Presynaptic activity and protein turnover are correlated at the single-synapse level

2021 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Presynaptic activity and protein turnover are correlated at the single-synapse level​
Jähne, S. ; Mikulasch, F.; Heuer, H. G.; Truckenbrodt, S.; Agüi-Gonzalez, P. ; Grewe, K. & Vogts, A. et al.​ (2021) 
Cell Reports34(11) pp. 108841​.​ DOI: https://doi.org/10.1016/j.celrep.2021.108841 

Documents & Media

License

Published Version

Attribution-NonCommercial-NoDerivs 4.0 CC BY-NC-ND 4.0

Details

Authors
Jähne, Sebastian ; Mikulasch, Fabian; Heuer, Helge G.H.; Truckenbrodt, Sven; Agüi-Gonzalez, Paola ; Grewe, Katharina; Vogts, Angela; Rizzoli, Silvio O. ; Priesemann, Viola 
Abstract
Synaptic transmission relies on the continual exocytosis and recycling of synaptic vesicles. Aged vesicle proteins are prevented from recycling and are eventually degraded. This implies that active synapses would lose vesicles and vesicle-associated proteins over time, unless the supply correlates to activity, to balance the losses. To test this hypothesis, we first model the quantitative relation between presynaptic spike rate and vesicle turnover. The model predicts that the vesicle supply needs to increase with the spike rate. To follow up this prediction, we measure protein turnover in individual synapses of cultured hippocampal neurons by combining nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence microscopy. We find that turnover correlates with activity at the single-synapse level, but not with other parameters such as the abundance of synaptic vesicles or postsynaptic density proteins. We therefore suggest that the supply of newly synthesized proteins to synapses is closely connected to synaptic activity.
Issue Date
2021
Journal
Cell Reports 
Project
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität 
Working Group
RG Priesemann (Physics, Complex Systems & Neural Networks) 
RG Rizzoli (Quantitative Synaptology in Space and Time) 
External URL
https://mbexc.uni-goettingen.de/literature/publications/244
https://sfb1286.uni-goettingen.de/literature/publications/117
ISSN
2211-1247
Language
English

Reference

Citations


Social Media