Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint

2007 | journal article; research paper. A publication of Göttingen

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint​
Block, K. T.; Uecker, M.   & Frahm, J. ​ (2007) 
Magnetic Resonance in Medicine57(6) pp. 1086​-1098​.​ DOI: https://doi.org/10.1002/mrm.21236 

Documents & Media

License

GRO License GRO License

Details

Authors
Block, Kai Tobias; Uecker, Martin ; Frahm, Jens 
Abstract
The reconstruction of artifact-free images from radially encoded MRI acquisitions poses a difficult task for undersampled data sets, that is for a much lower number of spokes in k-space than data samples per spoke. Here, we developed an iterative reconstruction method for undersampled radial MRI which (i) is based on a nonlinear optimization, (ii) allows for the incorporation of prior knowledge with use of penalty functions, and (iii) deals with data from multiple coils. The procedure arises as a two-step mechanism which first estimates the coil profiles and then renders a final image that complies with the actual observations. Prior knowledge is introduced by penalizing edges in coil profiles and by a total variation constraint for the final image. The latter condition leads to an effective suppression of undersampling (streaking) artifacts and further adds a certain degree of denoising. Apart from simulations, experimental results for a radial spin-echo MRI sequence are presented for phantoms and human brain in vivo at 2.9 T using 24,48, and 96 spokes with 256 data samples. In comparison to conventional reconstructions (regridding) the proposed method yielded visually improved image quality in all cases.
Issue Date
2007
Publisher
John Wiley & Sons Inc
Journal
Magnetic Resonance in Medicine 
ISSN
0740-3194

Reference

Citations


Social Media