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Abstract
Recent reports of the lack of periodic orientation columns in a
very large rodent species, the red-rumped agouti, and the
existence of incompressible hypercolumns in the lineage of
primates, as demonstrated in one of the smallest primates, the
mouse lemur, strengthen the interpretation that salt-and-
pepper and columns-and-pinwheel mosaics are two distinct
functional layouts. These layouts do neither depend on lifestyle
nor scale with body size, brain size, absolute neuron numbers,
binocular overlap, or visual acuity, but are primarily distin-
guishable by phylogenetic traits. The predictive value of other
biological signatures such as V1 neuronal surface density and
the central-peripheral density ratio of retinal ganglion cells are
reconsidered, and experiments elucidating the intracortical
connectivity in rodents are proposed.
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Introduction
Sensory systems adapt themselves to environmental
statistics allowing for optimal representation and
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extraction of sensory features [1]. Localized oriented
band-pass receptive fields emerge when two global ob-
jectives are given for image analysis, namely, repre-
senting the information sparsely and preserving the
statistical dependencies [2]. In agreement, the majority

of vertebrate visual systems, mammals (e.g. Ref. [3])
and their early placental ancestors [4], marsupials [5],
but also fishes [6], birds [7], and reptiles [8] produced
this kind of receptive fields.

Thereby, primates and their ancestral relatives [9],
Scandentia [10], and carnivores [11,12] arrange their
contour-selective neurons for all possible orientations in
periodically repeating vertical hypercolumns [13] of
species- and area-characteristic width [14]. Orientation
preference in a hypercolumn circles smoothly singular-

ities of the representation, which were termed pinwheel
centers [15] in which each of the orientations is equally
detected [16]. Pinwheel-like mosaics appear when
rainbow color-coding the pixels of the obtained re-
cordings according to the interpolated orientation of
those contours, which evoked the best responses. These
maps have been observed in all visual Euarchontan
mammals, including the smallest primate, the mouse
lemur Microcebus murinus [17] but not in rodents or
lagomorphs (Figure 1).
Rodents lack periodic orientation columns
but cluster similarly tuned neurons locally
Although rodents and rabbits possess orientation-
selective neurons (mouse [18], grey squirrel [19] grass-
hopper mouse [20], rabbit [21], agouti [22]), they do not

express the typical periodic layout but a salt-and-pepper
like arrangement of orientation-selective neurons, also
termed interspersed (rat [16], grey squirrel [19], rabbit
[23]), ordered only by retinotopy [24]. More recent re-
ports from mice claim that neurons distribute not
entirely randomly but express similar preferences within
vertical clusters [25]. Those match mini-columns of
roughly 30 mm in diameter, which are supposedly the
smallest vertical unit of a canonical cortical microcircuit
in vertebrate brains [26] but can also be seen as packing
artifacts from radial scaffolding during development [27].

The agouti (Figure 2) caught our attention because
it is a diurnal and highly visual rodent and has the
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Figure 1

Orientation maps are present in small primates but not in large rodents. Periodic columnar maps of orientation-selective neurons in the primary
visual cortex arranged in pinwheel-like mosaics have been observed in all primates, carnivores, and Scandentia investigated. In contrast, rodents and
lagomorphs present a salt-and-pepper or interspersed layout, although they supposedly split from the Euarchonta sister group after the Laurasiatheria
(tree drawn after [60]). New data from the largest visual, diurnal rodent investigated so far, the red-rumped agouti (Dasyprocta leporina) and one of the
world’s smallest primates, the grey mouse lemur (Microcebus murinus), confirm that the emergence of patterned maps does not depend on a limit body or
cortex size. Upper right: a group of agoutis feeding bi-manually, courtesy of M.F. de Oliveira. Lower right: Real size comparison between mouse lemur and
agouti and their respective orientation layouts in 1 mm2 cortex. Mouse lemurs have pinwheel mosaics with larger hypercolumn width than expected from
their cortex size. Maps reprinted from Refs. [17,22] with permission from Elsevier. Agouti orientation map inset from the green-framed area in Figure 2.
Abbreviation: Ma, million years. Colors: clade, subclade, and order in grey; species in black.
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largest primary visual cortex (320 mm2, Garcia et al.,
personal communication) investigated in the rodent
order so far. Furthermore, it exhibits small receptive
fields (6,2 þ 3.7deg) throughout its visual streak

representation and an orientation, direction, and spatial
frequency selectivity only slightly lower than that of cats
[22]. This puts agoutis into the bigger picture within
the discussion of the factors driving visual cortical map
www.sciencedirect.com
formation. The recent report confirms the general lack
of periodic maps and pinwheel centers but a local
clustering (in-depth) of neurons preferring similar con-
tour orientations emphasizing that this cortical layout is

rodent-specific.

This poses the obvious question of whether the circuits
constructing cortical orientation selectivity are different
Current Opinion in Neurobiology 2021, 71:110–118
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Figure 2

Agoutis present clustering of similar orientation preferences in depth, and a bias for horizontal orientation preference, but no periodic maps.
Left: Polar tuning curves of sorted single-unit spiking activity obtained from in-depth recordings at intervals of 100 mm orthogonal to the cortical surface.
Different colors denote units isolated from the same recording site. Middle: Unfiltered activity maps obtained with intrinsic signal imaging from agouti V1
during visual stimulation with a grating of different orientations (color bars). Horizontal orientation evokes the strongest activation, both in a single unit and
hemodynamic activity ([22], their Figurs. 6 and 8), and there are no obvious orientation columns discernible. Lower left: Color-coded polar map, right
vessel image. Scale bar: 1 mm. Green inset: position of the polar maps depicted in Figure 1. Figure rearranged from Ref. [22] with permission from
Elsevier. Right: Horizontal orientation biases are present in many animals with a visual streak (mice [64], agouti [22], rabbit [66]); cardinal biases are found
dominantly in frontal-eyed mammals (e.g. monkey [84], cat [85], ferret [12]).
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in rodents. There seems to be more orientation and
direction-selective neurons in the rodent geniculate
nucleus [28e30] than in the cats (for review [31]).
Therefore, the heritage of cortical selectivity from
orientation and direction selective-neurons in the LGN
(and retina) of rodents have been strongly discussed
[28e30]. However, by now, this mechanism has been
largely discarded as the major source of orientation
selectivity in the primary visual cortex (for review [32]).
Rather, it was confirmed that oriented simple receptive
fields in V1 d as in the cat d could be constructed
by the convergence of spatially separated thalamic

afferents from overlapping ON and OFF regions
[33], thereby linearly amplifying the thalamocortical
input [34].

Which factors could be excluded to
contribute to the functional layout of
orientation maps?
Several theoretical models included single biological
parameters or their ratio to explain why preferences for
visual features are mapped in a crystalline manner onto
the cortical surface in primates and carnivores but not in
rodents. At least three of them cited agouti as a ‘missing
Current Opinion in Neurobiology 2021, 71:110–118
link’, predicting either an interspersed layout because
they are lateral-eyed rodents with a visual streak [35]
with small rodent-type astrocytic arbors delimiting the
width of the hypercolumn [36], or orientation maps with
pinwheel-like mosaics because of their V1 size [37],
neuron number [38] and/or their retinal-cortical map-
ping ratio [39]. On the basis of the new data, it can be
concluded that the three latter factors, i.e. V1 size,
neuron number, and the retino-cortical mapping ratio,
are not predictive of the layout (Figure 3).
Early on, it was suggested that modular maps exist in
order to minimize neuronal wiring length with
maximum coverage [13,40e42] and reduce the cortical
volume needed for local operations [43]. Thus, neurons

with similar preferences would be selectively connected
and located in close vicinity to each other to save wiring
costs. Indeed, neurons in different hypercolumns but
with similar properties also tend to be selectively
interconnected and along trajectories that are correlated
with their orientation (for review [44]). When assuming
a dynamical formation of orientation maps [45,46],
especially those excitatory long-range interactions pose
constraints such that short pathways with fast signal
www.sciencedirect.com
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Figure 3

Phylogenetic traits, biological parameters, and their predictive value for the functional layout of orientation preference revisited. All members of
the order Glires investigated do not establish periodic orientation preference maps (blue colors), in contrast to primates and carnivores (red colors), and
one can predict the emergence of a periodic orientation map based on the phylogeny. a: A previous model aimed to predict map layout solely on the ratio
between V1 size and retina. The new data speak in favor of refuting this hypothesis (values taken from Ref. [39], agouti retina [51], agouti V1, M. Garcia,
personal communication, mouse lemur [17]). b: Rodents increased their cortex size in relation to body and brain size with a different power function than
primates, leading to relatively lower cell densities. Thus the ratio of V1 neuronal surface density and body size is a good predictor of which layout is
adopted. Values are taken from Refs. [38,52,53]. c: Glires consistently exhibit lateral eyes and small binocular overlap, tree shrew and ferret, which have
periodic maps, cannot be easily separated from that group. Values from Ref. [35]; agouti: own data. d: Ibbotson and Jung [35] suggested the ratio between
the central and peripheral RCG (retinal ganglion cell) density as a parameter separating species with salt-and-pepper and periodic orientation maps. The
new data points from mouse lemur (value from Ref. [17]) and agouti [22] fit well into this idea. Other values are taken from Ref. [35].
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transmission and small-world properties might be only
achieved through a periodic arrangement of orientation-
selective domains (for review [47]), especially relevant
when brains get bigger [37] and when neuron numbers
increase [38].

However, the new results from agouti with a rodent V1 of
320 mm2 (calculated from [48], and own data) and
mouse lemur with a primate V1 of 48 mm2 [17]
emphasize that the design adopted to represent orien-
tation selectivity is size-invariant. Specifically, columns

are not as miniaturized as expected from the mouse
lemur’s brain size, indicating that reducing the neuronal
size and increasing packing density poses a natural limit
to this kind of architecture because a minimum number
of neurons is needed for local operations. Indeed, the
number of neurons per orientation hypercolumn in pri-
mates seems to be constant ([17], their Figure 4A), and
instead of making modules smaller, the number of pin-
wheels per hypercolumns approaches the universal
constant p across all species presenting them [14,17,49].
The choice of layout also does not seem to depend on a
www.sciencedirect.com
critical absolute number of neurons in V1 because
agoutis seem to have a number of V1 neurons comparable
to or higher than some of the species with maps [39].

Because there exist now only two basic settings, periodic
columnar or interspersed, the predictive value of other
biological signatures can be reexamined. Jang et al.
(2020) proposed that numeric cortical and retinal pa-
rameters alone would not predict functional organiza-
tion, nor would visual acuity. Indeed, agoutis have small
receptive fields and highly orientation-selective neu-

rons. Of note, pigeons exhibit considerable visual
acuity but an interspersed layout favoring vertical con-
tours [50]. By considering then both retina and V1 size
in their functional layout model, the authors claim that a
high retino-cortical mapping ratio (V1/R) would predict
a columnar layout. Since this ratio is 320mm2/500 mm2

[51], 0.64, higher than for the tree shrew (0.6), an
orientation map would have been predicted for agouti,
as well as a noncolumnar layout for the mouse lemur
with a V1/R ratio of 0.4 [17], a hypothesis that can also
be refuted (Figure 3A).
Current Opinion in Neurobiology 2021, 71:110–118
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Figure 4

Orientation selectivity in rodents is not stable across different spatial frequencies. Neurons in the primary visual cortex of rodents [22,79] but not
cats [22,83] change their orientation selectivity of ~ ± 30deg when doubling the spatial frequency of the grating stimulation. Example polar tuning curve
from two single orientation-selective neurons, in agouti V1 (left), and in cat area 17 (right). Figures reproduced with permission from Elsevier. The model
of Pattadkal et al. explains these shifts occur with random convergence of inputs of different orientations to neurons in rodent V1 as opposed to iso-
orientation selective connectivity in cats. Schematic insets reproduced from Ref. [79].
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What factors might still be considered
relevant for adopting one of the two distinct
layouts?
While absolute numbers appear not to be relevant de-
terminants, neuronal surface density might be. Big ro-

dents have lower neocortical neuronal densities than
primates [52,53]. Accordingly, agoutis have lower V1
surface density than primates and carnivores with
similar or smaller cortex and body sizes [54] (Figure 3B).
This is because rodents increased their cortex with a
higher power function exponent than primates [55],
leading to relatively lower cell densities and more white
matter [56]. Nevertheless, the agouti - in contrast to the
world’s largest rodent, the capybara - has a high
encephalization quotient and the highest neuronal
quotient of that order known today [57]. Basically, it

contains more (neocortical and cerebellar) neurons than
would appear to be required to control a rodent of that
size. Due to this relative excess of neurons, agouti could
have helped to answer the question of whether any
rodent might express a periodic orientation map when
the brain size, the neocortical area corresponding to V1,
and neuronal density converge towards a critical triplet
of features, but there appears to be no rodent outlier.
Thus, phylogeny seems to matter.

It is widely accepted that primates and rodents can be

classified into the subclade of Euarchontoglires, which
combine Glires (rodents, lagomorphs) and Euarchonta
(primates, Scandentia, and Dermoptera). The new
Current Opinion in Neurobiology 2021, 71:110–118
data reinforce the evidence that Glires share a common
architecture that is different from that in the Euarch-
onta. In fact, periodic maps appear in all mammalian
clades, likely even in a marsupial, Macropus eugenii [58],
as well as in the barn owl’s Wulst [59]. This could be
interpreted as a form of convergent evolution of the
analogous ‘pinwheel’ phenotype as an adaptation to a
common visual environment. Indeed, those species
split off from one another well before the diversifica-
tion of Eutheria [60]. What renders the Glires
different? Apparently, the split of the Euarchontoglires

clade before the Cretaceous-Paleogene-boundary 65
mya was followed by bigger effects on primate than
rodent brain evolution. This interpretation is based on
the finding that younger genes, which seem to be
involved with neocorticalization and result of a positive
selection for brain functions, emerge in fetal or infant’s
primates but not rodent brains [61]. Along this line, it
is plausible to argue that the salt-and-pepper layout
might actually be the layout of the common ancestor.
Possibly, primates, including humans, benefited from
the neocortical expansion with high visual acuity [53],

among other functions, because the new genes
increased neuronal density in V1 in primates by up to
2.5 times more than in Glires.

However, other features typical for primates like frontal
eyes, binocular overlap (and high visual acuity) seem to
be only loosely correlated with the columns- and
pinwheel layout (Figure 3C) since ferrets and tree
www.sciencedirect.com
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shrews have eyes located more laterally than even mice,
and possess a mixed retinal layout of area centralis and
visual streak (for review [35]), which seems to hold also
for nocturnal primates like the mouse lemur [62].
Overall, apart from being a Glire or not, a good predictor
of cortical layout appears to be the central-to-peripheral
(CP) ratio of retinal ganglion cell density as proposed by
Ibbotson and Jung [35]. Mouse lemur, with a CP ratio of

22, as well as agouti, with a CP ratio of 2.9, are consistent
with this proposition (Figure 3D).

Note, however, that this ratio is not independent of
phylogeny! Glires have small CP ratios because their
retina contains a visual streak. In most such cases, this
predicts a horizontal bias in orientation selectivity
(Figure 2). Notably, ground-dwelling and mouse-related
Rodentia (rat [63], mouse [64], grasshopper mouse
[20], hamster [65], Lagomorpha (rabbits [66], Murphy
and Berman, 1979), as well as the investigated Hystri-

comorpha (agouti leporina [22], their Figure 6D) exhibit
this bias (Figure 2). Neurons preferring vertical contours
seem necessary to enable stereopsis [67], and those
neurons, especially binocular ones, are underrepre-
sented when retinal coordinates become incongruent by
eye rotation or strabismus [68,69]. They are potentially
also less relevant with lateral eyes. The visual streak of
lateral retinas naturally benefits the representation of
horizontal over vertical orientations in the arrangement
of ON and OFF inputs and biases to horizontal orien-
tation selectivity within the retina already. Although

cortical orientation selectivity in rodents seems to result
from the alignment of thalamocortical afferents, a strong
horizontal bias within the retino-geniculo-cortical loop
might combine with the cortical distribution (Figure 2).

In support of this argument, the direction selectivity of
postsynaptic cortical neurons in mice correlated well
with the spatial displacement of excitatory and inhibi-
tory presynaptic inputs [70]. A report from tree shrews
established even further that the smooth representation
of orientation, absolute spatial phase, and retinotopy in
these animals resulted all from the distinct spatial

arrangement of ON and OFF inputs. This arrangement
did not only seem to predict cortical orientation pref-
erence but also to instruct periodic columnar orientation
maps [71]. Accordingly, local tuning biases inherited
from the retina might guide or restrict the layout of
orientation selectivity [ [72,73], but see Ref. [74]].
However, although targeted manipulation of visual
experience through stripe rearing can lead to new biases
in orientation preference (e.g. Ref. [75]) and can change
spatial interdependencies of different map features
[76], it does not erase a columnar layout. Probably, this is

because it is seeded prenatally. A strong orientation bias
per se would not impair the formation of columns in
species, which otherwise can express them. Rather, the
strong bias in the retino-geniculo-cortical input taken
together with other phylogenetically determined
www.sciencedirect.com
structural constraints, such as surface neuron and mini-
column packing density or astrocytic arbor range [36],
might have fixed the potentially ancestral salt- and
pepper layout in all Glires independent of size or
habitat. Likewise, the close examination of several
species in the lineages in which the columns-and-
pinwheels layout appeared, i.e. the Euarchonta and
Laurasiatheria, points to only little interspecies differ-

ences indicating morphological stability [14,17,49] and
the high conservation of each layout throughout orders.
This could mean that the columns-and-pinwheels
layout appeared in the form of a punctual evolutionary
change d reminiscent of the debated punctuated
equilibrium states of evolution originally proposed by
Ref. [77]d and coincident with the separation of these
lineages followed by speciation. This hypothesis can be
further addressed by comparing species, which are
phylogenetically closer to potential common ancestors.

Conclusions and perspectives
In summary, two newly investigated and with regard to
the brain in their lineage extreme taxa confirm that the
spatial layout of orientation-selective neurons in the
primary visual cortex adopts one of two distinct archi-
tectures, either salt-and-pepper or columns-and-
pinwheels. Neither the large rodent agouti nor the
small primate mouse lemur seems to differ much from
their relatives of the same order, despite enormous dif-

ferences in V1 and body size, lifestyle, absolute neuron
numbers, binocular overlap, and cortex-retina ratio,
indicating that these layouts are highly conserved.

Interestingly, the rodent regions of salt-and-pepper
seem to intermingle with mini-columnar structures of
roughly similar orientation preference [78,20]. Although
unlikely, it is thus possible that a not yet understood
(larger) periodicity in the spatial representation of
orientation-selective neurons in rodents escaped the
scope of previous experiments, see also [25]. Systematic

scanning of fine-scale and large-scale functional layouts
in large rodents would be necessary to elucidate this
question. It is worth noting that, in contrast to what is
observed in carnivores, rodent orientation preference is
not stable across different spatial frequencies (Figure 4)
[79]. This is also confirmed by our work comparing
orientation-selective responses at different spatial fre-
quencies in agouti and cat V1 ([22], Figure 7). According
to the model proposed by Pattadkal et al. [79], the shift
in preference orientation from low to higher spatial
frequencies can be obtained even when assuming

random connectivity. However, new tract-tracing and
recording techniques elucidating the anatomical and
functional characterization of intracortical circuits in
mice revealed that like-to-like [33,71,80,81], as well as
coaxial selectivity [70,82], seem to also dominate the
intrinsic connections of rodents. Still, rodent horizontal
circuits are supposedly not patchy and differ spatially
from those observed in animals with ordered orientation
Current Opinion in Neurobiology 2021, 71:110–118
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maps ([32], their Figure 4b). Furthermore, evidence
increases that mice V1 integrates over large visual field
distances [82] and receives manifold nonvisual inputs
(for review, 32). Thus, the hypothesis that rodent cir-
cuits process visual objects differently than primates or
carnivores is likely. In support, recent behavioral work
describes different scene segmentation strategies for
primates than for mice [83]. This might imply that the

reorganization of visual cortical circuits in primate brain
evolution was not functionally neutral.
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