Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics

2018 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics​
Kaßel, M.; Gerke, J.; Ley, A.   & Vana, P. ​ (2018) 
Polymers10(4) pp. 1​-16​.​ DOI: https://doi.org/10.3390/polym10040354 

Documents & Media

polymers-10-00354.pdf3.31 MBUnknown

License

Details

Authors
Kaßel, Martin; Gerke, Julia; Ley, Adrian ; Vana, Philipp 
Abstract
Wood flour is particularly suitable as a filler in thermoplastics because it is environmentally friendly, readily available, and offers a high strength-to-density ratio. To overcome the insufficient interfacial adhesion between hydrophilic wood and a hydrophobic matrix, a thermoplastic polymer was grafted from wood flour via surface-initiated activators regenerated by electron transfer-atom transfer radical polymerization (SI-ARGET ATRP). Wood particles were modified with an ATRP initiator and subsequently grafted with methyl acrylate for different polymerization times in the absence of a sacrificial initiator. The successful grafting of poly(methyl acrylate) (PMA) was demonstrated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. To confirm the control over the polymerization, a cleavable ATRP initiator was immobilized on the particles, allowing the detachment of the grafted polymer under mild conditions. The grafted particles were incorporated into a PMA matrix using solvent casting and their influence on the mechanical properties (Young's modulus, yield strength, and toughness) of the composite was investigated. Tensile testing showed that the mechanical properties improved with increasing polymerization time and increasing ratio of incorporated grafted particles.
Issue Date
2018
Journal
Polymers 
Organization
Institut für Physikalische Chemie 
eISSN
2073-4360
Language
English

Reference

Citations


Social Media