Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression

2018 | journal article; research paper

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression​
Mohamed, B. A. ; Hartmann, N. ; Tirilomis, P.; Sekeres, K.; Li, W.; Neef, S. & Richter, C.  et al.​ (2018) 
Science Translational Medicine10(458) art. eaan0724​.​ DOI: https://doi.org/10.1126/scitranslmed.aan0724 

Documents & Media

License

GRO License GRO License

Details

Authors
Mohamed, Belal A. ; Hartmann, Nico ; Tirilomis, Petros; Sekeres, Karolina; Li, Wener; Neef, Stefan; Richter, Claudia ; Zeisberg, Elisabeth M. ; Kattner, Lars; Didié, Michael ; Guan, Kaomei ; Schmitto, Jan D.; Lehnart, Stephan E. ; Luther, Stefan ; Voigt, Niels ; Seidler, Tim ; Sossalla, Samuel ; Hasenfuss, Gerd ; Toischer, Karl 
Abstract
Cardiac calcium clarified The subcellular localization of calcium within cardiomyocytes is tightly regulated during the cardiac cycle, and calcium leak from the sarcoplasmic reticulum is linked to alterations in heart rhythm and heart failure. Mohamed et al. investigated whether inhibiting calcium leak by stabilizing the sarcoplasmic calcium channel ryanodine receptor 2 corrected irregular heartbeat and prevented maladaptive myocardial remodeling and heart failure. In a mouse model of pressure overload, reduced calcium leak did not prevent heart failure; increased calcium leak in a volume overload mouse model did not exacerbate heart failure. Rather, inhibiting calcium leak corrected arrhythmias in myocytes derived from patients with heart failure and tachycardia. Although myocardial remodeling was not altered, arrhythmia was mitigated and survival was increased by ryanodine receptor stabilization in mouse models, suggesting a potential therapeutic application for inhibiting sarcoplasmic calcium leak. Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor (RyR2) has been suggested to play a mechanistic role in the development of heart failure (HF) and cardiac arrhythmia. Mice treated with a selective RyR2 stabilizer, rycal S36, showed normalization of SR Ca2+ leak and improved survival in pressure overload (PO) and myocardial infarction (MI) models. The development of HF, measured by echocardiography and molecular markers, showed no difference in rycal S36– versus placebo-treated mice. Reduction of SR Ca2+ leak in the PO model by the rycal-unrelated RyR2 stabilizer dantrolene did not mitigate HF progression. Development of HF was not aggravated by increased SR Ca2+ leak due to RyR2 mutation (R2474S) in volume overload, an SR Ca2+ leak–independent HF model. Arrhythmia episodes were reduced by rycal S36 treatment in PO and MI mice in vivo and ex vivo in Langendorff-perfused hearts. Isolated cardiomyocytes from murine failing hearts and human ventricular failing and atrial nonfailing myocardium showed reductions in delayed afterdepolarizations, in spontaneous and induced Ca2+ waves, and in triggered activity in rycal S36 versus placebo cells, whereas the Ca2+ transient, SR Ca2+ load, SR Ca2+ adenosine triphosphatase function, and action potential duration were not affected. Rycal S36 treatment of human induced pluripotent stem cells isolated from a patient with catecholaminergic polymorphic ventricular tachycardia could rescue the leaky RyR2 receptor. These results suggest that SR Ca2+ leak does not primarily influence contractile HF progression, whereas rycal S36 treatment markedly reduces ventricular arrhythmias, thereby improving survival in mice. Leaky ryanodine receptor does not contribute to heart failure progression, but its normalization reduces arrhythmias and thereby improves survival in mice.
Issue Date
2018
Journal
Science Translational Medicine 
Project
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion 
SFB 1002 | A11: Absolute Arrhythmie bei Vorhofflimmern - ein neuer Mechanismus, der zu einer Störung von Ca2+-Homöostase und elektrischer Stabilität in der Transition zur Herzinsuffizienz führt 
SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF) 
SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur 
SFB 1002 | D04: Bedeutung der Methylierung von RNA (m6A) und des Histons H3 (H3K4) in der Herzinsuffizienz 
Working Group
RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling) 
RG Hasenfuß (Transition zur Herzinsuffizienz) 
RG Lehnart (Cellular Biophysics and Translational Cardiology Section) 
RG Luther (Biomedical Physics) 
RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung) 
RG Toischer (Kardiales Remodeling) 
RG Voigt (Molecular Pharmacology) 
RG E. Zeisberg (Kardiales Stroma) 
External URL
https://sfb1002.med.uni-goettingen.de/production/literature/publications/234
ISSN
1946-6234; 1946-6242
Language
English

Reference

Citations


Social Media