Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations

2024-01-25 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations​
Alfken, J. ; Neuhaus, C. ; Major, A.; Taskina, A.; Hoffmann, C.; Ganzella, M. & Petrovic, A. et al.​ (2024) 
The European Physical Journal. E, Soft Matter47(1) pp. 8​.​ DOI: https://doi.org/10.1140/epje/s10189-023-00404-5 

Documents & Media

License

GRO License GRO License

Details

Authors
Alfken, Jette ; Neuhaus, Charlotte ; Major, András; Taskina, Alyona; Hoffmann, Christian; Ganzella, Marcelo; Petrovic, Arsen; Zwicker, David; Fernández-Busnadiego, Rubén; Jahn, Reinhard ; Milovanovic, Dragomir ; Salditt, Tim 
Abstract
We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.
Issue Date
25-January-2024
Journal
The European Physical Journal. E, Soft Matter 
Project
SFB 1286 | A02: Bestimmung der Struktur synaptischer Organellen durch Röntgenbeugungs- und Bildgebungsverfahren 
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | A02: Bestimmung der Struktur synaptischer Organellen durch Röntgenbeugungs- und Bildgebungsverfahren 
Organization
Institut für Röntgenphysik ; Fakultät für Physik; Max-Planck-Institut für Multidisziplinäre Naturwissenschaften ; Institut für Neuropathologie ; Universitätsmedizin Göttingen ; Max-Planck-Institut für Dynamik und Selbstorganisation 
Working Group
RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics) 
RG Fernández-Busnadiego (Structural Cell Biology) 
RG Milovanovic (Molecular Neuroscience) 
External URL
https://mbexc.uni-goettingen.de/literature/publications/822
https://sfb1286.uni-goettingen.de/literature/publications/240
ISSN
1292-8941; 1292-895X
eISSN
1292-895X
Language
English

Reference

Citations


Social Media