The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints

The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints
Bitterlich, S.; Boţ, R. I.; Csetnek, E. R. & Wanka, G. (2018) 
Journal of Optimization Theory and Applications,.​

Citation Style
Authors
Bitterlich, Sandy; Boţ, Radu Ioan; Csetnek, Ernö Robert; Wanka, Gert
Issue Date
2018
Type
Journal Article
Abstract
The Alternating Minimization Algorithm has been proposed by Paul Tseng to solve convex programming problems with two-block separable linear constraints and objectives, whereby (at least) one of the components of the latter is assumed to be strongly convex. The fact that one of the subproblems to be solved within the iteration process of this method does not usually correspond to the calculation of a proximal operator through a closed formula affects the implementability of the algorithm. In this paper, we allow in each block of the objective a further smooth convex function and propose a proximal version of the algorithm, which is achieved by equipping the algorithm with proximal terms induced by variable metrics. For suitable choices of the latter, the solving of the two subproblems in the iterative scheme can be reduced to the computation of proximal operators. We investigate the convergence of the proposed algorithm in a real Hilbert space setting and illustrate its numerical performances on two applications in image processing and machine learning.
Journal
Journal of Optimization Theory and Applications 
ISSN
1573-2878
Language
English
Publication of Göttingen University
Yes

Reference

Citations


Social Media


Published Version

Attribution 4.0 CC BY 4.0