The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra

2021 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​The Function of Flavonoids in the Diurnal Rhythm under Rapidly Changing UV Conditions—A Model Study on Okra​
Neugart, S.; Tobler, M. A. & Barnes, P. W.​ (2021) 
Plants10(11) pp. 2268​.​ DOI: https://doi.org/10.3390/plants10112268 

Documents & Media

plants-10-02268.pdf1.57 MBUnknown

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Neugart, Susanne; Tobler, Mark A.; Barnes, Paul W.
Abstract
Flavonoids are favored compounds in plant responses to UV exposure and act in UV absorption and antioxidant activity. Here, it was investigated, with okra as a model species, how fast plants can react to changing UV conditions and to what extent these reactions take place. Okra (Abelmoschus esculentus) plants were exposed to either full or nearly no UV radiation. The diurnal rhythm of the plants was driven by the UV radiation and showed up to a 50% increase of the flavonoid content (measured optically in the +UV plants). This was reflected only in the trends in UV-absorption and antioxidant activity of the extracts but not in the soluble flavonoid glycosides and hydroxycinnamic acid derivatives. In a second experiment, a transfer from a −UV to a +UV condition at 9:00 CDT showed the immediate start of the diurnal rhythm, while this did not occur if the transfer occurred later in the day; these plants only started a diurnal rhythm the following day. After an adaptation period of seven days, clear differences between the +UV and -UV plants could be found in all parameters, whereas plants transferred to the opposite UV condition settle between the +UV and -UV plants in all parameters. Broadly, it can be seen that the flavonoid contents and associated functions in the plant are subject to considerable changes within one day and within several days due to the UV conditions and that this can have a considerable impact on the quality of plant foods.
Flavonoids are favored compounds in plant responses to UV exposure and act in UV absorption and antioxidant activity. Here, it was investigated, with okra as a model species, how fast plants can react to changing UV conditions and to what extent these reactions take place. Okra (Abelmoschus esculentus) plants were exposed to either full or nearly no UV radiation. The diurnal rhythm of the plants was driven by the UV radiation and showed up to a 50% increase of the flavonoid content (measured optically in the +UV plants). This was reflected only in the trends in UV-absorption and antioxidant activity of the extracts but not in the soluble flavonoid glycosides and hydroxycinnamic acid derivatives. In a second experiment, a transfer from a −UV to a +UV condition at 9:00 CDT showed the immediate start of the diurnal rhythm, while this did not occur if the transfer occurred later in the day; these plants only started a diurnal rhythm the following day. After an adaptation period of seven days, clear differences between the +UV and -UV plants could be found in all parameters, whereas plants transferred to the opposite UV condition settle between the +UV and -UV plants in all parameters. Broadly, it can be seen that the flavonoid contents and associated functions in the plant are subject to considerable changes within one day and within several days due to the UV conditions and that this can have a considerable impact on the quality of plant foods.
Issue Date
2021
Journal
Plants 
Organization
Fakultät für Agrarwissenschaften ; Department für Nutzpflanzenwissenschaften ; Abteilung Qualität und Sensorik pflanzlicher Erzeugnisse 
Working Group
Aufgabengebiet Agrikulturchemie 
eISSN
2223-7747
Language
English
Sponsor
Open-Access-Publikationsfonds 2021

Reference

Citations


Social Media