Conifers and non-native tree species shift trophic niches of generalist arthropod predators in Central European beech forests

2023-02-03 | journal article. A publication with affiliation to the University of Göttingen.

Erratum to this publication

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Conifers and non-native tree species shift trophic niches of generalist arthropod predators in Central European beech forests​
Wildermuth, B.; Fardiansah, R.; Matevski, D.; Lu, J.-Z.; Kriegel, P.; Scheu, S. & Schuldt, A.​ (2023) 
BMC Ecology and Evolution23(1) art. 3​.​ DOI: 

Documents & Media

12862_2023_Article_2105.pdf2.89 MBAdobe PDF


Published Version

Attribution 4.0 CC BY 4.0


Wildermuth, Benjamin; Fardiansah, Riko; Matevski, Dragan; Lu, Jing-Zhong; Kriegel, Peter; Scheu, Stefan; Schuldt, Andreas
Abstract Background Functional diversity is vital for forest ecosystem resilience in times of climate-induced forest diebacks. Admixing drought resistant non-native Douglas fir, as a partial replacement of climate-sensitive Norway spruce, to native beech forests in Europe appears promising for forest management, but possible consequences for associated biota and ecosystem functioning are poorly understood. To better link forest management and functional diversity of associated biota, we investigated the trophic niches (∆13C, ∆15N) of epigeic generalist predators (spiders and ground beetles) in mixed and pure stands of European beech, Norway spruce and non-native Douglas fir in north-west Germany. We assessed the multidimensional niche structure of arthropod predator communities using community-based isotopic metrics. Results Whilst arthropod ∆13C differed most between beech (high ∆13C) and coniferous stands (low ∆13C), ∆15N was lowest in non-native Douglas fir. Tree mixtures mitigated these effects. Further, conifers increased isotopic ranges and isotopic richness, which is linked to higher canopy openness and herb complexity. Isotopic divergence of ground beetles decreased with Douglas fir presence, and isotopic evenness of spiders in Douglas fir stands was lower in loamy sites with higher precipitation than in sandy, drier sites. Conclusions We conclude that tree species and particularly non-native trees alter the trophic niche structure of generalist arthropod predators. Resource use and feeding niche breadth in non-native Douglas fir and native spruce differed significantly from native beech, with more decomposer-fueled and narrower feeding niches in beech stands (∆13C, isotopic ranges and richness). Arthropod predators in non-native Douglas fir, however, had shorter (∆15N) and simplified (isotopic divergence) food chains compared to native forest stands; especially under beneficial abiotic conditions (isotopic evenness). These findings indicate potential adverse effects of Douglas fir on functional diversity of generalist arthropod predators. As tree mixtures mitigated differences between beech and conifers, mixed stands including (non-native) conifers constitute a promising compromise between economic and conservational interests.
Issue Date
BMC Ecology and Evolution 
Open-Access-Publikationsfonds 2023



Social Media