A minimalist model to measure interactions between proteins and synaptic vesicles

2020-12-03 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​A minimalist model to measure interactions between proteins and synaptic vesicles​
Perego, E.; Reshetniak, S.; Lorenz, C.; Hoffmann, C.; Milovanović, D. ; Rizzoli, S. O.   & Köster, S. ​ (2020) 
Scientific Reports10(1).​ DOI: https://doi.org/10.1038/s41598-020-77887-1 

Documents & Media

s41598-020-77887-1.pdf1.75 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Perego, Eleonora; Reshetniak, Sofiia; Lorenz, Charlotta; Hoffmann, Christian; Milovanović, Dragomir ; Rizzoli, Silvio O. ; Köster, Sarah 
Abstract
Abstract Protein dynamics in the synaptic bouton are still not well understood, despite many quantitative studies of synaptic structure and function. The complexity of the synaptic environment makes investigations of presynaptic protein mobility challenging. Here, we present an in vitro approach to create a minimalist model of the synaptic environment by patterning synaptic vesicles (SVs) on glass coverslips. We employed fluorescence correlation spectroscopy (FCS) to measure the mobility of monomeric enhanced green fluorescent protein (mEGFP)-tagged proteins in the presence of the vesicle patterns. We observed that the mobility of all eleven measured proteins is strongly reduced in the presence of the SVs, suggesting that they all bind to the SVs. The mobility observed in these conditions is within the range of corresponding measurements in synapses of living cells. Overall, our simple, but robust, approach should enable numerous future studies of organelle-protein interactions in general.
Issue Date
3-December-2020
Journal
Scientific Reports 
Project
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | B02: Ein in vitro-Verfahren zum Verständnis der struktur-organisierenden Rolle des Vesikel-Clusters 
Organization
Fakultät für Physik ; Institut für Röntgenphysik 
Working Group
RG Köster (Cellular Biophysics) 
RG Rizzoli (Quantitative Synaptology in Space and Time) 
eISSN
2045-2322
Language
English
Subject(s)
neuro biophysics; molecular biophysics
Sponsor
Open-Access-Publikationsfonds 2021

Reference

Citations


Social Media