Integral points and effective cones of moduli spaces of stable maps

A publication (2003 | journal article) of the University of Göttingen

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Integral points and effective cones of moduli spaces of stable maps​
Hassett, B. & Tschinkel, Y.​ (2003) 
Duke Mathematical Journal120(3) pp. 577​-599​.​

Documents & Media

36-cones2003.pdf300.45 kBAdobe PDF

License

Author's Version

Special user license Goescholar License

Details

Authors
Hassett, Brendan
Tschinkel, Yuri
Abstract
Consider the Fulton-MacPherson configuration space of n points on P-1, which is isomorphic to a certain moduli space of stable maps to P-1. We compute the cone of effective G(n)-invariant divisors on this space. This yields a geometric interpretation of known asymptotic formulas for the number of integral points of bounded height on compactifications of SL2 in the space of binary forms of degree n > 3.
Issue Date
2003
Status
published
Publisher
Duke Univ Press
Journal
Duke Mathematical Journal 
Organization
Fakultät für Mathematik und Informatik
File Format
application/pdf
ISSN
1547-7398; 0012-7094
Language
English

Reference

Citations


Social Media