Root Colonization by Fungal Entomopathogen Systemically Primes Belowground Plant Defense against Cabbage Root Fly

2022 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Root Colonization by Fungal Entomopathogen Systemically Primes Belowground Plant Defense against Cabbage Root Fly​
Posada-Vergara, C.; Lohaus, K.; Alhussein, M.; Vidal, S.   & Rostás, M. ​ (2022) 
Journal of Fungi8(9) pp. 969​.​ DOI: https://doi.org/10.3390/jof8090969 

Documents & Media

Main article2.52 MBAdobe PDFjof-08-00969-s001.zip352.83 kBUnknown

License

Attribution 4.0 CC BY 4.0

Details

Authors
Posada-Vergara, Catalina; Lohaus, Katharina; Alhussein, Mohammad; Vidal, Stefan ; Rostás, Michael 
Abstract
Entomopathogenic fungi infect insects via spores but also live inside plant tissues as endophytes. Frequently, colonization by entomopathogens provides plants with increased resistance against insects, but the mechanisms are little understood. This study investigated direct, local, and systemic root-mediated interactions between isolates of the fungus Metarhizium brunneum and larvae of the cabbage root fly (CRF) Delia radicum attacking Brassica napus plants. All fungal isolates infected CRF when conidia were present in the soil, leading to 43–93% mortality. Locally, root-associated M. brunneum isolates reduced herbivore damage by 10–20% and in three out of five isolates caused significant insect mortality due to plant-mediated and/or direct effects. A split-root experiment with isolate Gd12 also demonstrated systemic plant resistance with significantly reduced root collar damage by CRF. LC-MS analyses showed that fungal root colonization did not induce changes in phytohormones, while herbivory increased jasmonic acid (JA) and glucosinolate concentrations. Proteinase inhibitor gene expression was also increased. Fungal colonization, however, primed herbivore-induced JA and the expression of the JA-responsive plant defensin 1.2 (PDF1.2) gene. We conclude that root-associated M. brunneum benefits plant health through multiple mechanisms, such as the direct infection of insects, as well as the local and systemic priming of the JA pathway.
Issue Date
2022
Journal
Journal of Fungi 
Organization
Fakultät für Agrarwissenschaften ; Department für Nutzpflanzenwissenschaften ; Abteilung Agrarentomologie ; Abteilung Molekulare Phytopathologie und Mykotoxinforschung 
eISSN
2309-608X
Language
English
Sponsor
“Ministerio de Ciencia, Tecnología e Innovación” -COLCIENCIAS-, Colombia

Reference

Citations


Social Media