Prof. Dr. Jörg Behler

Main Affiliation
 
Staff Status
exunigoe
 

1-40 of 40
 
The bibliographical data in your publication list are complete
You can correct existing data in the blue highlighted fields.To do this, please click on the coloured field. It is not possible to delete data here.
Fields that are not marked in colour (e. g. the authors) can be edited using the input form. To do so, click on the in front of the respective publication.
The bibliographic data in your publication list may be incomplete. You can
  • add any missing data in the fields marked in red or
  • correct existing data in the blue highlighted fields.
To do this, please click on the coloured field. It is not possible to delete data here.
Fields that are not marked in colour (e. g. the authors) can be edited using the input form. To do so, click on the in front of the respective publication.
Check/Uncheck all
  • 2022 Journal Article | Research Paper | 
    ​ ​Roadmap on Machine learning in electronic structure​
    Kulik, H. J.; Hammerschmidt, T.; Schmidt, J.; Botti, S.; Marques, M. A. L.; Boley, M. & Scheffler, M. et al.​ (2022) 
    Electronic Structure4(2).​ DOI: https://doi.org/10.1088/2516-1075/ac572f 
    Details  DOI 
  • 2021 Journal Article
    ​ ​Properties of α-Brass Nanoparticles II: Structure and Composition​
    Weinreich, J.; Paleico, M. L. & Behler, J. ​ (2021) 
    The Journal of Physical Chemistry. C, Nanomaterials and interfaces125(27) pp. 14897​-14909​.​ DOI: https://doi.org/10.1021/acs.jpcc.1c02314 
    Details  DOI 
  • 2021 Journal Article | 
    ​ ​Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material​
    Dragoni, D.; Behler, J.   & Bernasconi, M.​ (2021) 
    Nanoscale,.​ DOI: https://doi.org/10.1039/D1NR03432D 
    Details  DOI 
  • 2021 Journal Article
    ​ ​Four Generations of High-Dimensional Neural Network Potentials​
    Behler, J. ​ (2021) 
    Chemical Reviews121(16) pp. 10037​-10072​.​ DOI: https://doi.org/10.1021/acs.chemrev.0c00868 
    Details  DOI 
  • 2021 Journal Article
    ​ ​General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer​
    Ko, T. W.; Finkler, J. A.; Goedecker, S. & Behler, J. ​ (2021) 
    Accounts of Chemical Research54(4) pp. 808​-817​.​ DOI: https://doi.org/10.1021/acs.accounts.0c00689 
    Details  DOI 
  • 2020 Preprint
    ​ ​A criticial view on e$ occupancy as a descriptor for oxygen evolution catalytic activity in LiMn$ nanoparticles​
    Schönewald, F.; Eckhoff, M.; Baumung, M.; Risch, M. ; Blöchl, P. E. ; Behler, J.  & Volkert, C. A. ​ (2020)
    Details  arXiv 
  • 2020 Journal Article
    ​ ​Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions​
    Shao, Y.; Hellström, M.; Yllö, A.; Mindemark, J.; Hermansson, K.; Behler, J.   & Zhang, C.​ (2020) 
    Physical Chemistry Chemical Physics22(19) pp. 10426​-10430​.​ DOI: https://doi.org/10.1039/c9cp06479f 
    Details  DOI 
  • 2020 Journal Article | Erratum
    ​ ​Correction: A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry​
    Li, J.; Song, K. & Behler, J. ​ (2020) 
    Physical Chemistry Chemical Physics22(47) pp. 27914​-27915​.​ DOI: https://doi.org/10.1039/d0cp90265a 
    Details  DOI 
  • 2020 Journal Article | Research Paper
    ​ ​Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels​
    Eckhoff, M.; Lausch, K. N.; Blöchl, P. E.   & Behler, J. ​ (2020) 
    The Journal of Chemical Physics153(16) pp. 164107​.​ DOI: https://doi.org/10.1063/5.0021452 
    Details  DOI 
  • 2020 Journal Article | Research Paper
    ​ ​Hybrid density functional theory benchmark study on lithium manganese oxides​
    Eckhoff, M.; Blöchl, P. E.   & Behler, J. ​ (2020) 
    Physical Review B101(20).​ DOI: https://doi.org/10.1103/PhysRevB.101.205113 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics​
    Litman, Y.; Behler, J.   & Rossi, M.​ (2020) 
    Faraday Discussions221 pp. 526​-546​.​ DOI: https://doi.org/10.1039/c9fd00056a 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Accurate Global Potential Energy Surfaces for the H + CH3OH Reaction by Neural Network Fitting with Permutation Invariance​
    Lu, D.; Behler, J.   & Li, J.​ (2020) 
    The Journal of Physical Chemistry A124(28) pp. 5737​-5745​.​ DOI: https://doi.org/10.1021/acs.jpca.0c04182 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Global optimization of copper clusters at the ZnO(101¯0) surface using a DFT-based neural network potential and genetic algorithms​
    Paleico, M. L. & Behler, J. ​ (2020) 
    The Journal of Chemical Physics153(5) pp. 054704​.​ DOI: https://doi.org/10.1063/5.0014876 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Transferability of neural network potentials for varying stoichiometry: Phonons and thermal conductivity of Mn x Ge y compounds​
    Mangold, C.; Chen, S.; Barbalinardo, G.; Behler, J. ; Pochet, P.; Termentzidis, K. & Han, Y. et al.​ (2020) 
    Journal of Applied Physics127(24) pp. 244901​.​ DOI: https://doi.org/10.1063/5.0009550 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Properties of α-Brass Nanoparticles. 1. Neural Network Potential Energy Surface​
    Weinreich, J.; Römer, A.; Paleico, M. L. & Behler, J. ​ (2020) 
    The Journal of Physical Chemistry C124(23) pp. 12682​-12695​.​ DOI: https://doi.org/10.1021/acs.jpcc.0c00559 
    Details  DOI 
  • 2020 Journal Article
    ​ ​A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo​
    Paleico, M. L. & Behler, J. ​ (2020) 
    The Journal of Chemical Physics152(9) pp. 094109​.​ DOI: https://doi.org/10.1063/1.5142363 
    Details  DOI 
  • 2020 Journal Article | Research Paper | 
    ​ ​An experimentally validated neural-network potential energy surface for H-atom on free-standing graphene in full dimensionality​
    Wille, S.; Jiang, H.; Bünermann, O.; Wodtke, A. M. ; Behler, J.   & Kandratsenka, A.​ (2020) 
    Physical Chemistry Chemical Physics22(45) pp. 26113​-26120​.​ DOI: https://doi.org/10.1039/d0cp03462b 
    Details  DOI 
  • 2020 Journal Article | Research Paper
    ​ ​Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential​
    Eckhoff, M.; Schönewald, F.; Risch, M. ; Volkert, C. A. ; Blöchl, P. E.   & Behler, J. ​ (2020) 
    Physical Review B102(17).​ DOI: https://doi.org/10.1103/PhysRevB.102.174102 
    Details  DOI 
  • 2020 Journal Article
    ​ ​Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations​
    Ghorbanfekr, H.; Behler, J.   & Peeters, F. M.​ (2020) 
    The Journal of Physical Chemistry Letters11(17) pp. 7363​-7370​.​ DOI: https://doi.org/10.1021/acs.jpclett.0c01739 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials​
    Singraber, A.; Behler, J.   & Dellago, C.​ (2019) 
    Journal of Chemical Theory and Computation15(3) pp. 1827​-1840​.​ DOI: https://doi.org/10.1021/acs.jctc.8b00770 
    Details  DOI 
  • 2019 Journal Article
    ​ ​From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5​
    Eckhoff, M. & Behler, J. ​ (2019) 
    Journal of Chemical Theory and Computation15(6) pp. 3793​-3809​.​ DOI: https://doi.org/10.1021/acs.jctc.8b01288 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Parallel Multistream Training of High-Dimensional Neural Network Potentials​
    Singraber, A.; Morawietz, T.; Behler, J.   & Dellago, C.​ (2019) 
    Journal of Chemical Theory and Computation15(5) pp. 3075​-3092​.​ DOI: https://doi.org/10.1021/acs.jctc.8b01092 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground​
    Schran, C.; Behler, J.   & Marx, D.​ (2019) 
    Journal of Chemical Theory and Computation16(1) pp. 88​-99​.​ DOI: https://doi.org/10.1021/acs.jctc.9b00805 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Performance and Cost Assessment of Machine Learning Interatomic Potentials​
    Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.   & Csányi, G. et al.​ (2019) 
    The Journal of Physical Chemistry A124(4) pp. 731​-745​.​ DOI: https://doi.org/10.1021/acs.jpca.9b08723 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations​
    Gabardi, S.; Sosso, G. G.; Behler, J.   & Bernasconi, M.​ (2019) 
    Faraday Discussions213 pp. 287​-301​.​ DOI: https://doi.org/10.1039/C8FD00101D 
    Details  DOI 
  • 2019 Journal Article | 
    ​ ​A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry​
    Li, J.; Song, K. & Behler, J. ​ (2019) 
    Physical Chemistry Chemical Physics21(19) pp. 9672​-9682​.​ DOI: https://doi.org/10.1039/C8CP06919K 
    Details  DOI 
  • 2019 Journal Article
    ​ ​New Insights into the Catalytic Activity of Cobalt Orthophosphate Co 3 (PO 4 ) 2 from Charge Density Analysis​
    Keil, H.; Hellström, M.; Stückl, C.; Herbst‐Irmer, R. ; Behler, J.   & Stalke, D. ​ (2019) 
    Chemistry – A European Journal25(69) pp. 15786​-15794​.​ DOI: https://doi.org/10.1002/chem.v25.69 
    Details  DOI 
  • 2019 Journal Article
    ​ ​Ab initio thermodynamics of liquid and solid water​
    Cheng, B.; Engel, E. A.; Behler, J. ; Dellago, C. & Ceriotti, M.​ (2019) 
    Proceedings of the National Academy of Sciences of the United States of America116(4) pp. 1110​-1115​.​ DOI: https://doi.org/10.1073/pnas.1815117116 
    Details  DOI  PMID  PMC  Preprint 
  • 2019 Journal Article
    ​ ​Atomistic simulations of thermal conductivity in GeTe nanowires​
    Bosoni, E.; Campi, D.; Donadio, D.; Sosso, G C; Behler, J.   & Bernasconi, M.​ (2019) 
    Journal of Physics D: Applied Physics53(5) pp. 054001​.​ DOI: https://doi.org/10.1088/1361-6463/ab5478 
    Details  DOI 
  • 2018 Journal Article
    ​ ​High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium​
    Schran, C.; Uhl, F.; Behler, J.   & Marx, D.​ (2018) 
    The Journal of Chemical Physics148(10) pp. 102310​.​ DOI: https://doi.org/10.1063/1.4996819 
    Details  DOI 
  • 2018 Journal Article
    ​ ​Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential​
    Quaranta, V.; Hellström, M.; Behler, J. ; Kullgren, J.; Mitev, P. D. & Hermansson, K.​ (2018) 
    The Journal of Chemical Physics148(24) pp. 241720​.​ DOI: https://doi.org/10.1063/1.5012980 
    Details  DOI 
  • 2018 Journal Article
    ​ ​Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials​
    Imbalzano, G.; Anelli, A.; Giofré, D.; Klees, S.; Behler, J.   & Ceriotti, M.​ (2018) 
    The Journal of Chemical Physics148(24) pp. 241730​.​ DOI: https://doi.org/10.1063/1.5024611 
    Details  DOI 
  • 2018 Journal Article
    ​ ​Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions​
    Nguyen, T. T.; Székely, E.; Imbalzano, G.; Behler, J. ; Csányi, G.; Ceriotti, M. & Götz, A. W. et al.​ (2018) 
    The Journal of Chemical Physics148(24) pp. 241725​.​ DOI: https://doi.org/10.1063/1.5024577 
    Details  DOI 
  • 2018 Journal Article
    ​ ​Structure and Dynamics of the Liquid–Water/Zinc-Oxide Interface from Machine Learning Potential Simulations​
    Quaranta, V.; Behler, J.   & Hellström, M.​ (2018) 
    The Journal of Physical Chemistry C123(2) pp. 1293​-1304​.​ DOI: https://doi.org/10.1021/acs.jpcc.8b10781 
    Details  DOI 
  • 2018 Journal Article
    ​ ​Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations​
    Hellström, M.; Ceriotti, M. & Behler, J. ​ (2018) 
    The Journal of Physical Chemistry B122(44) pp. 10158​-10171​.​ DOI: https://doi.org/10.1021/acs.jpcb.8b06433 
    Details  DOI 
  • 2018 Journal Article | 
    ​ ​Density anomaly of water at negative pressures from first principles​
    Singraber, A.; Morawietz, T.; Behler, J.   & Dellago, C.​ (2018) 
    Journal of Physics: Condensed Matter30(25) pp. 254005​.​ DOI: https://doi.org/10.1088/1361-648X/aac4f4 
    Details  DOI 
  • 2017 Journal Article | 
    ​ ​Machine learning molecular dynamics for the simulation of infrared spectra​
    Gastegger, M.; Behler, J.   & Marquetand, P.​ (2017) 
    Chemical Science8(10) pp. 6924​-6935​.​ DOI: https://doi.org/10.1039/C7SC02267K 
    Details  DOI 
  • 2017 Journal Article
    ​ ​Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires​
    Gabardi, S.; Baldi, E.; Bosoni, E.; Campi, D.; Caravati, S.; Sosso, G. C. & Behler, J.  et al.​ (2017) 
    The Journal of Physical Chemistry C121(42) pp. 23827​-23838​.​ DOI: https://doi.org/10.1021/acs.jpcc.7b09862 
    Details  DOI 
  • 2017 Journal Article
    ​ ​First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems​
    Behler, J. ​ (2017) 
    Angewandte Chemie International Edition56(42) pp. 12828​-12840​.​ DOI: https://doi.org/10.1002/anie.201703114 
    Details  DOI 
  • 2017 Journal Article | 
    ​ ​Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N-2 + Ru(0001)​
    Shakouri, K.; Behler, J. ; Meyer, J. & Kroes, G.-J.​ (2017) 
    The Journal of Physical Chemistry Letters8(10) pp. 2131​-2136​.​ DOI: https://doi.org/10.1021/acs.jpclett.7b00784 
    Details  DOI  PMID  PMC  WoS 

Publication List

Type

Subtype

Date issued

Author

Project

Peer-Reviewed

Organization

Language

Fulltext

Options

Citation Style

https://publications.goettingen-research-online.de URI: /cris/rp/rp93494
ID: 0000000
PREF: default TOKEN:

0

Sort

Issue Date
Title

Embed

JavaScript
Link

Export

Activate Export Mode
Deactivate Export Mode

Select some or all items (max. 800 for CSV/Excel) from the publications list, then choose an export format below.