Visualizing translation dynamics at atomic detail inside a bacterial cell

2022 | journal article. A publication with affiliation to the University of Göttingen.

Erratum to this publication

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Visualizing translation dynamics at atomic detail inside a bacterial cell​
Xue, L.; Lenz, S.; Zimmermann-Kogadeeva, M.; Tegunov, D. ; Cramer, P. ; Bork, P. & Rappsilber, J. et al.​ (2022) 
Nature, pp. 205​.​ DOI: https://doi.org/10.1038/s41586-022-05255-2 

Documents & Media

document.pdf77.78 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Xue, Liang; Lenz, Swantje; Zimmermann-Kogadeeva, Maria; Tegunov, Dimitry ; Cramer, Patrick ; Bork, Peer; Rappsilber, Juri; Mahamid, Julia
Abstract
Abstract Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells 1 . Here we use advances in cryo-electron tomography and sub-tomogram analysis 2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae . To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M.   pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes 4 . By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.
Issue Date
2022
Journal
Nature 
Organization
Max-Planck-Institut für Biophysikalische Chemie 
ISSN
0028-0836
eISSN
1476-4687
Language
English

Reference

Citations


Social Media