Drosophila MIC10b can polymerize into cristae-shaping filaments

2024 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Drosophila MIC10b can polymerize into cristae-shaping filaments​
Stephan, T.; Stoldt, S.; Barbot, M.; Carney, T. D; Lange, F.; Bates, M. & Bou Dib, P. et al.​ (2024) 
Life Science Alliance7(4) art. e202302177​.​ DOI: https://doi.org/10.26508/lsa.202302177 

Documents & Media


GRO License GRO License


Stephan, Till; Stoldt, Stefan; Barbot, Mariam; Carney, Travis D; Lange, Felix; Bates, Mark; Bou Dib, Peter; Inamdar, Kaushik; Shcherbata, Halyna R; Meinecke, Michael; Jakobs, Stefan
Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster , three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.
Issue Date
Life Science Alliance 
EXC 2067: Multiscale Bioimaging 
SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente 
SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen 
SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg 
FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala 
FOR 2848 | P05: Molekulare Charakterisierung der MICOS abhängigen mitochondrialen Innenmembran-Biogenese. 
FOR 2848 | Z01: Elektronenmikroskopie 
Working Group
RG Jakobs (Structure and Dynamics of Mitochondria) 
RG Rehling (Mitochondrial Protein Biogenesis) 
RG Meinecke (Molecular Membrane Biology) 
RG Riedel 
External URL
EC | European Research Council http://dx.doi.org/10.13039/501100000781
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659



Social Media