Foliar Application of Salicylic Acid Improves Water Stress Tolerance in Conocarpus erectus L. and Populus deltoides L. Saplings: Evidence from Morphological, Physiological, and Biochemical Changes

2021 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Foliar Application of Salicylic Acid Improves Water Stress Tolerance in Conocarpus erectus L. and Populus deltoides L. Saplings: Evidence from Morphological, Physiological, and Biochemical Changes​
Zafar, Z.; Rasheed, F.; Atif, R. M.; Javed, M. A.; Maqsood, M. & Gailing, O. ​ (2021) 
Plants10(6) pp. 1242​.​ DOI: https://doi.org/10.3390/plants10061242 

Documents & Media

plants-10-01242-v2.pdf1.14 MBUnknown

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Zafar, Zikria; Rasheed, Fahad; Atif, Rana Muhammad; Javed, Muhammad Asif; Maqsood, Muhammad; Gailing, Oliver 
Abstract
Reforestation efforts are being challenged as water stress is hampering the sapling growth and survival in arid to semiarid regions. A controlled experiment was conducted to evaluate the effect of foliar application of salicylic acid (SA) on water stress tolerance of Conocarpus erectus and Populus deltoides. Saplings were watered at 90%, 60%, and 30% of field capacity (FC), and half of the saplings under 60% and 30% FC were sprayed with 1.0 mM SA. Results indicated that dry weight production decreased significantly in Populus deltoides under both water deficit conditions, and leaf gas exchange parameters decreased significantly in both the species under both soil water deficit conditions. Foliar application of SA resulted in a significant increase in leaf gas exchange parameters, and compatible solutes, thereby increasing the dry weight production in both of the species under soil water deficit. Oxidative stress (hydrogen peroxide and superoxide anions) increased under soil water deficit and decreased after the foliar application of SA and was parallel to the increased antioxidant enzymes activity (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase). Therefore, it can be concluded that foliar application of 1.0 mM SA can significantly improve the water stress tolerance in both species, however, positive impacts of SA application were higher in Conocarpus erectus due to improved photosynthetic capacity and increased antioxidant enzyme activity.
Reforestation efforts are being challenged as water stress is hampering the sapling growth and survival in arid to semiarid regions. A controlled experiment was conducted to evaluate the effect of foliar application of salicylic acid (SA) on water stress tolerance of Conocarpus erectus and Populus deltoides. Saplings were watered at 90%, 60%, and 30% of field capacity (FC), and half of the saplings under 60% and 30% FC were sprayed with 1.0 mM SA. Results indicated that dry weight production decreased significantly in Populus deltoides under both water deficit conditions, and leaf gas exchange parameters decreased significantly in both the species under both soil water deficit conditions. Foliar application of SA resulted in a significant increase in leaf gas exchange parameters, and compatible solutes, thereby increasing the dry weight production in both of the species under soil water deficit. Oxidative stress (hydrogen peroxide and superoxide anions) increased under soil water deficit and decreased after the foliar application of SA and was parallel to the increased antioxidant enzymes activity (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase). Therefore, it can be concluded that foliar application of 1.0 mM SA can significantly improve the water stress tolerance in both species, however, positive impacts of SA application were higher in Conocarpus erectus due to improved photosynthetic capacity and increased antioxidant enzyme activity.
Issue Date
2021
Journal
Plants 
Organization
Fakultät für Forstwissenschaften und Waldökologie ; Büsgen-Institut ; Abteilung Forstgenetik und Forstpflanzenzüchtung 
eISSN
2223-7747
Language
English
Sponsor
University of Agriculture Faisalabad, Pakistan
Open-Access-Publikationsfonds 2021

Reference

Citations


Social Media