV that only reduces the inducing 
changes, e.g., due to whitespace changes. Thus, in case of deviations, the change iden-
tified by JLMIV is always a false positive. Second, JLMIV+R is based on our ground 
truth for bug fixing commits. Since SZZ uses the same inducing strategy as JLMIV, but 
is based on the inferior SZZ labels for bug fixing commits, all deviations of SZZ from 
JLMIV+ are also mislabels. Similarly, all deviations from SZZ-RA from JLMIV+R are 
mislabels, because of wrong bugfixing commits. Regarding JLMIV+AV, we cannot state 
whether deviations from JLMIV+ are correct or not: this depends on the affected version 
field. In case the affected version field contains valid data, JLMIV+AV is likely to be cor-
rect, because the identification of suspect changes is improved. In case of invalid data, 
JLMIV+R is likely to be correct, because the inducing changes would be wrongly flagged 
as suspect by JLMIV+AV.

Figure  5 summarizes the results for the inducing strategies. JLMIV+R finds that a 
median of 5.2% (MAD=3.4%) of the commits are bug inducing. If we only consider the 
78.296 commits in which at least one Java production file26 was changed, the percentage 
of bug inducing commits has a median of 8.1% (MAD=5.0%). When we consider this on 
the level of changes to files, as is done by Pascarella et al. (2019), we find that a median of 
2.5% (MAD=1.2%) of all changes to Java production files are inducing for a bug.

SZZ identifies a median of 92.4% (MAD=10.7%) of the correct bug inducing commits 
and a median of 92.7% (MAD=53.6%) false positive bug inducing commits. SZZ identifies 
a median of 91.3% (MAD=11.9%) of the correct bug inducing file actions and a median 
of 113.3% (MAD=80.6%) of false positive inducing file actions of Java production files. 
These values are similar to the results for the bug fixing commits, i.e., mislabels due to the 
inducing strategy are hidden due to the large number of mislabeled bug fixes. The evalu-
ation of JLMIV gives a better insight into the inducing strategy, because there is no noise 
due to mislabeled bug fixing commits. JLMIV identifies a median of 12.1% (MAD=6.2%) 
false positive bug inducing commits and a median of 13.3% (MAD=6.7%) false positive 
inducing file actions for java production files. This reduction is in line with the expecta-
tions due to the results from Mills et al. (2018), which found that 8.7% of false positives for 
the bug fixing actions are due to changes to comments and whitespace only changes and 
8.49% false positives are due to refactorings.

With respect to JLMIV+AV, we find a median of 4.8% (MAD=5.2%) commits and a 
median of 4.9% (MAD=4.2%) of file actions are detected less than with JLMIV+R. Based 
on our limited data regarding the correctness of the affected versions field, we would 
expect that roughly half of these file actions are actually false positives (Section 5.6), i.e., 
are incorrectly detected by JLMIV+ and constitute noise. Thus, the potential impact of the 
affected versions field is relatively small with an expected reduction of false positive induc-
ing changes by about 2.4% of the total amount of inducing file actions. Regardless, we can-
not recommend to use JLMIV+AV without first validating the data in the affected version 
field, because the potential benefit due to fewer false positives are offset by an equally large 
loss due to false negatives.

26 Java files excluding tests and documentation.
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SZZ-RA similar as for the bugfixing commits, SZZ-RA finds almost all correct bug 
inducing commits with a median of 100% (MAD=0.0%) and a minimum of 93.3%. How-
ever, SZZ-RA finds a median of 69.8% (MAD=35.6%) false positive bug inducing com-
mits and a median of 65.0% (MAD=48.7%) of false positive inducing file actions. Thus, 
the percentage of false positive inducing commits is lower than the percentage of false pos-
itive bug fixing commits (86.3%), but still relatively high. This reduction is in line with the 
expectation of the effect of the improvements to SZZ, i.e., ignoring changes to test, docu-
mentation, whitespaces, and refactorings, as can be seen by the difference between JLMIV 
and JLMIV+R. Thus, improved SZZ heuristics can resolve the relatively small problems 
of missing bug inducing changes due to missed issue links, but cannot resolve the problem 
with false positives due to wrong issue types.

5.8  Assignment to releases

The literature suggests either to assign all bugs that are fixed within six months after a 
release to the release (6M) or to use the affected versions field (AV). In this article, we 
propose to use the inducing changes instead (IND). We evaluate the release assignment 
from two perspectives: the assigned issues and the files that are labeled as defective, due 
to the assigned issues. Same as for the inducing changes, we do not have ground truth. 
Regardless, the results from Section 5.6 indicate that the assignment based on IND is the 
most reliable strategy, even though likely not flawless. Therefore, we evaluate the devi-
ations of 6M and AV from IND. We use the 6M strategy with the bug fixing commits 
determined by SZZ (6M-SZZ), SZZ-RA27 (6M-SZZ-RA), as well as those determined 
by JLMIV (6M-JLMIV). For the affected versions, we also use the bug fixing commits 

Fig. 5  Results for the identifica-
tion of bug inducing changes

27 Technically, we only applied SZZ-RA for inducing changes. By considering which bug fixes identified 
by JL have an inducing change identified by SZZ-RA, we applied the improvements of SZZ-RA over SZZ 
to the bug fixing commits for the release assignment.
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determined by JLMIV (AV-JLMIV). For the the assignment based on incuding changes, 
we use JLMIV+R (IND-JLMIV+R).

Figure 6 summarizes the results for the release assignments. Overall, a median of 14 
(MAD=14.8%) bugs affect a median of 13.0% (MAD=14.8%) files of a release. For 36 
releases, we did not find any bug fixes. We marked these releases in italic in Table  4. 
21 of these release are the first releases for the projects, ten releases are the last in our 
data. The other five releases are for stable versions of Apache Commons projects. With-
out these 36 releases, the median of bugs that affect a release is 16 (MAD=13.3%) and 
15.5% (MAD=14.1%) files are defective. We report the results of 6M-SZZ, 6M-SZZ-RA, 
6M-JLMIV and AV-JLMIV without the 36 releases that do not have any bug fix as they 
may skew the results.

6M-SZZ determines a median of 16.9% (MAD=25.1%) of the bugs and a median 
of 33.3% (MAD=38.5%) of the files correctly, and determines 33.3% (MAD=49.4%) 
additional bugs and 37.8% (MAD=56.0%) false positive defective files. 6M-SZZ-
RA determines a median of 23.1% (MAD=26.5%) of the bugs and a median of 33.8% 
(MAD=38.7%) of the files correctly, and determines 20.0% (MAD=29.6%) additional 
bugs and 17.0% (MAD=25.2%) false positive defective files. 6M-JLMIV determines a 
median of 23.6% (MAD=26.7%) of the bugs and a median of 33.3% (MAD=35.3%) of 
the files determined correctly and a median of 11.9% (MAD=17.7%) additional bugs and 
14.3% (MAD=21.2%) false positive defective files. The differences between 6M-SZZ, 
6M-SZZ-RA and 6M-JLMIV are in line with the differences in the inducing changes. AV-
JLMIV determines a median of 14.5% (MAD=21.6%) of the bugs and a median of 19.8% 
(MAD=29.4%) of the files correctly and determines 6.4% (MAD=9.6%) additional bugs 
and 6.6% (MAD=9.7%) false positive detective files. Thus, AV-JLMIV labels the fewest 
files as defective of all variants. This is in line with the results by Da Costa et al. (2017) 
that only a small percentage of bugs contain any data in the affected versions field. We 
compared these results with the ground truth data from Section 5.6. While the deviations 

Fig. 6  Results for the assignment of issues to releases and the labeling of files
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are not equal, they show similar trends to the sample depicted in Table 6, both regarding 
the 6M strategy, as well as the AV strategy.

5.9  Prediction models

The focus of our empirical analysis is on the quality of defect labels. However, it is unclear 
if and how the mislabels affect prediction models. Moreover, we have no indication if the 
incomplete feature sets in many data is really a problem. To assess the impact our data col-
lection may have on the defect prediction models, we evaluate how the assessment of the 
best performing model from a recent benchmark on cross-project defect prediction (Her-
bold et  al. 2017) would change. We follow the procedures for data processing outlined 
by Herbold et al. (2017) and use only the releases with at least 100 files and at least five 
defective files. We apply this criterion to both the 6M-SZZ and the IND-JLMIV+R data, 
i.e., there must be at least five defective files with both labels. We then use all data from 
projects other than the release for training, the data from the release itself for testing. This 
leaves us with 203 releases. Camargo Cruz and Ochimizu (2009) proposed a relatively 
simple transfer learning approach. The approach by Camargo Cruz and Ochimizu (2009) 
ranked best overall among 450 different models from the defect prediction literature that 
were compared on five data sets by Herbold et al. (2017) and should, therefore, be a suit-
able model to assess the impact of mislabels and feature sets on defect prediction models.

Carmargo Cruz and Ochimizu proposed the following: first, the natural logarithm is 
applied to all features values plus one, then the difference between the median of the fea-
ture in the training data and the test data is subtracted, i.e., the feature m is transformed 
such that m̂(s) = log(1 + m(s)) + median(log(1 + m(S))) − median(log(1 + m(S∗))) where S 
is the set of files in the training data, S∗ is the set of file in the test data, m(s) is the value 
of feature m for file s ∈ S ∪ S∗ . The transformed features are used as input into a Gaussian 
Naive Bayes classifier (Zhang 2004).

To evaluate the impact of features and labels on the prediction model, we train four 
different variants of the model by Camargo Cruz and Ochimizu (2009) based on different 
training data. We use two different labels: 6M-SZZ, i.e., the commonly used labeling strat-
egy used by most defect prediction data sets and IND-JLMIV+R, i.e., the most accurate 
labels we determined. For each label, we use two different sets of features: 1) all features 
in our data (ALL) and 2) only features based on static product metric for classes28 and files 
(SM), i.e., the similar features to the PROMISE data, one of the most popular defect pre-
diction data sets (Hosseini et al. 2017). We denote the resulting models in the following as 
6M-SZZ-ALL, 6M-SZZ-SM, IND-JLMIV+R-ALL, and IND-JLMIV+R-SM. These mod-
els are evaluated on the IND-JLMIV+R labels in the test data, i.e., with the least amount of 
mislabels. Through these models, we evaluate how mislabels affect the training of predic-
tion models. Additionally, we also evaluate the models trained with 6M-SZZ labels with 
6M-SZZ labels as test data and denote these models as 6M-SZZ-ALL-SZZ and 6M-SZZ-
SM-SZZ. Through these models, we evaluate how mislabels affect the evaluation of pre-
diction models.

Figure 7 summarizes the results of the prediction models. For IND-JLMIV+R-ALL the 
median lower boundary on C is 2141.3 (MAD=1804.9) and the median upper boundary 
on C is 2297.3 (MAD=1993.0). Thus, in the median, the costs of a defect must be at least 

28 We use summation for the aggregation to the file level.
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as high as the quality assurance for 2141.3 lines of code and at most as high 2297.3 lines 
of code, for the model to be cost saving, i.e., the defect prediction model can only save 
cost under very specific assumptions in the median. For 86 of the 203 releases we use, the 
lower boundary is greater or equal to the upper boundary, meaning that for 42.4% of the 
projects the defect prediction could never save costs in comparison to a trivial approach of 
either doing nothing or testing everything. While these numbers are already bad, they are 
worse for the other models. IND-JLMIV+R-SM has a median lower boundary of 2315.2 
(MAD=1817.5) and a median upper boundary of 2221.5 (MAD=1827.6), the lower bound-
ary is greater or equal to the upper boundary for 50.7% of the projects. 6M-SZZ-ALL has a 
median lower boundary of 2313.4 (MAD=1996.8) and a median upper boundary of 2094.3 
(MAD=1715.0), the lower boundary is greater or equal to the upper boundary for 46.3% of 
the projects. 6M-SZZ-SM has a median lower boundary of 2185.0 (MAD=1754.3) and a 
median upper boundary of 2185.0 (MAD=1754.3), the lower boundary is greater or equal 
to the upper boundary for 45.3% of the projects. When we train and test with the SZZ 
labels, the cost estimations get even worse. 6M-SZZ-ALL-SZZ has a median lower bound-
ary of 2781.6 (MAD=2373.4) and a median upper boundary of 1755.1 (MAD=1652.8), 
the lower boundary is greater or equal to the upper boundary for 72.4% of the projects. 
6M-SZZ-SM-SZZ has a median lower boundary of 2724.8 (MAD=2067.9) and a median 
upper boundary of 1467.8 (MAD=1334.5), the lower boundary is greater or equal to the 
upper boundary for 78.3% of the projects. Thus, for all models except IND-JLMIV+R-
ALL the median lower boundary is greater or equal to the median upper boundary and the 
defect prediction model saves costs for fewer projects.

We reject the null hypothesis of the Friedman test that there are no significant differ-
ences between models for both the lower boundary (p-value<0.001) and the upper bound-
ary (p-value<0.001). Figure 7 shows the critical distance diagrams of the post-hoc Neme-
nyi test for both boundaries. The results show that the differences in the median between 
the models evaluated with IND-JLMIV+R labels in the test data are not significant. Thus, 
contrary to Tantithamthavorn et  al. (2015), we do not find that mislabels significantly 
impact the results, at least in terms of cost saving potential. The same is true for using more 
features. However, we note that while the difference may not be significant, using more 
features and cleaner labels still has the best median values and can be cost saving for the 
largest number of projects.

The models tested with 6M-SZZ labels in the test data are significantly worse with a 
small effect size ( � ∈ [0.18, 0.23] ), with the SM features in both boundaries and with ALL 
features only in the lower boundary. This difference also manifests in a large drop in pro-
jects, for which the evaluation on the test data estimates that costs could be saved.

Finally, we note that the overall performance of the model is relatively poor. How-
ever, the goal of this experiment is not to show whether the model by Carmargo Cruz and 
Ochimizu is good, but rather to evaluate if the different labels and features impact the eval-
uation of the model.

6  Discussion

Within this section, we discuss the implications of the results of our empirical study on our 
research question, i.e., how issues with defect labeling and feature sets affect defect predic-
tion data and prediction results. We consider three different aspects: the defect labels, the 
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impact of features on predictions, the low performance of the defect prediction model we 
trained, as well as open problems.

6.1  Defect labels

Through our empirical study, we showed that the concerns that were raised in the recent 
years regarding the validity of defect labeling are valid. The two biggest factors that influ-
ence the quality of defect labels determined by SZZ are mislabeled issues in the Jira and 
mistakenly assigned bugs to releases. We proposed a solution for the latter problem by 
assigning bugs to releases based on inducing commits. The problem of mislabeled issues 
is more severe: to the best of our knowledge, there is no automated heuristic that can iden-
tify mislabeled issues in issue trackers. Our approach was to employ manual analysis by 
experts, same as Herzig et al. (2013). However, this is extremely time consuming and does 
not scale well. In our case, we validated 11295 issues overall for the 38 projects. While we 
did not measure the exact time, two authors of this article spent at least one person month 
each on the independent labeling, i.e., at least 176 hours. Additionally, all three authors 
spent at least 20 hours on the resolution of disagreements. Thus, we spent at least 412 
working hours on the issue type validation, the actual number is more likely around 600 
working hours. Consequently, we required between two and three minutes per issue. This 
estimate is similar to the four minutes that Herzig et al. (2013) reportedly required. A third 
factor are wrong links from commits to issues, but this can already be automatically solved 
by adopting the linking process to the issue tracking system, in our case Jira. However, if 
this is not done, this would be a third major source for noise. We note that according to 
our analysis of existing defect prediction data sets (see Section 2), only RNALYTICA and 
BUGHUNTER data avoid this problem by exploiting links from Jira (RNALYTICA) and 
within GitHub (BUGHUNTER). This is an indication that the state of practice may be 
evolving here away from the original SZZ for the identification of bug fixing changes.

We note that the mislabeled issues are mislabeled from our perspective as researchers 
that want to analyze defects in software repositories. Thus, issues like incompatibilities 
due to new Java versions, failing tests, or missing documentation, are mislabels, because 
these do not constitute bugs in the sense of wrong run-time behavior of the software at the 
time of the release. From the perspective of the developers, these may not be mislabels, 
because they may use a more practical definition of bug in the issue tracker: something that 

Fig. 7  Critical Distance diagrams for the comparison of significant differences the boundaries on the cost 
ratio C 
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is undesirable. Thus, we believe that these mislabels will remain a systematic problem for 
the analysis of issue tracking data, same as Herzig et al. (2013).

Regarding the impact of the problems with defect labeling, our study revealed that 
all problems are replicable and that the impact increases if the problems are considered 
together. The problems with issue linking and the issue types in the repository combined 
mean that SZZ misses about one fifth of the bug fixing commits, and only about half of 
the commits SZZ identifies as bug fixing are actually bug fixing. This is because SZZ 
only identifies about 80% of the actual bug fixing commits, but also mislabels roughly the 
same amount of bug fixing commits because of the mislabeled issues. If this is combined 
with a six month time frame for assigning defects to releases, the problem becomes even 
more severe. For every file, that is correctly labeled as defective, there is roughly one 
file that is incorrectly labeled as defective, and two files that are incorrectly labeled as 
non-defective. With implementation of the state of the art SZZ-RA variant of SZZ, these 
problems can be somewhat mitigated, but are still severe, because the main reasons for the 
deviates are the mislabeled issues and the six month time frame: SZZ-RA misses almost 
no bug fixing commits but still has the problem that only about half of the commits 
identified as bug fixing are actually bug fixing. For every three files that are correctly 
labeled as defective, SZZ-RA incorrectly labels two files as defective, and misses six 
files that are incorrectly labeled as non-defective. Yatish et  al. (2019) proposed using 
the affected version field of issue trackers as a solution for the release assignment problem. 
While this is in principle a perfect solution, the reality of the data in the issue tracking sys-
tem shows that the information contained in the affected version field is unreliable. Overall, 
using inducing changes currently seems to be the best heuristic.

Another important aspect to consider here is, that there is still noise in our data due to 
false positive defect labels. We did not validate the file actions and instead only applied a 
heuristic that ignored changes to whitespaces, comments, and refactorings. Thus, while we 
may have measured the largest part of the noise in the defect labels, there is still an uncer-
tain region, which is also not accounted for in our data. We note that additional improve-
ments would only lead to more deviations of SZZ from the actual data, because SZZ would 
identify even more false positives.

All data sets we discussed in Section 2 are affected by the problems regarding the defect 
labels. This is a severe threat to all publications that use this data and, therefore, basically 
to the complete state of the art of defect prediction. We have shown in Section 5.9 that the 
mislabels lead to significantly different results when used for training and evaluation. The 
differences are not significant if noisy data is used for training but cleaned data is used for 
testing. How this impacts, e.g., the comparison between defect prediction approaches is 
unclear. It may be that empirical results are not affected, because the signal of the defec-
tive data was still strong enough to be picked up by analysis and all approaches are affected 
equally. It may also be that the outcome of experiments changes, because different software 
artifacts are labeled as defective.

6.2  Features

Our initial motivation that started this research was, that we actually wanted to have a 
defect prediction data set with a broad selection of features, because we believed that this 
was the key ingredient that was missing for highly performing defect prediction models. 
The indications from the literature suggested that this was true (Section 3.2), especially due 
to churn related features. Because we considered how we should collect the defect data, 
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we discovered the need for our analysis of the defect labels and the focus of our research 
evolved: due to our findings regarding the defect labels, the analysis of the features is now 
only in the background of this article. Regardless, we believed that the small experiment 
we described in Section  5.9 would show that the large feature set is beneficial and that 
we could point to future research to find a suitable subset from the large amount of fea-
tures we use, e.g., to minimize the effort to collect the features without a loss in prediction 
performance.

Our results do not support such a conclusion and instead indicate that the impact of fea-
tures that go beyond static source code metrics may be relatively small. While the results 
were best with all features, the difference was not significant. Our replication package also 
contains the results for recall and precision, which show that the differences with tradi-
tional machine learning metrics are also not very strong, i.e., insignificant for recall and 
potentially small for precision. A closer look at the literature reveals a potential reason for 
this lack of a stronger effect. On the one hand, the studies that clearly find that more fea-
tures, especially churn-related features, lead to better prediction results, were all conducted 
on relatively small data sets, i.e., on 26 releases (Ostrand et al. 2005), three releases (Moser 
et  al. 2008), and five releases  (D’Ambros et  al. 2012). On the other hand, Zhang et  al. 
(2017) used 255 and only found a small effect of using aggregations. Rahman et al. (2014) 
even found no statistically significant difference, when they added features based on PMD 
or FindBugs warnings to static metrics. Thus, the expectations that larger feature sets that 
go beyond static source code metrics improve predictions may be inflated.

6.3  Prediction performance

We note that the overall performance of the model by Camargo Cruz and Ochimizu (2009) 
was relatively bad. This is, from our point of view, nearly as troubling as the large amounts 
of mislabels, because there are two potential interpretations for this bad performance. 1) 
The benchmark by Herbold et  al. (2017) misjudged the performance of the approach by 
Camargo Cruz and Ochimizu (2009) based on the prediction performance on five data sets 
and the approach should have been ranked lower. 2) The benchmark judged the perfor-
mance correctly, and other approaches from the state of the art perform even worse. Nei-
ther interpretation is good. The first interpretation indicates a severe threat to the external 
validity of existing defect prediction studies, because most of them used the same data as 
Herbold et al. (2017). The second interpretation means that release-level defect prediction 
may not be able to reliably save costs. Regardless which is the case, further research in this 
direction is important. A potential explanation for the low performance and also possible 
deviations from the existing defect prediction results would be the relatively small number 
of defects, in comparison to all existing data set. The rigorous cleaning of false positive 
defect labels leads to a stronger class-level imbalance in our data, than in any of the exist-
ing data sets. Thus, newer results that were not considered in the benchmark by Herbold 
et al. (2017) may help.

6.4  Open problems

While we empirically explore many problems regarding data for defect prediction, there 
are still open problems left, as well as new problems we discovered due to our results.

We have only used manual validation for the bug fixing commits, but not for the file 
actions in those commits or for the inducing changes that were detected. While we used 
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smaller samples to get insights into the quality, this only helps us estimate the remaining 
noise in the data, as our tooling cannot identify which changes to source code actually 
contribute to a bug fix automatically. Thus, the first open problem is to extend this data 
with validated file actions for bug fixes, inducing changes, and release assignments. For 
the data in our empirical study we would need to manually validate 46.422 file actions 
for 10.515 bug fixing commits, as well as for the release assignment of 6.530 bugs. These 
are 34.5 times more file actions than in the study by Mills et al. (2018) with the additional 
effort for validation of the inducing changes. Thus, this kind of problem cannot be solved 
by single research groups, but must be tackled by the complete community. We already 
registered a study with the goal to start to address this problem with the help of the com-
munity (Herbold et al. 2020). In a first step, we want to validate which lines in bug fixes 
actually contribute to the bug fix and which changes are unrelated improvements.

Our IND approach for the assignment of bugs to releases also has limitations. For exam-
ple, lines that are added and not modified do not have an inducing change. In general, as 
Rodríguez-Pérez et al. (2020) point out, there are intrinsic bugs, for which they could not 
locate the inducing change, even with the help of experts. Future research should consider 
the impact of this limitation on automated approaches, i.e., how often this is the case. 
Moreover, we should explore if we can improve our heuristics for indentifying inducing 
changes or if they may even be impossible to solve as an instance of the halting prob-
lem (Turing 1937).

Moreover, our results raise several interesting and concerning questions for further 
research. We can only speculate how our results regarding the defect labels affect the 
state of the art. We may find that the same prediction models as before are the best, sim-
ply because they are good models, independent of the data. The results may also change, 
because with the different data, other algorithms may perform better. We are especially 
looking forward to how our data affects findings that trivial baselines may outperform 
machine learning, e.g., by Zhou et al. (2018). Recent work already considered similar prob-
lems with other variants of SZZ, but without accounting for the biggest source of noise, 
i.e., the mislabeled issues  (Fan et  al. 2019). The results indicate that these changes will 
have an effect.

Through a small experiment, we have already (inadvertently) shown that some results 
regarding the importance of features may need to be revisited. While we found improve-
ments, they were not significant. However, because we only performed a relatively simple 
study, this only means that the impact is not as obvious as we expected. Future work may 
uncover subsets of our features which lead to bigger improvements or demonstrate that 
we only found negligible differences due to our use of the approach by Camargo Cruz and 
Ochimizu (2009). Even if future research finds that there really is not much of an improve-
ment if other features than static metrics are used, the question of which features are best 
is still interesting. For example, just-in-time defect prediction relies mostly on features 
that are independent of the programming language. Whether the same would be possible 
for release-level defect prediction without loosing predictive performance is unknown. 
Such results could help to broaden the scope of future research, because current research 
only considers a relatively small set of programming languages. Vice versa, just-in-time 
research avoids using static analysis tools and hence, there is a lack of research on the 
use of features like the complexity of code changes (Hassan 2009). Future research could 
explore if the language independent features are really sufficient.

Finally, there is the impact on mining defect prediction data for industrial application in 
tools. We rely heavily on time-consuming manual validation to increase the data quality. 
While we believe that this is essential for researchers that need to accurately and reliably 
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assess proposed approaches, this is of less importance in the industry. Here, the key ques-
tion is if models trained on noisy data, e.g., collected with SZZ-RA perform as well as 
models trained on manually inspected data. Our results in Section 5.9 indicate that this dif-
ference may be small. Thus, such data could still be used to train domain specific models. 
Regardless, our results also indicate that a small sample of data should always be cleaned 
manually to be used as test data, because the assessment of the model performance may 
be unreliable. Future research should investigate if our initial results hold and automated 
heuristics can be safely used for the training of defect prediction models without a negative 
effect on the prediction performance.

7  Threats to validity

Due to the scope of our empirical study, there are many threats to the validity of our find-
ings. We discuss the construct validity, internal validity, external validity, and reliability as 
separately, as suggested by Runeson and Höst (2008).

7.1  Construct validity

There are several threats to the construct validity of our experiments. We wrote a large 
amount of software for these experiments, which may contain defects. However, all soft-
ware was tested, including the development of automated unit tests for complex and criti-
cal components like the identification of inducing changes. Furthermore, we checked the 
results manually. Especially the large amounts of manual analysis we conducted revealed 
many corner cases, which we could then handle correctly, mitigating the threats due to 
bugs in our software. Additionally, we may have selected unsuitable baselines for the com-
parison of results. To mitigate this threat, we created ground truth data as baseline where 
possible. In case this was not possible, we evaluated a sample from our baseline manually 
to establish whether our proxy for the baseline was suitable. Moreover, we cross-checked 
all our results with findings from related studies to evaluate the plausibility of our results. 
Finally, we may have used inadequate metrics for the measurement of differences. We miti-
gate this threat by only reporting deviations from the ground truth. To further mitigate this 
threat, we looked at the raw data and validated that the deviations are accurate reflections 
of the raw results.

7.2  Internal validity

The results of the analysis of the defect labeling directly follow from the properties of the 
defect labeling algorithms, e.g., missing links to issues are the only source for false nega-
tive bug fixing commits with SZZ in our data. The results of our sampling in Section 5.6 
and the prior work by Rodríguez-Pérez et  al. (2020) both indicate that finding inducing 
changes based on blaming prior changes may be unreliable. However, the analysis of the 
differences between the improved versions of this blaming, e.g., by ignoring refactorings, 
is still valid, because all deviations from simpler approaches are improvements, as we 
discuss in Section 5.7. Similarly, while the assignment of bugs to releases may be nega-
tively affected by this, the results from Section 5.6 provide a strong indication that these 
results contain the least amount of noise, in comparison to the other strategies. Thus, while 
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concrete values with respect to the wrong assignment of bugs to releases may change with 
additional manual validation, the overall conclusions would likely not be affected.

The conclusion that the difference with a larger set of features is negligible may be 
wrong or misleading. Other factors, especially properties that we cannot easily capture 
with performance metrics may yield different results, e.g., the acceptance of prediction 
models by developers could be higher because the recall is improved. Moreover, we only 
consider a pure classification scenario and no ranking of files by their likelihood of defect 
or a regression scenario for the prediction of the number of defects in a file. The additional 
features may lead to bigger differences in performance under these considerations.

7.3  External validity

The main threat regarding the external validity of the results is due to our focus on Java 
projects that are developed under the umbrella of the Apache Software Foundation. Thus, 
it is unclear if and how our findings generalize to projects using other programming lan-
guages or software development outside of the Apache Software Foundation. We note that 
our analysis regarding the defect labeling problems is mostly independent of the program-
ming language, with the exception of the identification of whitespace and comment-only 
changes. For example, whitespace changes may actually be changes to the logic of a pro-
gram written with Python. Moreover, the Apache Software Foundation attracts a large 
amount of developers both from the industry as well as from the open source community. 
This increases the likelihood that aspects like the labeling of issues as bug or the use of the 
affected versions field are similar in other contexts.

Furthermore, it is unclear if our conclusions regarding performance differences are only 
relevant for release-level defect prediction or if they generalize to just-in-time defect pre-
diction. However, a follow-up study indicates that there at least large performance differ-
ences between keyword-based approaches and validated data for just-in-time defect predic-
tion (Trautsch et al. 2020).

7.4  Reliablity

To avoid bias in the manual validation of data, we involved multiple people. The issues 
were validated by two authors independently, conflicts were solved by three authors. While 
the initial validation of the issue links was conducted only one author, two authors per-
formed the manual analysis of a sample of 1000 issues for mislabels. Additionally, these 
results were cross-checked by a third person that is not an author of this manuscript. Thus, 
we minimized the impact of individuals on the results to mitigate this the threat to the reli-
ability of the research.

8  Conclusion

Within this article we performed a critical assessment of the state of practice of the collec-
tion of defect prediction data. We summarized existing data sets and found that the SZZ 
algorithm is the standard approach for defect labeling and that most data sets only offer a 
limited set of features. This is in contrast to the state of the art that found problems with 
defect labeling using SZZ, as well as diverse features that should be valuable for defect pre-
diction. To assess the impact of this difference, we performed an empirical study with the 
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focus on the problems of defect labeling and found that SZZ identifies one incorrect bug 
fixing commit for each correct bug fixing commit, while still missing about one fifth of the 
bug fixing commits. The main reason for the mislabeled commits are mislabeled issues, a 
problem initially found by Herzig et al. (2013). For release-level defect prediction data, this 
problem is even worse, because most data sets use a six month timeframe to assign defects 
to releases. The combination of these problems mean that for every correctly labeled defec-
tive file, there is one incorrectly labeled defective file and two missed defective files. Thus, 
there is a large amount of noise in the defect prediction data that is currently used and 
we can only speculate how this affects the state of the art. Future work on defect labeling 
should carefully manually validate data and not rely on time windows for the identification 
of defects to avoid the generation of noisy data.

Regarding the features, we found that the difference of the prediction performance 
measured with more features is not statistically significant, even though more features 
yielded the best overall results. This is in contrast to prior findings that highlighted the 
importance of, e.g., churn features. However, since our analysis of feature importances and 
the impact of larger feature sets was only rudimentary, additional research is required to 
establish what a suitable set of features for defect prediction looks like.

Another contribution of this article is a new defect prediction data set, both for just-in-
time, as well as release-level defect prediction. Our data set is larger than any currently 
used data set, i.e., contains more releases and projects, as well as more features. We hope 
that the data we produced as part of our work will help the research community to resolve 
the problems we found. On the one hand, we are looking forward to studies of defect pre-
diction models using our data, both replications of existing work with the de-noised data, 
as well the the assessment of new approaches and techniques. On the other hand, our data 
may also be used to improve automated defect labeling, e.g., by trying to automatically 
correct bug issue labels in issue trackers. Moreover, we hope that our data will be used as 
the foundation for the manual validation of file actions, to provide a ground truth assess-
ment of the assignment of defects to files and releases.

Appendix A: Summary of Acronyms

Throughout the article, we use a many acronyms to refer to different variants of data crea-
tion. We summarize these acronyms here.

SZZ The original SZZ algorithm by Śliwerski et al. (2005) that identifies by fixing com-
mits through numeric links to issues and uses blames to identify inducing changes.

SZZ-RA An improved SZZ algorithm by Neto et al. (2018, 2019) that ignores whites-
paces and refactorings when identifying inducing changes. We further extended 
SZZ-RA to ignore test and documentation changes.

JL Identification of bug fixing commits through the Jira identifier of issues.
JLM Extends JL with manual validation of the links from commits to issues.
JLMIV Extends JLM with the manual validation of the type of issues to determine is they 

are really bugs.
JLMIV+ Extends JLMIV with the filtering of documentation, test, and whitespace changes.
JLMIV+R Extends JLMIV+ with the filtering of refactorings. Can be seen as SZZ-RA with 

Jira links and manual validation of issue links and issue types.
6M-SZZ SZZ with a six months time window to assign bugs to releases.
6M-SZZ-RA SZZ-RA with a six-month time window to assign bugs to releases.
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6M-JLMIV JLMIV with a six month time window to assign bugs to releases.
AV-JLMIV JLMIV with affected versions of linked issues to assign bugs to releases.
IND-JLMIV+R JLMIV+R with inducing changes to assign buts to releases.
IND-JLMIV+R-ALL Release-level defect prediction data with IND-JLMIV+R for bug labeling and all 

our features.
IND-JLMIV+R-SM Release-level defect prediction data with IND-JLMIV+R for bug labeling and only 

static product metrics as features.
6M-SZZ-ALL Release-level defect prediction data with SZZ for bug labeling and all our features. 

IND-JLMIV+R labels are used for testing.
6M-SZZ-SM Release-level defect prediction data with SZZ for bug labeling and only static prod-

uct metrics as features. IND-JLMIV+R labels are used for testing.
6M-ALL-SZZ-SZZ Release-level defect prediction data with SZZ for bug labeling and all our features. 

SZZ labels are used for testing.
6M-SM-SZZ-SZZ Release-level defect prediction data with SZZ for bug labeling and only static prod-

uct metrics as features. SZZ labels are used for testing.

Appendix B: Details of the Data Collection

We used the tools vcsSHARK29, mecoSHARK, coastSHARK, changeSHARK, and ref-
SHARK to collect data from the version control system. The vcsSHARK collects meta 
data about commits, e.g., the messages, the committer, as well as the actual changes, i.e., 
the file actions and hunks. The mecoSHARK is a wrapper around SourceMeter30, a tool 
that calculates static software metrics, clone metrics, as well as the warnings by the static 
analysis tool PMD. The coastSHARK collects AST node counts and the import statements 
of Java classes, i.e., low level data about the use of language constructs and the dependen-
cies of classes. The changeSHARK is a wrapper around the ChangeDistiller  (Fluri et al. 
2007) that determines the types of changes performed in commits using the classification 
from Zhao et al. (2017). The refSHARK is a wrapper around the RefDiff tool for refactor-
ing detection (Silva and Valente 2017). These tools are executed for every commit in the 
repositories to collect data about the source code evolution. Additionally, we use the tool 
memeSHARK to remove redundancies from the collected data, e.g., because the data did 
not change between commits, for a more efficient storage. We use the tool issueSHARK to 
collect data from the issue tracking system of the projects, e.g., the identifiers, comments, 
status, and other meta data about the issues.

The tools linkSHARK, labelSHARK, and inducingSHARK implement the approaches 
for issue linking, labeling of bug fixing commits, and the inference of inducing commits31 
that we evaluate in this empirical study. The manual validation was supported by the visu-
alSHARK, a web application that presented the data that requires manual validation to the 
experts and stores the results of the validation in the MongoDB. The information that the 
web interface provides is similar to the LINKSTER tool (Bird et al. 2010).

Data for just-in-time defect prediction is available through the MongoDB. This data 
includes all metrics mentioned above, and also the data required for code ownership 

31 We use git blame for the identification of inducing commits.

29 All *SHARK tools and mynbou are available at https:// github. com/ smart shark
30 https:// www. sourc emeter. com/
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analysis (Bird et al. 2011). We use the tool mynbou to create CSV files with release-level 
data with files as level of abstraction. For each file, the data contains the software met-
rics and PMD warnings collected by the mecoSHARK and the coastSHARK, the num-
ber of the different kinds of changes and refactorings collected by the changeSHARK 
and the refSHARK from the last six months, and churn metrics proposed by Moser et al. 
(2008), Hassan (2009), and D’Ambros et al. (2012). Additionally, mynbou provides all thir-
teen aggregations that were proposed by Zhang et al. (2017) for the software metrics the 
mecoSHARK collected that are not on the file level, i.e., class, method, interface, enum, 
attribute and annotation metrics. The data set contains a total of 4198 features. We decided 
not to add features with code smells (Palomba et al. 2019) to the data set, because these 
can be calculated indirectly from the available source code metrics and definition of smells 
like god class may change over time. Additionally, features based on mutation testing are 
not available, because retrospective execution of tests is, unfortunately, often not possi-
ble  (Tufano et  al. 2017). We also have not added features regarding test smells  (Spadini 
et al. 2018) and review activity (Thongtanunam et al. 2016), because current results only 
show correlation with defects, but have not yet shown that these features may actually 
improve defect prediction models.
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