Near-optimal information relay by the neuronal population of layer 4 barrel cortex

2024-02-16 | preprint. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Near-optimal information relay by the neuronal population of layer 4 barrel cortex​
Revah, O.; Wolf, F.; Gutnick, M. J.& Neef, A.​ (2024). DOI: https://doi.org/10.1101/2024.02.15.580451 

Documents & Media

License

GRO License GRO License

Details

Authors
Revah, Omer; Wolf, Fred; Gutnick, Michael J.; Neef, Andreas
Abstract
Cortical function reflects the coordinated activities of populations of neurons, which, in turn, depend on the speed with which each neuron can respond to input, as revealed by dynamic gain analysis. In Layer 4 of the rodent barrel cortex, a finite population of interconnected, small, excitatory neurons rapidly and briefly relays input from the specific thalamus to the rest of the cortical column. Theory predicts that the determinants of a population’s dynamic gain - cell number, cell size and the correlation time of the background noise - control the speed with which the population can respond to input. Here, we demonstrate how these parameters are optimized such that a single thalamocortical input spike is reliably reflected in the output population response of layer 4. We show that the synaptic receptor dynamics that dominate the background noise in layer 4 are slower than in other layers. We further show that the speed with which the spike-generation machinery can respond depends on the activity of KV7 channels, suggesting that the relay function of layer 4 is under muscarinic control.
Issue Date
16-February-2024
Project
SFB 1528: Kognition der Interaktion 
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | C02: Aktive Zonendesigns und -dynamiken, die auf das synaptische Arbeitsgedächtnis zugeschnitten sind 
Organization
Campus Institut für Dynamik biologischer Netzwerke ; Bernstein Center for Computational Neuroscience Göttingen ; Georg-August-Universität Göttingen ; Max-Planck-Institut für Dynamik und Selbstorganisation ; Max-Planck-Institut für Multidisziplinäre Naturwissenschaften ; Center for Biostructural Imaging of Neurodegeneration 
Working Group
RG Wolf 
External URL
https://mbexc.uni-goettingen.de/literature/publications/834
https://sfb1286.uni-goettingen.de/literature/publications/243
Language
English

Reference

Citations


Social Media