Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions

2017 | journal article, A publication of Göttingen

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions​
Popescu, B. F. G.; Frischer, J. M.; Webb, S. M.; Tham, M.; Adiele, R. C.; Robinson, C. A. & Fitz-Gibbon, P. D. et al.​ (2017) 
Acta Neuropathologica134(1) pp. 45​-64​.​ DOI: 

Documents & Media

s00401-017-1696-8.pdf8.9 MBAdobe PDF


Attribution 4.0 CC BY 4.0


Popescu, Bogdan F. G.; Frischer, Josa M.; Webb, Samuel M.; Tham, Mylyne; Adiele, Reginald C.; Robinson, Christopher A.; Fitz-Gibbon, Patrick D.; Weigand, Stephen D.; Metz, Imke; Nehzati, Susan; George, Graham N.; Pickering, Ingrid J.; Brueck, Wolfgang; Hametner, Simon; Lassmann, Hans; Parisi, Joseph E.; Yong, Guo; Lucchinetti, Claudia F.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neuro-degeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distribution of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.
Issue Date
Acta Neuropathologica 
1432-0533; 0001-6322



Social Media