Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species

2021 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Modelling the Material Resistance of Wood—Part 1: Utilizing Durability Test Data Based on Different Reference Wood Species​
Alfredsen, G.; Brischke, C.; Marais, B. N.; Stein, R. F. A.; Zimmer, K. & Humar, M.​ (2021) 
Forests12(5) pp. 558​.​ DOI: https://doi.org/10.3390/f12050558 

Documents & Media

forests-12-00558.pdf498.28 kBUnknown

License

Details

Authors
Alfredsen, Gry; Brischke, Christian; Marais, Brendan N.; Stein, Robert F. A.; Zimmer, Katrin; Humar, Miha
Abstract
To evaluate the performance of new wood-based products, reference wood species with known performances are included in laboratory and field trials. However, different wood species vary in their durability performance, and there will also be a within-species variation. The primary aim of this paper was to compare the material resistance against decay fungi and moisture performance of three European reference wood species, i.e., Scots pine sapwood (Pinus sylvestris), Norway spruce (Picea abies), and European beech (Fagus sylvatica). Wood material was collected from 43 locations all over Europe and exposed to brown rot (Rhodonia placenta), white rot (Trametes versicolor) or soft rot fungi. In addition, five different moisture performance characteristics were analyzed. The main results were the two factors accounting for the wetting ability (kwa) and the inherent protective properties of wood (kinh), factors for conversion between Norway spruce vs. Scots pine sapwood or European beech for the three decay types and four moisture tests, and material resistance dose (DRd) per wood species. The data illustrate that the differences between the three European reference wood species were minor, both with regard to decay and moisture performance. The results also highlight the importance of defined boundaries for density and annual ring width when comparing materials within and between experiments. It was concluded that with the factors obtained, existing, and future test data, where only one or two of the mentioned reference species were used, can be transferred to models and prediction tools that use another of the reference species.
To evaluate the performance of new wood-based products, reference wood species with known performances are included in laboratory and field trials. However, different wood species vary in their durability performance, and there will also be a within-species variation. The primary aim of this paper was to compare the material resistance against decay fungi and moisture performance of three European reference wood species, i.e., Scots pine sapwood (Pinus sylvestris), Norway spruce (Picea abies), and European beech (Fagus sylvatica). Wood material was collected from 43 locations all over Europe and exposed to brown rot (Rhodonia placenta), white rot (Trametes versicolor) or soft rot fungi. In addition, five different moisture performance characteristics were analyzed. The main results were the two factors accounting for the wetting ability (kwa) and the inherent protective properties of wood (kinh), factors for conversion between Norway spruce vs. Scots pine sapwood or European beech for the three decay types and four moisture tests, and material resistance dose (DRd) per wood species. The data illustrate that the differences between the three European reference wood species were minor, both with regard to decay and moisture performance. The results also highlight the importance of defined boundaries for density and annual ring width when comparing materials within and between experiments. It was concluded that with the factors obtained, existing, and future test data, where only one or two of the mentioned reference species were used, can be transferred to models and prediction tools that use another of the reference species.
Issue Date
2021
Journal
Forests 
Organization
Fakultät für Forstwissenschaften und Waldökologie ; Burckhardt-Institut ; Abteilung Holzbiologie und Holzprodukte 
eISSN
1999-4907
Language
English
Sponsor
ForestValue

Reference

Citations


Social Media