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Abstract
Electronic transport in nanodevices is commonly studied theoretically and numerically within the
Landauer-Büttiker formalism: a device is characterized by its scattering properties to and from
reservoirs connected by perfect semi-infinite leads, and transport quantities are derived from the
scatteringmatrix. In some respects, however, the device becomes a ‘black box’ as one only analyses
what goes in and out.Here we use theHusimi function as a complementary tool for quantitatively
understanding transport in graphene nanodevices. It is a phase space representation of the scattering
wavefunctions that allows to link the scatteringmatrix to amore semiclassical and intuitive
description and gain additional insight in to the transport process. In this article we use theHusimi
function to analyze someof the fascinating electronic transport properties of graphene,Klein tunneling
and intervalley scattering, in two exemplary graphene nanodevices. By this we demonstrate the
usefulness of theHusimi function in electronic nanodevices and present novel results e.g. onKlein
tunneling outside theDirac regime and intervalley scattering at a pn-junction and a tilted
graphene edge.

Introduction

Typically quantum transport simulations of electronic nanodevices are based on the Landauer-Büttiker
formalism. There, a nanodevice is regarded as a scattering region that is connected to electron reservoirs by semi-
infinite leads (see figures 1(b), (c) for examples). The central quantity of this formalism is the scatteringmatrix S,
fromwhich one can obtain transmission probabilities, electric and thermal conductivities, as well as other useful
quantities [1]. Even though this approach gives awealth of information on transport through the device, in some
respects the device appears to be a ‘black box’.

This becomes an apparent weakness when onewants to connect the quantitative results the formalism
produces to the physical intuition obtained by the semiclassical picture, or when trying to understand the role
played by the different components of a complex (not easy to compartmentalize) device. In that case onewants
to analyse the scatteringwavefunctions inside the device, and how they populate position andmomentum space.
For example, if onewants to study and understandKlein tunneling (briefly reviewed in section 1.1) in a graphene
nanodevice, then information about themomentumorientation (‘angle of incidence’) of thewavefunction
inside the device (and specifically before a pn-junction) is important. In order to complement the scattering
matrix information, and to get an intuitive connectionwith the semiclassical picture, herewewill use theHusimi
functionQwhich transforms awavefunction into a phase space (quasi-)distribution.Wenote thatmost
quantum transport simulators of course also offer the possibility of computing the quantities like the quantum
current inside the nanodevice, which also allow looking into the device. It has, however, already been shown that
Q is the generalization of the quantum current [2] and has numerous advantages over it3.
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Husimi functions have been introduced to quantummechanics a long time ago [3] and since then have been
used in various areas of physics, like quantumoptics [4, 5] and ocean acoustics [6]. Husimi functions also play a
prominent role in the field of quantum chaos, which tries to unravel the properties of complex quantum
systems. For example, they have been used to understand the structure of the eigenfunctions in paradigmatic
chaotic systems like quantummaps and billiards [7–11], transport in quantum ratchets [12], the properties of
opticalmicrodisc lasers [13–15] and even electronic transport in disordered systems [16]. RecentlyMason et al
[2, 17, 18] have introduced a processedHusimimap in tight-bindingmodels of nanodevices allowing to recover
and visualize classical paths in coordinate space. But in general solid state physics does not yet takemuch
advantage of this useful tool.

In this article wewill use theHusimi function to analyse graphene nanodevices. Graphene is a fascinating
material for studying quantum transport, due to the abundance of newphysics it brought into light quickly after
its discovery [19] e.g. weak (anti-)localization effects connectedwith the existence of two inequivalent valleys
[20] or theKlein tunnel effect and its potential impact on technological applications [21].Motivated by the
intention to understand the impact ofKlein tunneling (section 1.1) and intervalley scattering on transport in
arbitrary graphene nanodevices, in this article wewill use theHusimi function as a distribution in position and
momentum space to analyse two exemplary devices.Wefind that the the combination ofHusimi functions and
semiclassical considerations is a powerful tool to understand transport phenomena in graphene nanodevices.
The observationswe report also include themode dependence of intervalley scattering at pn-junctions and the
behaviour of Klein tunnelling at trigonal warping (section 2) aswell as the quantification of intervalley scattering
at a tilted graphene edge (section 3).

1. Theory

1.1. Klein tunneling in graphene
Klein tunneling is a paradox of relativistic quantummechanics first discovered byKlein in 1929 [22, 23], but it
has become a reality in graphene [21]. This is due to the fact that low-energy excitations in graphene arewell
described by theDirac equation formassless relativistic particles with linear energy dispersion, ∣ ∣~ k , and the
wave function on the honey comb lattice of graphene, separated in two sublattices, is represented by a spinor,
corresponding to theDirac spinor. In this formalism chirality-conservation leads to a fascinating transport
anomaly (formore details and a pedagogical review see [24]): conduction electrons are able to penetrate (almost)
arbitrarily high potential barriers! If a conduction electron impinges normally on a potential step higher than the
Fermi energy it will not get reflected but fully transmitted into a symmetric state in the valence band inside the
high potential region instead.

More quantitatively, consider a planewave (an electronic eigenstate of theDirac equation [24])with
wavevector k incident on a pn-junction (i.e. a potential step), like the one offigure 1(b). The transmission
probability depends on the angle of thewavevector (the angle of incidence) ( )f = k karctan y xin and on thewidth
of the junctionw [21, 25], where for a very steep junction ( w 0) one expects

Figure 1.Graphene nanodevices. (a)Dispersion relation of a zigzag graphene nanoribbon, which is separated into two inequivalent
Dirac valleys for small energies. Sketched are the levels of the incoming (red) and outgoing (green) energy aswell as the incoming and
outgoingmodes (intersectionswith the bands). As our transport setup is from the left to the right lead, onlymodes with positive group
velocity (slope at the intersection) are valid. Incomingmode numbers are also shown. (b) Sketch of device A, a simple graphene
nanoribbonwith a pn-junction (blue). Below the device we sketch the potential profile of the pn-junction. (c) Sketch of device B.With
greenwe highlight the scattering edge. Leads are colored orange in both sketches. (d), (e)A scatteringwavefunction amplitude inside
simulated devices A andB respectively. The inset is showing howwe plot the wavefunctions: for each sublatticewe use a different
marker (up or down triangles).
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HereλF is the Fermiwavelength of the electrons,fout the angle of thewavevector of the transmittedwave (the
angle of refraction) and k1,2 are thewavenumbers of the incident and the transmittedwave, respectively. In both
expressions, at normal incidence, i.e. forfin=0, the transmission is perfect,T=1, independent of the height
and shape of the potential step!

The transmission probability in theKlein tunneling process crucially depends on the angle of incidence of
the electron on the junction. This angle is clearly defined for a planewave: thewavevector angle. Butwhat is the
‘angle of incidence’ of amore complex electronwavefunction in a realistic scenario, like the scattering
wavefunction in a nanodevice of arbitrary spatial complexity? Basic examples of suchwavefunctions are shown
infigures 1(d), (e). In general a planewavewill not always be a good representation of these wavefunctions. Yet, if
onewants to understand the impact of Klein tunneling on transport in such nanodevices, one needs information
about an angle of incidence. Because such information is inherently present in the (classical)phase space, below
wewill use theHusimi function to obtain this information. But first let us introduce the nanodevices wewill be
using as examples.

1.2. Graphene devices
In ourworkwewill study transport in tight-bindingmodels of the two graphene-based devices shown in
figure 1.Notice however that ourmethodology can be applied to tight-binding based quantum transport in any
device (and in 3 dimensions just awell), as it will become clear below. For the graphene devices, Device A is the
conceptually simplest device inwhich one can studyKlein tunneling in a realistic scenario (i.e. afinite
nanodevice): a graphene nanoribbon (GNR) of constant widthwith a pn-junction in itsmiddle. In device A the
boundary conditions are chosen such that it forms a ‘zigzag’ nanoribbon. These have been studied by Bray and
Fertig in detail within theDirac approximation [26] andmany of their properties are known analytically (for
small Fermi energies). Analytical descriptions in this case are possible because of themany symmetries that are
present. Device B however breaks the conservation of ky aswell as the reflection symmetry along the x axis. Note
also that forω=π/6 the ‘scattering edge’ in device B (highlighted in green infigure 1(c)) exactly is an armchair
boundary. In both devices we create pn-junctions via a linear increment of the potential energy from the n
regionwith bias voltage-V 20 to the p regionwith bias+V 20 over a rangew (see figure 1). The kinetic energy E
of the incoming electrons is connected to the Fermi energyEF by = +E E V 2F 0 .

ZigzagGNRs have a dispersion relation shown infigure 1(a) and discussed in detail in [26, 27]. For a given
Fermi energyM bands of the dispersion intersect the energy level at positive slope, thus having positive group
velocity. This results inMincomingmodes (M is always odd and scales linearly with thewidth of theGNR).We
order themodes by decreasing kx, as shown infigure 1(a). Importantly, for small energies the two (inequivalent)
Dirac valleys ¢K K, arewell separated inmomentum space, which leads to the incomingmodes being valley-
polarized. Thismeans thatmodes 1 to⌊ ⌋M 2 (where⌊·⌋denotes the integer part) come from valley ¢K , while
modes⌊ ⌋ +M 2 1 toM come from valleyK.We also stress thatKhas one additional incomingmode, see
figure 1(a).

All of our quantum transport simulations are tight binding calculations performedwith the softwareKwant
[28]. The devices arefinite scattering regions that are coupled to semi-infinite leads (which are alsoGNR). The
modes (eigenfunctions) of the leads enter the device and are subsequently scattered, defining the scattering
wavefunctions ym for eachmode. Aswewill consider transport always from the left to the right lead, wewill only
use a part of the scatteringmatrix whichwe define as theN×M transmissionmatrix  , whereM andN are the
total number ofmodes in the left and right lead, respectively. The element nm is the transmission amplitude
from them-th (incoming)mode of the left lead to the n-th (outgoing)mode of the right lead. The total
transmission probabilityTm of each individual incomingmode is given by

∣ ∣ ( )å=
=

T . 3m
i

N

im
1

2

1.3. TheHusimi function
In this sectionwe define theHusimi function, which transforms awavefunction into a phase space quasi-
probability distribution. Let ∣ ( )s ñ r k, ,0 0 denote aGaussianwavepacket. In position representation and in the
absence ofmagnetic fields this is simply [29]
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(with d = -r r r0 andD spatial dimensions)which is a Gaussian envelope in spacewith origin r0multiplying a
planewavewithwavevector k0. ( )s p=s

-N 2 1 is the normalization factor in the case of continuous space, so
that ∣á ñ =W W 1and thatΔ x=Δ y=σ. The key property of thesewavepackets is that theyminimize the
uncertainty relation between position andmomentum.Hereσ is the spatial uncertainty and thus is a parameter
that controls the trade-off between the uncertainty in position (σ) ormomentum space (1/(2σ)).

TheHusimi functionQ is defined as themagnitude of a projection of awavefunction onto ∣ ñ [3, 29–31]
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where for continuous space systemswe have

∣ ( ) ( ) ( ) ( )òy s y sá ñ = ´  dr k r r r k r, ; , , ; 60 0 0 0*

where the integration extends over the full spatial domain of the device (in our case in two dimensions). For a
tight-binding system the projection is turned into a sumdue to the discrete nature of the lattice

∣ ( ) ( ) ( )·åy s yá ñ = ´ -
d

s e er k r, , 7
j

j
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j
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with d = -r r rj j 0, ( )y yºrj j being thewavefunction at lattice site jwith position rj
4. The normalization

factors here depend on the lattice and thus in the followingwewill omit normalizations.
We stress thatQ is a rigorousmethod for transforming awavefunction into a phase space (quasi-probability)

distribution, entirely consistent with the framework of quantummechanics.Q is theWeierstrass transformof
theWigner function [29] (which is also entirely consistent with quantummechanics) and have been used as a
versatile tool for understanding complex quantumand other wave dynamics in several scenarios [2, 6–18,
29–32].Q also respects the uncertainty principle, which is why it is a quasi-probability distribution: it drops
Kolmogorov’s third axiombecause all points in a phase space box of size~ D are indistinguishable from each
other.While themarginals ofQ are not the true position andmomentumdistributions (i.e. the amplitudes of the
position andmomentumwavefunctions), they are just smoothened versions of themwith smoothening factorσ
or ( )s1 2 so the information loss in sufficiently semiclassical systems is not only small, but also entirely
controllable.

1.4.Husimi function in a lead
Beforemoving on to the numeric applications of this paper, it is helpful to obtain some intuition aboutQ in
analytically treatable examples. Let usfirst simply consider a planewave ( ) ( · )=P ir k k r, exp . It is
straightforward to calculate itsHusimi functionwith
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We thusfind
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0 0
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with ¢ = -k k k0. As onewould expect theHusimi functionQ does not depend on r0, since a planewave is
spatially homogenous, andQ is aGaussian inmomentum space since the integral above is the Fourier transform
of aGaussian. In addition,Q only depends on the difference between thewavevectors of theGaussianwave
packet and the planewave.

Let us now examine the case of a lead (orwaveguide). Here thewavefunctionX is a planewave in the
longitudinal direction, while the transverse part is the quantumwell wavefunction, i.e.

( ) ( )=X e k ysin . 9ik x
m

x

Notice that the following analytic result applies to both square lattice leads (whose low-energy excitations follow
a dispersion ~ k2 andwe know explicitly p=k m Wm for a lead of widthW), but also zigzag graphene

4
For each r0 weuse only lattice sites that are within ∣ ∣ s- r r 3j 0 , to reduce computation time.Notice the complex conjugation y* in

equations (6) and (7), which sometimes is omitted in the literature.While for closed systemswith time-reversal symmetry it can be omitted,
it is crucial for open systems, whichwe explore here, and for systemswith broken time reversal symmetry like those inmagnetic fields.
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nanoribbons (GNRs) because the transverse wavefunctions there are as well sinemodes (see end of section 1.2).
The only difference is that forGNRs the expression for km is given by equation (13).

Aswe know that in theHusimi function the longitudinal componentwill result to = ¢ s-Q ex
k2 x

2 2
, we now

tend to the integral of the sine functionwith theGaussian function in finite limits. Although analytically solvable,
its expression is not so trivial
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with erf the error function, and keeping inmind that [ ] =Q X Q Qx y. In our later analysis wewill use
( )f=k k siny F,0 , with an appropriate kF, as discussed in further detail in section 1.5. To obtain an intuition

around equation (10)we are plotting it infigure 2.Notice that ( )f=Q Q y,y y 0 , i.e. it is a function of two
quantities (f because ( )f=k k siny F,0 ). Based on thisQywe can define amarginal distribution overf as

( ) ( ) ( )òf f=Q Q y dy, . 11y

W

y
0

0 0

Here there are two properties to point out.Q is symmetric over km=0 (and equivalently f = 0). This is
already true from equation (10), but it can also be understood simply from the fact that ( )k ysin m decomposes to
( )- -e e i2ik y ik ym m , which is a superposition of two planewaveswith opposite directions. Furthermore, as y0
moves further away from the center of the leadW 2, the accuracy of theHusimi function drops significantly
(figure 2(d)). This has implications for calculatingHusimi functions exactly at the edges of a tight-binding
device, whichwewill discuss in section 2.2.

Figure 2.Equation (10) for the case of p=k m Wm , with s= = =W k200, 16, 0.25F (chosen semi-arbitrarily). (a), (b)Qy for
differentm. (c)Marginal distribution ( )fQy (equation (11)) for differentm. (d)Cuts throughQy for different y0 (also shown in
panel (b)).
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1.5. Calculating theHusimi function
For each scatteringwavefunctionψmwe compute theHusimi functionQ. To reduce the dimensionality of (the
parameters of)Qwe only evaluate it at well chosen transverse cuts (x0=const.), e.g. just in front or behind the
pn-junction.Wewill thus obtain a distribution of incoming and outgoingwavevectors that ‘pass through’ these
cuts as a function of the transverse coordinate y0.

We further reduce the dimensionality ofQ by exploiting energy conservation. Infigure 3(a)we show the
two-dimensional dispersion of graphene

( ) ( )
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⎛
⎝⎜
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f k a k a k a
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3

2 cos 3 4 cos
3

2
cos

3

2
12x x y

with l = 1 the band index, t=2.8 eV the hopping constant and »a 0.142 nm the carbon-carbon distance.
Measuring theHusimi functionwe see thatQ localizes strongly on the two-dimensional energy contour
corresponding to the Fermi energy (even though in reality the dispersion relation of afinite GNR is in fact one-
dimensional). This allows us to reduce the dimensionality ofQ by using the 2Ddispersion. In the followingwe
measureQ for wavevectors that populate the Fermi energy contour at equally spaced anglesf.

A difference with the honeycomb lattice versus the square lattice is that there are six valleys in the two-
dimensional dispersion, as seen infigure 3. Thuswe computeQ in all six of them, and the angle ismeasuredwith
respect to the respectiveDirac pointKξ of each valley, i.e. f = ¢ ¢k karctan y x with ¢ = - xk k K .We denote this

by ( )x¼Q ; , where ξ counts the valleys ( { }x Î 1, 2, 3 meansK, { }x Î 4, 5, 6 means ¢K ). This reducesQ from
depending on both k k,x y to be only a function off. The parameterσwewill choose such that thewavevector
uncertainty satisfies fD = D =k k 0.2, where k is the (average)magnitude of thewavevector with respect to
Dirac point (see appendix). This yields typical values of s » 8 nm for small energies, while for higher energiesσ
can be smaller than 4 nm. In the following and for device A the notation =x n will denote a cut in the n region
of the device, 3σ before the pn-junction, while x=pwill denote a cut 3σ after the junction. For device B the slice
location is given explicitly (in the rest of the text wemeasure space in nmand energy in eV).

For the zigzag nanoribbonwe can compare the numerically computedQwith the analytical expression(10)
(because we keep xfixed, we in principle calculateQywith our numerical scheme). The theory of Brey and Fertig
shows that in theDirac regime the transverse wavefunctions of aGNR are sinemodes, ( )k ysin m [26] and thus
theirHusimi function is given by.(10). To obtain the transverse wavevectors km for zigzagGNRs one needs to
solve [26]

( )
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E

v
k

k

k Wtan
13

F
m

m

m

2
2

which cannot be solved analytically.We can thus find the km either by solving equation (13)numerically or by
fitting sine functions to the transverse wavefunctions of the tight-binding simulations. The analytical and
numericalHusimi functions are shown infigure 4 andwefind excellent agreement.

Figure 3.Husimi functions in device A. (a)Dispersion relation of graphene (red-yellow color, dashed black line forE=t=2.8 eV
[33], see [34] for a derivation) andHusimi functions for 2 incomingmodes (blue and green respectively) over the entire Brillouin zone,
for ( )= = = =E V Wr , , 0.2 eV, 0 eV, 80 nmL W

F0 2 2 0 leading toM=17 incomingmodes.With ( )¢Ki we label the six valleys. In

the insets, the bright-red colored contour is noting the incoming energy of the simulation, here 0.2 eV. (b)Husimi distribution
functions over wavevector anglesf and positions y in device A, s »3 24 nm before the pn-junction (i.e. incoming& reflected) for
valleys ¢K K, (averaging over subscripts 1-3), see section 1.5.Here = =V E0.4, 0.0 eVF0 (i.e. same incoming energy as panel (a)).
(c) Same as (b) butQ ismeasured s »3 24 nm after the pn-junction (i.e. transmitted). For (b, c) themode number ism=5. (d, e)
Same as (b, c) but formode numberm=11.Over all ( )fQ y, weplot themarginal distribution ( )fQ equation (14) (averaged only
over the three appropriate valleys instead of all six)with red color.
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2. Applications of theHusimi function: device A

2.1. Klein tunneling
Wefirst want to test the usage ofQ in awell studied situationwheremuch can be inferred analytically: Klein
tunneling in device A at small energies [26] (see [24] for a review onKlein tunneling in graphene). Figure 3(b)–(e)
showsQ(f, y) in device A for s= = » = =W L E V80, 12 96, 0, 0.4F 0 . The top panels showQ for valleyK2,
the bottom for ¢K2.We showQ both before (incoming& reflected) and after (outgoing) the pn-junction for two
modes.What we have seen is that for device A before the junction,Q in valley ( )¢K2 is themirror reflection ofQ
in valley ( )¢K3 while in valley ( )¢K1 wefind an almost exact superposition of theQs in ( )¢K1 and ( )¢K2 .

Figure 3 shows that for allmodes the incomingQ nicely localizes at a single angle.We also show in red the
marginal distributions
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( ) ( ) ( )
ò
å

f x f x

f f x

=

=
x

Q Q y x dy

Q Q x

; , ; , ,

; , . 14

W

0

Because in this setup the incomingQ is highly localized, we do not need the entire distribution and can simply
choose themaximum location of ( )fQ ,Φ, to represent the ‘incoming angle’ for eachmode

[ ( )] ( )⎟
⎡
⎣⎢

⎞
⎠f f

p
F = = ÎQ xargmax ; p , for 0,

2
15

(we useQ of valley ( )¢K2 exclusively for this, andwe also knowwhich of the two valleys is the incoming one).
As discussed in the end of section 1.5, we can obtain numerically thewavevector of the transverse

component of thewavefunction km, based on the theory of Bray and Fertig [26] (notice that this is invalid outside
theDirac regime). Kwant also provides kx, thewavevector of the longitudinal component.We then compareΦ
with ( )n = k karctan m x infigure 5(a).We see that only for the ‘highest’ (meaning high energy band)modes of
each coneΦ does not have a perfect agreement with ν.We nowwant to useΦ to compare the results of the tight-
binding calculations with theoretical result for theKlein tunneling at a pn-junction, equations (2) and (1). In
figure 5(c)we plot the theoretical curves and the values ofTm versusΦ for eachmode, for two different pn-
junctionwidthsw, andfind very good agreement. This does not only hold for the case of a symmetric pn-
junction, i.e. EF=0, but also for higher and lower Fermi energies, as shown infigure 5(d) forw=10 nm (for
other parameter values we alsofind excellent agreement).

It is clear that throughQwe can find the parameter fin. Nowwewant to show that we can even obtain the
transmission probabilities from theHusimi function using the theoretical transmission formulas. Using the
marginal distribution of equation (14)we can compute the transmission of amode as the average

( ) ( )

( )
( )

ò

ò

f f f

f f
á ñ =

=

=

-

-

p

p

p

pT
T Q x d

Q x d

; p

; p
162

2

2

2

whereT si either equations (1) or (2). Notice that in principle equation (16) could be resolved analytically, since
we know the expressions for bothT as well asQ (see equation (10)) for the simple device A.Unfortunately, we
were not able to indeed resolve the integral analytically, but numeric integration is always possible.

Figure 4.Equation (10) using equation (13) versus numeric computation fromm=11 (right panel is the same as panel (d) offigure 3).
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Infigure 5(b)we compare á ñT withTm and againwefind a near perfectmatch (also formanymore
parameters than the ones shown). Equation (16)will also give a good estimate of the transmission value in cases
where the distribution is not strongly localized at a single angle, allowing us to use the integrated transmission in
more complicated cases like those in section 3.

2.2. Intervalley scattering
Wenow turn to study intervalley scattering, which describes the scattering of awavefunction fromone valley to
another (inequivalent) one, e.g. fromK to ¢K .We discussed in section 1.2 that for zigzagGNRs and low energies
every incomingmode is valley-polarized [26]. Intervalley scattering has found considerable interest in the
literature, andwasfirst discussed in the context of weak localization [20, 35–37]. Later work focused on valley
filters and valley ‘spintronics’, see [38–40] and references therein. The discussions in the literature so far have
been qualitative andmostly theoretical.

TheHusimi function is an excellent tool to study intervalley scattering, because it directly provides
information inmomentum space at different positions in the device. In fact,Mason et al have used a processed
Husimi projection technique in [2] to study intervalley scattering in graphene billiards. Herewewill use a
simpler approach directly using theHusimi function. As one can already see fromfigure 3(b)–(e), the ‘incoming
Q’ (i.e. ( )fQ y, with [ )f p pÎ - 2, 2 )hasmost weight in one valley (the ‘incoming valley’)Vi, while the other
(the ‘complementary’) valleyVc contains either just noise or only the reflectedwave (compare the scales of the
colorbars). In panels (c, e) it is evident there existmodes that undergo intervalley scattering, as for panel (e) the
outgoing valley ¢K has significantlymoreweight thanwhat it had in the incoming case of panel (d).

Wewant to define two intuitivemeasures for intervalley scattering.Wefirst define the followingweights (the
sums are over all equivalent valleys)

( ) ( )ò òåa f x f= =
xÎ -p

p

Q y x d dy, ; n, 17
V

W

0
i 2

2

( ) ( )ò òåb f x f= =
x p

p

Î -
Q y x d dy, ; p, 18

V

W

0
i

( ) ( )ò òåg f x f= =
x p

p

Î -
Q y x d dy, ; p, . 19

V

W

0
c

α, is used for the normalization to the incomingmode.β and γmeasure theweights of the transmitted wave that
are localized in the same valley as the incomingmode and its complement, respectively.With these quantities we
define

Figure 5.Klein tunneling and intervalley scattering in device A for s s= = = = = W L V E8, 80, 12 , 0.4, 0, 0.1F0 and various
w. (a)Angle of incidence ν deduced from the transverse wavefunctions, comparedwith the ones deduced from theHusimi function,
Φ. (b)Transmission probability obtained through the scatteringmatrixTm equation (3) versus the integrated one obtained fromQ,
á ñT using equation (16). (a), (b) are plotted versus incomingmodem and forw=1 nm. (c)Theoretical curves onKlein tunneling
(lines, equations (2), (1)) and transmission probabilityTm versusΦ (scatter plots, for two differentw values). The red arrownotes the
angle uncertainty fD . (a), (b), (c) use =E 0 eVF . (d) is the same as (c) but forw=10 and different Fermi energies instead. (e), (f)
Measures for intervalley scattering, equation (20) versusmode number. (g) Sketch (x-axis is not uniform) ofwhere is eachmode
transmitted, based on the elements of the transmissionmatrix  . Thewidth of each line is proportionate to the transmission
amplitude towards the outgoing channel that the line connects to (normalized to samemaximum).
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( )g
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g
b g

= =
+

I I, . 201 2

Here I1 is the the fraction of the incomingwave that is transmitted through the pn-junctions and has undergone
intervalley scattering. I2 is the fraction of the transmitted wave that has undergone intervalley scattering, i.e. a
transmittedwavewith =I 02 or =I 12 is completely valley polarized.We showbothmeasures of intervalley
scattering in figures 5(e), (f) plotted versus themode number for various junctionwidths. (Qualitatively the
results remain unchangedwhenwe use only ( )¢K2 instead of summing over equivalent valleys).

Themost striking feature offigures 5(e), (f) is that intervalley scattering happens only for the second half of
themodes. Recall thatmodes with ⌊ ⌋ m M1 2 come from ¢K while the highermodes come from theK
valley which has an additional incoming band (see figure 1(a) orfigure 5(g)). The perplexing result offigure 5(e)
can be qualitatively explained based on this extramode and the unitarity of the scatteringmatrix S [1] (i.e.
current conservation). To aid the following argument, infigure 5(g)we show a sketch of where is each incoming
mode transmitted. The lines connecting incoming and outgoingmodes havewidths directly proportional to the
transmission amplitude ∣ ∣ im

2.
After transmission, eachmode ‘tries’ to scatter into a the same valley at negative energy to conserve the valley

pseudospin (green dots in figure 5(g)). Likewise should the reflected part scatter intomodes in the same valley at
the same energy level but with negative group velocity.Modes 1 to⌊ ⌋M 2 have no problem achieving this, as
within their valley the outgoing channels aremore than the incoming ones and thus available channels always
exist. This is not the case however formodes⌊ ⌋ +M 2 1 toM, since the number of outgoing channelswithin the
same valley is one less, both for transmission and reflection. As themode number increases the outgoing
channels are filled and the highermodes have tomove some of their weight to other channels (as a specific
outgoing channel cannot befilledwithmore than total transmission of 1, see [1]). The only remaining channels
that can accommodate thesemodes exist in the ¢K valley (right valley offigure 1(a))which leads to intervalley
scattering.

2.3. Trigonal warping andKlein tunneling
Klein tunneling applies to graphene because for small energies theDirac equation is a valid approximation. In
Klein tunneling the important angle is thewavevector angle (with respect to theDirac points), see equations (1),
(2). The group velocity angle θ coincides withf for small energies, however as the energy increases and trigonal
warping effects begin to be significant, this is not the case anymore and q f¹ [19]. As there is no theoretical
result on the tunneling behavior of graphene for energies beyond theDirac regime, one is left towonder: for
higher energies is the Klein tunneling picture still relevant? And if yes, are the tunneling properties still dictated
byf? This is an interesting question since the physical propagation direction is governed by θ.

We can answer this using theHusimi function.We significantly increase the energies in device A, setting
=V 50 and keeping EF=0, yielding incoming energy of = »E t2.5 0.9 which shows strong trigonal warping.

Once againwe compute incoming angles usingΦ as in equation (15) because incomingQ is well-localized in
momentum space, seefigures 6(a), (b). However, the limits of argmax must bemodified. Formodes

⌊ ⌋m M 2 the angle span of equation (15) is set to )⎡⎣ p0,
3

while for the rest of themodes it is set to )⎡⎣ p0, 2

3
, due

to thewarping of the energy contour, see below. This regime is not covered by [26] and so the transverse
wavefunctions are not necessarily sines (andwe foundQ to performmuch better than attempting to anyway fit
sines to the transverse wavefunctions).

At higher energies the two valleys provide very different incomingmodes, as seen infigure 6(c). For valley ¢K
there is a ‘flat’ front, greatly limiting the possible group velocities. The contrary is happening in valleyKwhere
the contourwith positive group velocity spansmore angles. In addition, in the ¢K case the incomingwavevector
angle is limited to ∣ ∣f p 3in but inKwehave ∣ ∣f p 2 3in , due to the requirement of positive x-component
of the group velocity, given by the divergence of the dispersion relation of graphene, equation (12)
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(k k,x y aremeasuredwith respect to the center of the BZhere).
Klein tunneling assumes equivalence between the two valleys as it depends on thewavevector angle. To see

whether some remnant of Klein tunneling exists at higher energies, we have to look for some tunneling property
that not only decays exponentially with increasing angle of incidence, but also stays ‘as similar’ as possible
between the two valleys. Infigures 6(d), (e)we compare the transmission probability of eachmodeTm versus the
wavevector angleΦ and group velocity angle θ.
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The result surprised us, sincewefind aKlein tunneling-like behaviour inTm versusf.Wewere rather
expectingTm versus θ to show similar behaviour at the two valleys, because θ corresponds to the physical
propagation direction.We do not suggest that Klein tunneling straightforwardly applies to higher energies. In
figure 6(f) the characteristic perfect transmission at normal incidence (f = 0in ) is lost, nevertheless, it is clear
that the tunneling probability as a function of thewavevector angle is quite similar towhatwould be expected for
Klein tunneling.

3. Applications of theHusimi function: device B

In this sectionwe study transport through the asymmetric device B (see figure 1(c)) inwhich the incoming
modes are scattered both from the boundary (‘scattering edge’, highlighted in green) and the pn-junction. There
are twomain questionswewant to address. First, towhat extend canwe use the existing expressions describing
Klein tunneling to understand the transmission properties of such a device? These expressions are derived for
planewaves, which have infinite spatial extend and are characterized by a single angle fin. Due to the boundary
induced scattering thewavefunction in device B cannot bewell approximated by a single planewave. Canwe use
theHusimi technique to connect the transmission through the device toKlein tunneling? And also, howmuch
canwe push this technique, with respect to the physical size of the configurationswe can examine?

Second, wewant to understand how the type of the scattering edge affects intervalley scattering. There is
strong theoretical evidence that the armchair termination is in someway unique, while a random termination
behaves like zigzag [27, 41, 42]. In addition, in the theoretical treatment of graphene nanoribbons in [26], the
authors showed that the armchair terminationmixes valleys while the zigzag keeps them separated. These
(purely qualitative) arguments suggest that intervalley scattering should be enhanced by an edgewith armchair
termination.Mason et alhave shown in [17] that aHusimi-based qualitativemeasure of intervalley scattering is

Figure 6.Transmission andHusimi functions in device A for high energies: s s= = = = = =L W V E w4, 12 , 90, 5, 0, 1F0 . (a,
b) ( )fQ y, in ¢K2 for two differentmodes. (c)Maxima of incomingQ (see section 2.3) onmomentum space. Each incomingmodem is
using a different color from the colorbar. (d)Mode transmissionTm versus wavevector angleΦm (obtained using theHusimi
function). (e) Same but versus group velocity angle θm instead. The dashed line plot ofTStep is onlymeant as a guide to the eye, the
formula is not valid for high energies.

10

J. Phys. Commun. 4 (2020) 075006 GDatseris andRFleischmann



generally enhanced at armchair boundaries. Herewe quantify this effect by using theHusimi function, similarly
as in 2.2 andwewill show that intervalley scattering is indeed enhanced drastically at armchair edges.

Let us stress that in device B the leadmodes and the angles ν are not ofmuch use, since thewaves are
deflected by the titled boundary of device B and also because ky is not conserved until the pn-junction.On the
other hand, ( )fQ is just as valid here as it was in section 2.1. It also becomes clear from figure 7(a) thatmany of
the scatteringwaves inside L2 cannot be approximated using a single angle, whichmeans that one needs the
entire distribution.

3.1. Tunneling
Wefind that we can apply theKlein tunneling formulas ‘locally’ even in small devices andwhen the incoming
waves are not single planewaves.We show this numerically using the integrated transmission formula,
equation (16)withQmeasured at location = +x L L 21 2 (which is 3σ before the pn-junction). However, now
we can’t compare á ñT withTm directly, becauseTm also accounts for the back-scattering from the boundary
inside L1. To compensate for that, we compute the transmission of equation (3) oncewithout any pn-junction at
all.We call this quantityT0.We nowhave to compare ·á ñT T0 withTm, whichwe do infigures 7(c)–(f) for
various orientations of the boundary.

We see that the integrated transmissionmatches the transmission obtained through the pn-junction (using
the scatteringmatrix) verywell. This good agreementmeans that the Klein tunneling formula still locally
describes the tunneling properties at the pn-junction, evenwhen the nanodevice is small (we found good results
forW2 as small as 20 nm) and the incomingwave is not a simple planewave. In addition, this alsomeans that the
Husimi function accurately decomposed the incoming scatteringwave into a representative distribution of
angles of incidence. From this we can see thatQ allows us to separate the contributions of Klein tunneling (or any
other transmission function ( )¼T ) inTm, which could be useful in other scenarios aswell.

3.2. Intervalley scattering
Wenowwant to explore the intervalley scattering induced by the scattering edge and not the pn-junction.
Thereforewefirst obtain the scatteringwavefunctions ym in device Bwithout a pn-junction (i.e.

= =V E0, 0.2 eVF0 ).WemeasureQ using a slice at x=L1 (exactly where the scattering boundary ends) and
we compute I2 fromQ there. The results are shown infigures 7(g)–(i).We note that the results we display below
donot have significant differences if one uses slices at x>L1.

An important benefit of using I2 (over e.g.measures used in [17]) is that it does not depend on, or demands
measuringQ for r0 exactly at the boundaries of the nanodevice. This is crucial as the accuracy of theHusimi
function dramatically drops at the boundaries, sincemost lattice sites around a circle of 3σ from r0 do not even
exist.We have observed in our simulations that this leads to numeric artifacts and should be avoided, andwe
have also established this to be true in the analytic treatment ofQ in section 1.4.

There are two interesting observations to bemade. First, the intervalley scattering froma lattice termination
is fundamentally different from that seen in section 2.2which results from a pn-junction. In the present case
both valleys always undergo intervalley scattering.

Figure 7.Tunneling and intervalley scattering in device B, using s s= = = = = = =L L W w V E10, 6 , 120, 1, 0.4, 0F1 2 1 0 .
( )w= -W W L tan2 1 1 depends onω. (a), (b)Husimi function ( )fQ y, at position = +x L L 21 2 (3σ before the pn-junction) for

ω=π/4. For themode shown, the incoming valley isK2 (but a lot of intervalley scattering has already occurred). (c)–(f) Integrated
transmission. (g), (h) Intervalley scattering I2 of equation (20) for variousω values usingQmeasured at x=L1 (computedwithout a
pn-junction,V0=0, EF=0.2). (i)Average intervalley scattering permode Ĩ2 versus boundary angleω. A sharp increase is seenwhen
ω=π/6.
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The second observation is what we expected from existing theory and nowquantified using awell-defined
measure: armchair lattice terminations inducemuchmore intervalley scattering than any other termination
orientation. This can be seen firstly in figures 7(g), (h)where I2 has clearly higher values, butmost prominently in
panel i wherewe plot the average intervalley scattering permode, i.e.

˜ ( ) ( )å=
=

I
M

I m
1

. 22
m

M

2
1

2

Ĩ2 has a very sharp peak atω=π/6, where the boundary termination is exactly armchair.

4. Conclusion

In this paper we have used theHusimi function both numerically and analytically to analyse quantum transport
through tight-binding nanodevices and have demonstrated that it is a very useful tool.We have for example
shown that even in situationswhere the angle of incidence on a tunnel barrier is not easily discernible we can use
theHusimi distribution to evaluate Klein tunneling at this barrier. For higher Fermi energies theHusimi
function allowed us to analyse the tunneling behavior in the regime of triangular warpedDirac cones.We have
also shownhowQ can be straightforwardly used to accurately define andmeasure intervalley scattering.
Through this we have shown that pn-junctions not only introduce intervalley scattering, but that is unexpectedly
strongly valley-asymmetric.We also confirmed quantitatively that the strongest geometric intervalley scatterer
in graphene is indeed the armchair termination.

Amain goal of this workwas to show that theHusimi function is a helpful tool to augment the Landauer-
Büttiker transport formalism and is useful to have in the toolbox of condensedmatter physicists. TheHusimi
function complements, and not competes with, the scatteringmatrix approach. Notice that to computeQ
numerically one needs the scatteringwavefunctions.What theHusimi function is able to do is to offer an
additional level of depth that allows one to look directly into the device and even specific parts of the device (in
both coordinate andmomentum space at the same time, not possible just from the scatteringwavefunctions
ψm).Whether this level of detail is necessary or useful depends of course on the exact problemonewants to
study, and thus cannot be discussed generally.What is important is that if such a level of detail is sought after, the
Husimi function can provide it.We also point out that even though the current workwas applied to graphene,
themethodology involving theHusimi function is in noway limited to it.
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Appendix. Angle uncertainty

For a given value of the parameterσ, thewavepacket has a known uncertainty in both position andmomentum

≔ ( )s D =
D

x
k
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2
. A1

Whatwe are interested about is the uncertainty in the propagation angle. For small energies the propagation
angle is the same for thewavevector and the group velocity defined as

( ) ( )f = q qarctan A2y x

with = - xKq k . For any nonlinear function, uncertainty propagation is given by
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If wewant to have a constant sf formeasurements at different energies, thenwewill useσ such that (assuming
alsoD D =x k 1 2)
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