1-62 of 62
 
Check/Uncheck all
  • 2024 Preprint
    ​ ​MultiMatch: Geometry-Informed Colocalization in Multi-Color Super-Resolution Microscopy​
    Naas, J.; Nies, G.; Li, H. ; Stoldt, S. ; Schmitzer, B. ; Jakobs, S.  & Munk, A. ​ (2024). DOI: https://doi.org/10.1101/2024.02.28.581557 
    Details  DOI 
  • 2023 Preprint
    ​ ​Quick Adaptive Ternary Segmentation: An Efficient Decoding Procedure For Hidden Markov Models​
    Mösching, A.; Li, H.  & Munk, A. ​ (2023). DOI: https://doi.org/10.48550/arxiv.2305.18578 
    Details  DOI  arXiv 
  • 2023 Preprint
    ​ ​Vimentin intermediate filaments structure and mechanically support microtubules in cells​
    Blob, A.; Ventzke, D.; Nies, G.; Dühmert, J. N.; Schmitzer, B. ; Munk, A.  & Schaedel, L. et al.​ (2023). DOI: https://doi.org/10.1101/2023.04.19.537509 
    Details  DOI 
  • 2023 Journal Article | 
    ​ ​Towards Unbiased Fluorophore Counting in Superresolution Fluorescence Microscopy​
    Laitenberger, O.; Aspelmeier, T.; Staudt, T.; Geisler, C.; Munk, A.   & Egner, A. ​ (2023) 
    Nanomaterials13(3).​ DOI: https://doi.org/10.3390/nano13030459 
    Details  DOI 
  • 2023 Journal Article
    ​ ​Statistical Analysis of Random Objects Via Metric Measure Laplacians​
    Mordant, G. & Munk, A.​ (2023) 
    SIAM Journal on Mathematics of Data Science5(2) pp. 528​-557​.​ DOI: https://doi.org/10.1137/22M1491022 
    Details  DOI 
  • 2023 Preprint
    ​ ​Multiscale scanning with nuisance parameters​
    König, C.; Munk, A.& Werner, F.​ (2023). DOI: https://doi.org/10.48550/ARXIV.2307.13301 
    Details  DOI 
  • 2023 Preprint
    ​ ​A scalable clustering algorithm to approximate graph cuts​
    Suchan, L.; Li, H.  & Munk, A. ​ (2023). DOI: https://doi.org/10.48550/ARXIV.2308.09613 
    Details  DOI 
  • 2023 Preprint
    ​ ​Convergence of Empirical Optimal Transport in Unbounded Settings​
    Staudt, T.& Hundrieser, S.​ (2023). DOI: https://doi.org/10.48550/ARXIV.2306.11499 
    Details  DOI 
  • 2023 Preprint
    ​ ​Empirical Optimal Transport under Estimated Costs: Distributional Limits and Statistical Applications​
    Hundrieser, S.; Mordant, G.; Weitkamp, C. A.& Munk, A. ​ (2023). DOI: https://doi.org/10.48550/ARXIV.2301.01287 
    Details  DOI 
  • 2023 Journal Article
    ​ ​The Ultrametric Gromov–Wasserstein Distance​
    Mémoli, F.; Munk, A.; Wan, Z. & Weitkamp, C.​ (2023) 
    Discrete & Computational Geometry70(4) pp. 1378​-1450​.​ DOI: https://doi.org/10.1007/s00454-023-00583-0 
    Details  DOI 
  • 2023 Journal Article
    ​ ​Minimax detection of localized signals in statistical inverse problems​
    Pohlmann, M.; Werner, F. & Munk, A.​ (2023) 
    Information and Inference12(3) art. iaad026​.​ DOI: https://doi.org/10.1093/imaiai/iaad026 
    Details  DOI 
  • 2022 Preprint
    ​ ​A Unifying Approach to Distributional Limits for Empirical Optimal Transport​
    Hundrieser, S.; Klatt, M.; Staudt, T.& Munk, A. ​ (2022)
    Details  arXiv 
  • 2022 Preprint
    ​ ​Empirical Optimal Transport between Different Measures Adapts to Lower Complexity​
    Hundrieser, S.; Staudt, T.& Munk, A. ​ (2022)
    Details  arXiv 
  • 2022 Preprint
    ​ ​On the Uniqueness of Kantorovich Potentials​
    Staudt, T.; Hundrieser, S.& Munk, A. ​ (2022)
    Details  arXiv 
  • 2022 Journal Article
    ​ ​Seeded binary segmentation: a general methodology for fast and optimal changepoint detection​
    Kovács, S.; Bühlmann, P.; Li, H. & Munk, A.​ (2022) 
    Biometrika, art. asac052​.​ DOI: https://doi.org/10.1093/biomet/asac052 
    Details  DOI 
  • 2022 Preprint
    ​ ​Statistical analysis of random objects via metric measure Laplacians​
    Mordant, G.& Munk, A. ​ (2022). DOI: https://doi.org/10.48550/arXiv.2204.06493 
    Details  DOI 
  • 2022 Journal Article | Research Paper
    ​ ​Statistical Methods for Minimax Estimation in Linear Models with Unknown Design Over Finite Alphabets​
    Behr, M. & Munk, A. ​ (2022) 
    SIAM Journal on Mathematics of Data Science4(2) pp. 490​-513​.​ DOI: https://doi.org/10.1137/21M1398860 
    Details  DOI 
  • 2022 Journal Article | 
    ​ ​Kantorovich–Rubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms​
    Heinemann, F.; Klatt, M. & Munk, A.​ (2022) 
    Applied Mathematics & Optimization87(1).​ DOI: https://doi.org/10.1007/s00245-022-09911-x 
    Details  DOI 
  • 2022 Book Chapter
    ​ ​The Statistics of Circular Optimal Transport​
    Hundrieser, S.; Klatt, M.& Munk, A. ​ (2022)
    In:​SenGupta, Ashis; Arnold, Barry C.​ (Eds.), Directional Statistics for Innovative Applications. A Bicentennial Tribute to Florence Nightingale pp. 57​-82. ​Singapore: ​Springer. DOI: https://doi.org/10.1007/978-981-19-1044-9_4 
    Details  DOI 
  • 2022 Journal Article
    ​ ​A Variational View on Statistical Multiscale Estimation​
    Haltmeier, M.; Li, H.   & Munk, A. ​ (2022) 
    Annual Review of Statistics and Its Application9(1) pp. 343​-372​.​ DOI: https://doi.org/10.1146/annurev-statistics-040120-030531 
    Details  DOI 
  • 2022 Preprint
    ​ ​Unbalanced Kantorovich-Rubinstein distance and barycenter for finitely supported measures: A statistical perspective​
    Heinemann, F.; Klatt, M.& Munk, A. ​ (2022). DOI: https://doi.org/10.48550/ARXIV.2211.08858 
    Details  DOI 
  • 2022 Journal Article
    ​ ​Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees​
    Heinemann, F.; Munk, A. & Zemel, Y.​ (2022) 
    SIAM Journal on Mathematics of Data Science4(1) pp. 229​-259​.​ DOI: https://doi.org/10.1137/20M1385263 
    Details  DOI 
  • 2021 Preprint
    ​ ​Minimax detection of localized signals in statistical inverse problems​
    Pohlmann, M.; Werner, F.& Munk, A. ​ (2021)
    Details  arXiv 
  • 2021 Preprint
    ​ ​Kantorovich-Rubinstein distance and barycenter for finitely supported measures: Foundations and Algorithms​
    Heinemann, F.; Klatt, M.& Munk, A. ​ (2021)
    Details  arXiv 
  • 2021 Preprint
    ​ ​Transport Dependency: Optimal Transport Based Dependency Measures​
    Nies, T. G.; Staudt, T.& Munk, A. ​ (2021)
    Details  arXiv 
  • 2021 Preprint
    ​ ​Limit Distributions and Sensitivity Analysis for Entropic Optimal Transport on Countable Spaces​
    Hundrieser, S.; Klatt, M.& Munk, A. ​ (2021)
    Details  arXiv 
  • 2021 Preprint
    ​ ​The Statistics of Circular Optimal Transport​
    Hundrieser, S.; Klatt, M.& Munk, A. ​ (2021)
    Details  arXiv 
  • 2021 Preprint
    ​ ​Analyzing cross-talk between superimposed signals: Vector norm dependent hidden Markov models and applications​
    Vanegas, L. J.; Eltzner, B.; Rudolf, D. ; Dura, M.; Lehnart, S. E.  & Munk, A. ​ (2021). DOI: https://doi.org/10.48550/arXiv.2103.06071 
    Details  DOI  arXiv 
  • 2021 Preprint
    ​ ​The ultrametric Gromov-Wasserstein distance​
    Mémoli, F.; Munk, A. ; Wan, Z.& Weitkamp, C.​ (2021)
    Details  arXiv 
  • 2021 Journal Article | Research Paper
    ​ ​Multiple haplotype reconstruction from allele frequency data​
    Pelizzola, M.; Behr, M.; Li, H. ; Munk, A.   & Futschik, A.​ (2021) 
    Nature computational science1(4) pp. 262​-271​.​ DOI: https://doi.org/10.1038/s43588-021-00056-5 
    Details  DOI 
  • 2021 Journal Article
    ​ ​What is resolution? A statistical minimax testing perspective on superresolution microscopy​
    Kulaitis, G.; Munk, A.   & Werner, F.​ (2021) 
    The Annals of Statistics49(4).​ DOI: https://doi.org/10.1214/20-AOS2037 
    Details  DOI 
  • 2021 Journal Article | Research Paper
    ​ ​Colocalization for super-resolution microscopy via optimal transport​
    Tameling, C.; Stoldt, S. ; Stephan, T. ; Naas, J.; Jakobs, S.   & Munk, A. ​ (2021) 
    Nature computational science1(3) pp. 199​-211​.​ DOI: https://doi.org/10.1038/s43588-021-00050-x 
    Details  DOI 
  • 2021 Journal Article
    ​ ​Frame-constrained total variation regularization for white noise regression​
    del Álamo, M.; Li, H.   & Munk, A. ​ (2021) 
    The Annals of Statistics49(3).​ DOI: https://doi.org/10.1214/20-AOS2001 
    Details  DOI  Preprint 
  • 2021 Journal Article | Research Paper | 
    ​ ​Analysis of patchclamp recordings: model-free multiscale methods and software​
    Pein, F. ; Eltzner, B.   & Munk, A. ​ (2021) 
    European Biophysics Journal50(2) pp. 187​-209​.​ DOI: https://doi.org/10.1007/s00249-021-01506-8 
    Details  DOI  PMID  PMC 
  • 2021 Journal Article | Research Paper | 
    ​ ​Heterogeneous Idealization of Ion Channel Recordings – Open Channel Noise​
    Pein, F. ; Bartsch, A.; Steinem, C.   & Munk, A. ​ (2021) 
    IEEE Transactions on NanoBioscience20(1) pp. 57​-78​.​ DOI: https://doi.org/10.1109/TNB.2020.3031202 
    Details  DOI  PMID  PMC 
  • 2021 Journal Article | Research Paper
    ​ ​Multiscale Quantile Segmentation​
    Jula Vanegas, L.; Behr, M.   & Munk, A. ​ (2021) 
    Journal of the American Statistical Association, pp. 1​-14​.​ DOI: https://doi.org/10.1080/01621459.2020.1859380 
    Details  DOI 
  • 2021 Journal Article
    ​ ​Posterior analysis of n in the binomial (n,p) problem with both parameters unknown—with applications to quantitative nanoscopy​
    Schmidt-Hieber, J.; Schneider, L. F.; Staudt, T.; Krajina, A.; Aspelmeier, T. & Munk, A. ​ (2021) 
    The Annals of Statistics49(6).​ DOI: https://doi.org/10.1214/21-AOS2096 
    Details  DOI 
  • 2020 Preprint
    ​ ​Randomised Wasserstein Barycenter Computation: Resampling with Statistical Guarantees​
    Heinemann, F.; Munk, A.  & Zemel, Y.​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Variational Multiscale Nonparametric Regression: Algorithms and Implementation​
    del Alamo, M.; Li, H. ; Munk, A.  & Werner, F.​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Optimistic search strategy: Change point detection for large-scale data via adaptive logarithmic queries​
    Kovács, S.; Li, H. ; Haubner, L.; Munk, A.  & Bühlmann, P.​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Heterogeneous Idealization of Ion Channel Recordings -- Open Channel Noise​
    Pein, F.; Bartsch, A.; Steinem, C.  & Munk, A. ​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Gromov-Wasserstein Distance based Object Matching: Asymptotic Inference​
    Weitkamp, C. A.; Proksch, K.; Tameling, C.& Munk, A. ​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​What is resolution? A statistical minimax testing perspective on super-resolution microscopy​
    Kulaitis, G.; Munk, A.  & Werner, F.​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Seeded Binary Segmentation: A general methodology for fast and optimal change point detection​
    Kovács, S.; Li, H. ; Bühlmann, P.& Munk, A. ​ (2020)
    Details  arXiv 
  • 2020 Preprint
    ​ ​Testing for dependence on tree structures​
    Behr, M.; Ansari, M. A.; Munk, A.  & Holmes, C.​ (2020). DOI: https://doi.org/10.1101/622811 
    Details  DOI 
  • 2020 Preprint
    ​ ​Multiple Haplotype Reconstruction from Allele Frequency Data​
    Pelizzola, M.; Behr, M.; Li, H. ; Munk, A.  & Futschik, A.​ (2020). DOI: https://doi.org/10.1101/2020.07.09.191924 
    Details  DOI 
  • 2020 Preprint
    ​ ​An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding​
    Bartsch, A.; Ives, C. M.; Kattner, C.; Pein, F.; Diehn, M.; Tanabe, M.& Munk, A.  et al.​ (2020). DOI: https://doi.org/10.1101/2020.11.06.369579 
    Details  DOI 
  • 2020 Preprint | 
    ​ ​Analysis of Patchclamp Recordings: Model-Free Multiscale Methods and Software​
    Pein, F.; Eltzner, B.& Munk, A. ​ (2020)
    Details 
  • 2020 Journal Article | Research Paper | 
    ​ ​Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy​
    Staudt, T.; Aspelmeier, T. ; Laitenberger, O.; Geisler, C. ; Egner, A.   & Munk, A. ​ (2020) 
    Statistical Science35(1) pp. 92​-111​.​ DOI: https://doi.org/10.1214/19-STS753 
    Details  DOI 
  • 2020 Journal Article | Research Paper | 
    ​ ​Testing for dependence on tree structures​
    Behr, M. ; Ansari, M. A.; Munk, A.   & Holmes, C.​ (2020) 
    Proceedings of the National Academy of Sciences of the United States of America117(18) pp. 9787​-9792​.​ DOI: https://doi.org/10.1073/pnas.1912957117 
    Details  DOI  PMID  PMC 
  • 2020 Journal Article | Research Paper
    ​ ​Empirical Regularized Optimal Transport: Statistical Theory and Applications​
    Klatt, M.; Tameling, C. & Munk, A. ​ (2020) 
    SIAM Journal on Mathematics of Data Science2(2) pp. 419​-443​.​ DOI: https://doi.org/10.1137/19M1278788 
    Details  DOI 
  • 2020 Journal Article | Research Paper
    ​ ​The essential histogram​
    Li, H. ; Munk, A. ; Sieling, H.   & Walther, G.​ (2020) 
    Biometrika107(2) pp. 347​-364​.​ DOI: https://doi.org/10.1093/biomet/asz081 
    Details  DOI 
  • 2020 Journal Article | Research Paper | 
    ​ ​Variational Multiscale Nonparametric Regression: Algorithms and Implementation​
    del Alamo, M.; Li, H. ; Munk, A.   & Werner, F. ​ (2020) 
    Algorithms13(11) pp. 296​.​ DOI: https://doi.org/10.3390/a13110296 
    Details  DOI 
  • 2019 Preprint
    ​ ​Multiscale quantile segmentation​
    Vanegas, L. J.; Behr, M.& Munk, A. ​ (2019)
    Details  arXiv 
  • 2019 Journal Article | Research Paper | 
    ​ ​Empirical optimal transport on countable metric spaces: Distributional limits and statistical applications​
    Tameling, C.; Sommerfeld, M. & Munk, A. ​ (2019) 
    The Annals of Applied Probability29(5) pp. 2744​-2781​.​ DOI: https://doi.org/10.1214/19-AAP1463 
    Details  DOI  Preprint 
  • 2019 Journal Article | Research Paper | 
    ​ ​Molecular contribution function in RESOLFT nanoscopy​
    Frahm, L.; Keller-Findeisen, J. ; Alt, P.; Schnorrenberg, S. ; del Álamo Ruiz, M.; Aspelmeier, T.   & Munk, A.  et al.​ (2019) 
    Optics Express27(15) pp. 21956​.​ DOI: https://doi.org/10.1364/OE.27.021956 
    Details  DOI  PMID  PMC 
  • 2019 Journal Article | Research Paper | 
    ​ ​High-resolution experimental and computational electrophysiology reveals weak β-lactam binding events in the porin PorB​
    Bartsch, A.; Llabrés, S.; Pein, F.; Kattner, C.; Schön, M.; Diehn, M. & Tanabe, M. et al.​ (2019) 
    Scientific Reports9(1) art. 1264​.​ DOI: https://doi.org/10.1038/s41598-018-37066-9 
    Details  DOI  PMID  PMC 
  • 2019 Journal Article | Research Paper | 
    ​ ​Multiscale Change-point Segmentation: Beyond Step Functions​
    Li, H. ; Guo, Q. & Munk, A. ​ (2019) 
    Electronic Journal of Statistics13(2) pp. 3254​-3296​.​ DOI: https://doi.org/10.1214/19-EJS1608 
    Details  DOI  Preprint 
  • 2018 Preprint
    ​ ​Posterior analysis of $ in the binomial $(n,p)$ problem with both parameters unknown -- with applications to quantitative nanoscopy​
    Schmidt-Hieber, J.; Schneider, L. F.; Staudt, T.; Krajina, A.; Aspelmeier, T.& Munk, A. ​ (2018)
    Details  arXiv 
  • 2018 Preprint
    ​ ​Frame-constrained Total Variation Regularization for White Noise Regression​
    del Álamo, M.; Li, H.  & Munk, A. ​ (2018)
    Details  arXiv 
  • 2017 Preprint
    ​ ​Minimax estimation in linear models with unknown finite alphabet design​
    Behr, M.  & Munk, A. ​ (2017)
    Details  arXiv 
  • 2016 Preprint
    ​ ​The Essential Histogram​
    Li, H. ; Munk, A. ; Sieling, H.  & Walther, G.​ (2016)
    Details  arXiv 

Type

Date issued

Subject

Fulltext

Options

Citation Style

Sort

Issue Date
Title

Embed

JavaScript
Link

Export

Activate Export Mode
Deactivate Export Mode

Select some or all items (max. 800 for CSV/Excel) from the publications list, then choose an export format below.