A minimalist model to measure interactions between proteins and synaptic vesicles

2020-12-03 | Zeitschriftenartikel; Forschungsarbeit. Eine Publikation mit Affiliation zur Georg-August-Universität Göttingen.

Spring zu: Zitieren & Links | Dokumente & Medien | Details | Versionsgeschichte

Zitiervorschlag

​A minimalist model to measure interactions between proteins and synaptic vesicles​
Perego, E.; Reshetniak, S.; Lorenz, C.; Hoffmann, C.; Milovanović, D. ; Rizzoli, S. O.   & Köster, S. ​ (2020) 
Scientific Reports10(1).​ DOI: https://doi.org/10.1038/s41598-020-77887-1 

Dokumente & Medien

s41598-020-77887-1.pdf1.75 MBAdobe PDF

Lizenz

Published Version

Attribution 4.0 CC BY 4.0

Details

Autor(en)
Perego, Eleonora; Reshetniak, Sofiia; Lorenz, Charlotta; Hoffmann, Christian; Milovanović, Dragomir ; Rizzoli, Silvio O. ; Köster, Sarah 
Zusammenfassung
Abstract Protein dynamics in the synaptic bouton are still not well understood, despite many quantitative studies of synaptic structure and function. The complexity of the synaptic environment makes investigations of presynaptic protein mobility challenging. Here, we present an in vitro approach to create a minimalist model of the synaptic environment by patterning synaptic vesicles (SVs) on glass coverslips. We employed fluorescence correlation spectroscopy (FCS) to measure the mobility of monomeric enhanced green fluorescent protein (mEGFP)-tagged proteins in the presence of the vesicle patterns. We observed that the mobility of all eleven measured proteins is strongly reduced in the presence of the SVs, suggesting that they all bind to the SVs. The mobility observed in these conditions is within the range of corresponding measurements in synapses of living cells. Overall, our simple, but robust, approach should enable numerous future studies of organelle-protein interactions in general.
Erscheinungsdatum
3-Dezember-2020
Zeitschrift
Scientific Reports 
Project
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | B02: Ein in vitro-Verfahren zum Verständnis der struktur-organisierenden Rolle des Vesikel-Clusters 
Organisation
Fakultät für Physik ; Institut für Röntgenphysik 
Arbeitsgruppe
RG Köster (Cellular Biophysics) 
RG Rizzoli (Quantitative Synaptology in Space and Time) 
eISSN
2045-2322
Sprache
Englisch
Schlagwort(e)
neuro biophysics; molecular biophysics
Förderer
Open-Access-Publikationsfonds 2021

Export Metadaten

Referenzen

Zitationen


Social Media