A combined Raman- and infrared jet study of mixed methanol-water and ethanol-water clusters
2011 | journal article. A publication of Göttingen
Jump to: Cite & Linked | Documents & Media | Details | Version history
Documents & Media
Details
- Authors
- Nedic, Marija; Wassermann, Tobias N.; Larsen, Rene Wugt; Suhm, Martin A.
- Abstract
- The vibrational dynamics of vacuum-isolated hydrogen-bonded complexes between water and the two simplest alcohols is characterized at low temperatures by Raman and FTIR spectroscopy. Conformational preferences during adaptive aggregation, relative donor/acceptor strengths, weak secondary hydrogen bonding, tunneling processes in acceptor lone pair switching, and thermodynamic anomalies are elucidated. The ground state tunneling splitting of the methanol-water dimer is predicted to be larger than 2.5 cm(-1). Two types of alcohol-water trimers are identified from the spectra. It is shown that methanol and ethanol are better hydrogen bond donors than water, but even more so better hydrogen bond acceptors. As a consequence, hydrogen bond induced red shifts of OH modes behave non-linearly as a function of composition and the resulting cluster excess quantities correspond nicely to bulk excess enthalpies at room temperature. The effects of weak C-H center dot center dot center dot O hydrogen bonds are quantified in the case of mixed ethanol-water dimers.
- Issue Date
- 2011
- Status
- published
- Publisher
- Royal Soc Chemistry
- Journal
- Physical Chemistry, Chemical Physics
- Organization
- Institut für Physikalische Chemie
- ISSN
- 1463-9084; 1463-9076
- Sponsor
- DFG [Su121/2, GRK 782]; Danish Research Council