Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad

A publication (journal article; original work) of the University of Göttingen

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad​
Reis, M.; Wiegleb, G.; Claude, J.; Lata, R.; Horchler, B.; Ha, N.-T. & Reimer, C. et al.​ (2020) 
Scientific Reports10(1) art. 12832​.​

Documents & Media

s41598-020-69719-z.pdf2.03 MBAdobe PDF

License

Published Version

Special user license Goescholar License

Details

Authors
Reis, Micael; Wiegleb, Gordon; Claude, Julien; Lata, Rodrigo; Horchler, Britta; Ha, Ngoc-Thuy; Reimer, Christian; Vieira, Cristina P; Vieira, Jorge; Posnien, Nico 
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Rights
Goescholar
Issue Date
30-July-2020
Document Version
Published Version
Journal
Scientific Reports 
ISSN
2045-2322
eISSN
2045-2322

Reference

Citations


Social Media