Severe and frequent extreme weather events undermine economic adaptation gains of tree-species diversification

2024 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Severe and frequent extreme weather events undermine economic adaptation gains of tree-species diversification​
Fuchs, J. M. ; Husmann, K. ; Schick, J.; Albert, M. ; Lintunen, J. & Paul, C. ​ (2024) 
Scientific Reports14(1) art. 2140​.​ DOI: 

Documents & Media

main article2 MBAdobe PDFsupplementary material1.37 MBAdobe PDF


Published Version

Attribution 4.0 CC BY 4.0


Fuchs, Jasper Maximilian ; Husmann, Kai ; Schick, Jan; Albert, Matthias ; Lintunen, Jussi; Paul, Carola 
Forests and their provision of ecosystem services are endangered by climate change. Tree-species diversification has been identified as a key adaptation strategy to balance economic risks and returns in forest stands. Yet, whether this synergy between ecology and economics persists under large-scale extreme weather events remains unanswered. Our model accounts for both, small-scale disturbances in individual stands and extreme weather events that cause spatio-temporally correlated disturbances in a large number of neighboring stands. It economically optimizes stand-type allocations in a large forest enterprise with multiple planning units. Novel components are: spatially explicit site heterogeneity and a comparison of economic diversification strategies under local and regionally coordinated planning by simplified measures for alpha-, beta-, and gamma-diversity of stand types. alpha-diversity refers to the number and evenness of stand types in local planning units, beta-diversity to the dissimilarity of the species composition across planning units, and gamma-diversity to the number and evenness of stand types in the entire enterprise. Local planning led to stand-type diversification within planning units (alpha-diversity), while regionally coordinated planning led to diversification across planning units (beta-diversity). We observed a trend towards homogenization of stand-type composition likely selected under economic objectives with increasing extreme weather events. No diversification strategy fully buffered the adverse economic consequences. This led to fatalistic decisions, i.e., selecting stand types with low investment risks but also low resistance to disturbances. The resulting forest structures indicate potential adverse consequences for other ecosystem services. We conclude that high tree-species diversity may not necessarily buffer economic consequences of extreme weather events. Forest policies reducing forest owners’ investment risks are needed to establish stable forests that provide multiple ecosystem services.
Issue Date
Scientific Reports 
Potential of functional diversity for increasing the disturbance resiliency of forests and forest-based socio-ecological systems (FUNPOTENTIAL) 
Economic impacts of climate change and extreme weather events on forestry and mitigation potentials through robust management strategies 
Abteilung Forstökonomie und nachhaltige Landnutzungsplanung ; Zentrum für Biodiversität und Nachhaltige Landnutzung 
Climate-change impacts; Environmental economics; Climate-change adaption; Natural hazards



Social Media