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Abstract. The assumption that a parametric class of functions fits the data structure sufficiently well is common in
fitting curves and surfaces to regression data. One then derives a parameter estimate resulting from a least squares
fit, say, and in a second step various kinds of χ2 goodness of fit measures, to assess whether the deviation between
data and estimated surface is due to random noise and not to systematic departures from the model. In this paper
we show that commonly-used χ2-measures are invalid in regression models, particularly when inhomogeneous noise
is present. Instead we present a bootstrap algorithm which is applicable in problems described by noisy versions
of Fredholm integral equations of the first kind. We apply the suggested method to the problem of recovering the
luminosity density in the Milky Way from data of the DIRBE experiment on board the COBE satellite.
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1. Introduction

Regression problems arise in almost any branch of physics,
including astronomy and astrophysics. In general, the
problem of estimating a regression function (or surface)
occurs when a functional relationship between several
quantities of interest has to be found from blurred ob-
servations (yi, ti), i = 1, · · · , n. Here y = (y1, · · · , yn)
denotes a vector of measurements (response vector) and
t = (t1, · · · , tn) a quantity which affects the response vec-
tor in a systematic but blurred way, which is to be in-
vestigated. This systematic component is usually denoted
as the regression function E[Yi] = ω(ti). Note that Yi is a
random variable, of which yi is a realisation. If ti ∈ IR, this
includes signal detection problems or image restoration if
ti ∈ IR2. Many problems bear the additional difficulty that
the quantity of interest is not directly accesible to the ob-
servations y and the relationship has to be expressed by a
noisy version of a Fredholm integral equation of the first
kind, viz.

yi = ω(ti) + εi = (Kρ)(ti) + εi, (1)
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where K is a given integral operator, ρ the regression func-
tion to be reconstructed and ε = (ε1, · · · , εn) a vector of
independent random quantities (error), due to imprecise
measurements and other sources of noise. More precisely,
we assume that the expectation of yi is given by (Kρ)(ti)
and inhomogeneous noise might be present, i.e. the vari-
ance σ2

i of the noise εi (and possibly higher moments,
too) depends on the grid point ti. There is a vast amount
of literature concerning statistical theory for the estima-
tion of ρ, we mention only Wand & Jones (1995) for di-
rect regression and Nychka & Cox (1989) or van Rooij &
Rymgaart (1996) for the inverse (sometimes denoted as
indirect) case, as in Eq. (1). (Inverse) regression models
capture various examples from astronomy and physics (cf.
Bertero 1989 or Lucy 1994a, 1994b for an overview). Such
an example is the reconstruction of the three-dimensional
luminosity in the Milky Way [MW], which will be dis-
cussed extensively in Sect. 5. In this example, ρ will be
a three-dimensional density of the MW, K the operator
that projects this density to the sky, Kρ(ti) the resulting
surface brightness at the sky position ti = (l, b)i and yi
the observed surface brightness at (l, b)i.

Reconstruction procedures (estimation) of ρ in gen-
eral depend on various a priori assumptions about ρ, such
as smoothness properties or geometrical constraints, e.g.
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monotonicity. The most common assumptions are that
ρ has a particular structure and shape, depending on
some unknown parameter ϑ. Such an assumption is de-
noted as a parametric model. Typically, these structural
assumptions arise from physical reasoning and approxima-
tion procedures. Often, however, it is not completely clear
whether these assumptions are satisfied and therefore it
is an important task to investigate empirically (by means
of the data at hand) whether the resulting model is valid.
Therefore, in this paper we discuss recent methodology
for the investigation of the adequacy of such a parametric
model U = {ρϑ}ϑ∈Θ, Θ ⊂ IRd. This will be done for regu-
lar regression problems as well as for the inverse case, as
in (1).

The paper is organized as follows. In the next section
we briefly review common practices to judge the goodness
of fit of a model U . It is shown that classical goodness of
fit approaches, such as least square statistics are insuffi-
cient from many methodological points of view, particu-
lary when inhomogeneous noise is present, i.e. the vari-
ation σ2

i of the error εi is expected to vary with the
grid point (covariate) ti. We show in Sect. 2 that sta-
tistically valid conclusions about the goodness of fit from
the residuals

∑
r2
i =

∑(
yi − (Kρθ̂)(ti)

)2 (or variants of
it) are impossible in general, particularly when inhomoge-
neous noise is present, as is the case in our data example.
This is mainly due to the fact that in the inhomogeneous
case the distribution of

∑
r2
i depends on the whole vec-

tor
(
σ2

1, . . . , σ
2
n

)
which is in general unknown. Therefore,

we suggest in Sect. 3 a measure of fit which is based on
“smoothed residuals” and which allows for the calculation
of the corresponding probability distribution. In Sect. 4, a
bootstrap resampling algorithm is suggested which allows
the algorithmic reconstruction of the distribution of the
suggested goodness of fit quantity. The use of bootstrap
techniques is well documented in astronomy (cf. Barrow
et al. 1984; Simpson & Mayer 1986; van den Bergh &
Morbey 1984 for various applications). The work similar
in spirit to ours is Bi & Börner’s (1994) residual type boot-
strap, used as a method for nonparametric estimation in
inverse problems. As a byproduct we show, however, that
this residual bootstrap is insufficient in the case of inhomo-
geneous noise in the data and a so-called “wild” bootstrap
has to be used instead.

Finally we will apply our new method in Sect. 5 to the
fit of the COBE/DIRBE L-band data. We use a functional
form for a parametric model of the MW as presented by
Binney et al. (1997, hereafter BGS) and find similar struc-
tural parameters of the Milky disk and bulge, except for
the scale height of the disk which we find to be about 25%
smaller.

2. Common χ2 methods of judging the quality
of fit

One of the most popular techniques for finding a proper
fit of a given model U to a given set of data y1, · · · , yn is

to minimize a (penalized) weighted sum of squares

Qnw̃(ϑ) :=
n∑
i=1

w̃i(yi − ωϑ(ti))2

where the w̃i denotes some weighting scheme and the
model is ωϑ(ti) = (Kρϑ)(ti). This leads to a weighted
least squares estimator (WLSE) of the optimal model pa-
rameter, ϑ̂w̃. However, it is well known that a proper
choice of the weights w̃1, . . . , w̃n depends on the (possi-
bly position-dependent) random noise in the data. For ex-
ample, under an uncorrelated normal error assumption, if
the variance σ2

i of the error εi is assumed to be known,
a suitable choice of weights is wi = σ−2

i in order to take
into account the local variability of the observations at
the grid point ti. Particularly, in this case, the ordinary,
unweighted least squares estimator is known to be insuf-
ficient (Gallant 1987), because the log likelihood of the
model is proportional to Qnw̃(ϑ). Only if the variance pat-
tern is homogeneous (i.e. σ2

i = σ2) are unweigthed least
squares estimators optimal. The weighted least squares
approach is, however, limited if the local variances σ2

i in
the data points are unknown. The σ2

i then have to be es-
timated from the data. This is often neglected. It is also
common practice to consider Qnw in order to judge the
quality of fit achieved by the regression function (where
the weights wi may sometimes be different to those used
in computing the WLSE). Here, a “large” value of Qnw is
used as an indicator for a “significant” deviation between
the observations and the model to be fitted. We will inves-
tigate this in more detail in what follows, and emphasize
the case of nonhomogeneous variances.

In general, the most important properties required of
any goodness of fit (GoF) quantity χ2 such as χ2

w are that

1) we are able to detect with high probability deviations
from the model we have in mind (often denoted by
statisticians as good “power”);

2) we can quantify the probability that χ2 exceeds some
“critical value” in order to obtain a precise probabilis-
tic analysis (computing significance levels, confidence
intervals, etc.).

As a rough rule of thumb often

1
n− d χ

2
w ≈ 1 (2)

is taken as a measure of evidence for the model U and
hence for the fit of ωϑ̂w̃ . Here d denotes the dimension
(number of parameters) of U and n the number of data
points. Examples of the use of this kind of statistics can
be found in Alcock et al. (1997) and in Dwek et al. (1995)
in the context of discriminating between several models.
A related well-known quantity is the sum of squares of
“expected minus observed divided by expected” for testing
distributional assumptions, such as normality of the data
(cf. Cox & Hinkley 1974). Bi & Börner (1994) considered
a similar quantity in a deconvolution setup which is, using
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the notation of (1)

n∑
i=1

r̂2
i

ωϑ̂(ti)
· (3)

This obviously downweights the influence of residuals if
the corresponding predicted value ωϑ̂(ti) is large. Another
option is to consider the absolute deviation of the pre-
dicted and observed values, which leads to a more ro-
bust version of χ2, or even more general distance mea-
sures can be used (Cook & Weisberg 1999; Hocking 1996;
Lucy 1994a; 1994b). In the following we will argue that
an approach like χ2

w is not valid in regression models such
as (1), particularly when the noise is inhomogeneous or
the residuals are not gaussian. To this end we briefly dis-
cuss the (asymptotic) distribution of the abovementioned
quantities.

In order to get a first insight into the probabilis-
tic behaviour of statistics such as χ2, used as a quan-
titative measure of fit, it is helpful to consider the dis-
tribution in the simplest case when ω ≡ 0. A simple
calculation then shows that (assuming a normal distri-
bution of the data) χ2 =

∑n
i=1 y

2
i is distributed as a sum

of normally distributed variables having the expectation
E[χ2] =

∑n
i=1 σ

2
i , and variance V [χ2] = 2

∑n
i=1 σ

4
i . Hence,

already in this simple case it can be seen that the deter-
mination of the law of χ2 is practically impossible if the
variances σ2

i are not known. Then it is difficult to quantify
what a “too large value of χ2” means, because this will
depend on the unknown quantities σ2

1 , . . . , σ
2
n, and a rule

as in (2) can lead in principle to any result in favour or
against the model ω ≡ 0. We mention that standardisa-
tion by the predicted values as in (3) does not avoid this
problem. This is in contrast to goodness of fit problems
for the assessment of distribution assumptions, i.e. when
one investigates by a χ2 measure whether a population is
normal, say (Cox & Hinkley 1974). Note, that the case of
homoscedastic regression models (i.e. the distribution of
the noise is identical for all data points) is somewhat sim-
pler, because here the expectation E[χ2] = nσ2 and the
square root of the variance V [χ2] = 2nσ4 is proportional,
i.e. the signal to noise ratio

E[χ2]√
V [χ2]

=
√
n/2

only depends on the number of data points n. Here, a
model-free estimator of σ2 can be used as a reference scale
(Hart 1997).

Many attempts were made in order to find simple
approximations of the distribution for χ2

w. Among them
a quite attractive option is use of a bootstrap method,
an algorithmic approximation of the true law (see Efron
& Tibshirani 1993 for an overview and many applica-
tions). Bootstrapping random quadratic forms (such as
χ2) is, however, a rather delicate matter, because stan-
dard bootstrap algorithms such as Efron’s (1979) n out
of n bootstrap are inconsistent (Babu & Shankya 1984;

Shao & Tu 1995), i.e. the distribution is not approximated
correctly with increasing number of observations.

The use of a particular bootstrap algorithm was
indeed suggested by Bi & Börner (1994) in the context
of assessing the goodness of fit in deconvolution models.
We mention that their bootstrap algorithm, however,
is asymptotically not correct in inhomogeneous models.
Interestingly, the suggested algorithm is similar in spirit
to the so called residual bootstrap (i.e. drawing random
samples with replacement from the residuals ri) which is
well documented in the statistical literature (cf. Davison
& Hinkley 1997, p. 281) for the estimation of the regres-
sion parameters).

Despite the abovementioned difficulties, the main
problem encountered with the naive use of χ2 in regres-
sion models as a measure of GoF is that asymptotically
(here and in the following, asymptotically means the sam-
ple size tends to infinity) the law of χ2 does in general
not converge asymptotically to any reasonable quantity,
in contrast to goodness of fit testing for distributional as-
sumptions. Even after rescaling by 1/

√
n in order to force

the variance

V
[
1/
√
n χ2

]
= 2/n

n∑
i=1

σ4
i
n→∞−→ 2

∫
σ4(t)H(dt)

to converge (here it is assumed that the scheme of grid
points can be described asymptotically by a distribution
H (Dette & Munk 1998)) gives

E
[
1/
√
n χ2

]
=
√
n

(
1/n

n∑
i=1

σ2
i

)
= O(

√
n) →∞

which shows that 1/
√
n χ2 does not converge to any rea-

sonable quantity. Note that if we use χ2/n the variance
tends to zero. Also observe that subtracting E[1/

√
n χ2]

from χ2 will not provide a way out of the dilemma because
this value depends on the (unknown) variances σ2

i .
In summary, we see that without explicit knowledge of

the variances σ2
i , the use of χ2 as a quantitative measure

of validity of a model is not appropriate.
Due to the above-described difficulties, statisticians

throughout the last two decades have extensively studied
the problem of checking the goodness of fit in regression
models. It is beyond the scope of this paper to review this
work; many references can be found in the recent mono-
graph by Hart (1997). Among the variety of procedures
suggested so far, we mention methods which are based on
model selection criteria, such as Akaike’s (1974) informa-
tion criterion (Eubank & Hart 1992; Aerts et al. 1999) and
methods which compare nonparametric estimators with
a parametric estimator. To this end Azzalini & Bowman
(1993), Härdle & Mammen (1993) and Müller (1992) used
a kernel estimator, Cox et al. (1988) smoothing splines
and Mohdeb & Mokkadem (1998) a Fourier series estima-
tor. However, the applicability of many of these methods
is often limited. For example, Härdle & Mammen’s test is
confronted with bias problems, whereas other procedures
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are only applicable for homogeneous errors or when the
error distribution is completely known (Eubank & Hart
1992; Aerts et al. 1999). Another serious difficulty arises
with the nonparametric estimation of the signal as the di-
mension k of the grid points increases. This is sometimes
denoted as the curse of dimensionality (Wand & Jones
1995; Bowmann & Azzalini 1997). A rough rule of thumb
is that the number of observations required in dimension k
is nk in order to obtain the same precision of the estimate
of ω. Hence, the precision induced by 100 observations on
the real line is approximately the same as 10 000 drawn
from the plane. Furthermore, measurements often cannot
be taken equidistantly over a grid, which leads to sparse
data structures causing further difficulties with increasing
dimension. One should also note that another difficulty
consists of transferring these methods to the case of in-
verse problems, a situation which up to now has never
been treated.

3. A new method

Munk & Ruymgaart (1999) have developed a general re-
gression methodology which remains valid in the het-
eroscedastic case (i.e. the distribution of the noise depends
on the data point) with arbitrary dimensions of the grid
points. The underlying idea dates back to H. Cramér and
can be summarized as “smoothing the residuals” in order
to obtain asymptotical stabilization of the test criterion.
In our context this reads as follows. Let T denote an in-
jective smoothing linear integral operator with associated
integral kernel T (·, ·), i.e.

T[f ](u) =
∫
T (u, t)f(t)dt. (4)

Note that since T is an integral operator, T[f ] is again a
function. Now consider the transformed distance between
the parametric model V = {ωϑ}ϑ∈Θ and the distribution
ω, which underlies the observations yi = ω(ti) + εi (cf.
Sect. 1),

D2(g) = D2(T[ω]) = min
ϑ∈Θ
‖T[ω − ωϑ]‖2 (5)

where g = T[ω] denotes the smoothed version of ω and the
norm ‖.‖ refers to some L2-norm to be specified later on.
The smoothed distance D2 serves now as a new measure
of goodness of fit and has to be estimated from data. This
will be done by numerical minimization of the empirical
counterpart of the r.h.s. of (5), ‖ĝ − gϑ‖2 = χ2

D(ϑ) where
ĝ(u) = 1/n

∑n
i=1 yi T (u, ti) denotes an estimator of g(u).

In addition this provides us with a smoothed estimator ϑ̂T

of the value ϑ∗T for which the minimum in (5) is achieved.
In Munk & Ruymgaart (1999) the kernel

T (u, t) = min(u, t),

was suggested (see Appendix A1), which will also be
used in the following, and which amounts to a cumula-
tive smoothing. Not that for k-dimensional u and t the

minimum has to be understood componentwise as

min(u, t) =
k∏
i

min(ui, ti).

We mention that other choices of T are possible (cf.
Sect. A).

The reasoning behind this approach is that direct esti-
mation of ω is a rather difficult task, whereas estimation of
the smoothed transformation g = T(ω) is much simpler.
Furthermore, the distribution of the minimizer of χ2

D(ϑ)
becomes tractable. If we denote the minimum of ‖ĝ−gϑ‖2
as D̂2 one can show under very mild regularity conditions
that (Munk & Ruymgaart 1999) the distribution of nD̂2

converges to

∞∑
i=1

λiχ
2
i , (6)

where the λi denotes a decreasing sequence of positive
numbers which depend on the best model parameter ϑ∗T,
which is the minimizing ϑ in (5), the model space U and
the unknown distribution of the error ε, including the vari-
ance function σ2(ti). This makes a direct application of
this limit law difficult and hence a peculiar bootstrap al-
gorithm is suggested in the following which can be shown
to be asymptotically consistent, i.e. the asymptotic limit
law of this algorithm is the same as in (6). The following
idea of the so called “wild bootstrap” dates back to Wu
(1986) and was applied by Stute et al. (1998) to a testing
problem similar to the one above.

4. The wild bootstrap algorithm

The true distribution (6) of D̂2 depends on the unknown
λi. It is therefore not possible to use this distribution for
practical purposes. However, it is possible to approximate
the distribution numerically using the following bootstrap
algorithm:

Step 1: (Generate residuals). Compute residuals

ε̂i := yi − ωϑ̂T
(ti), i = 1, · · · , n

where ϑ̂T denotes a solution of the minimization of

D̂2 := χ2(ϑ̂T) := min
ϑ∈Θ
‖ĝ −Tωϑ‖2.

Step 2: (The “wild” part). Generate new random
variables c∗i , i = 1, . . . , n, which do not depend on the
data, where each c∗i is distributed to a distribution which
assigns probability (

√
5+1)/2

√
5 to the value (−

√
5−1)/2

and (
√

5− 1)/2
√

5 to the value (
√

5 + 1)/2. See Fig. 1 for
a visualization of this probability distribution.

Step 3: (Bootstrapping residuals). Compute ε∗i := ε̂ic
∗
i

and y∗i = ωϑ̂T
+ ε∗i . This gives a new data vector

(y∗i , ti)i=1,...,n.
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Fig. 1. Binary probability distribution required in step 2 of the
wild bootstrap algorithm.

Step 4: (Compute the target). Compute D̂2,∗ with
(y∗i , ti)i=1,...,n.

Step 5: (Bootstrap replication). Repeat step 1–4 B times
(B = 1000, say) which gives values D̂2,∗

1 , . . . , D̂2,∗
B .

Now we construct the empirical cumulative distribu-
tion function [ECDF], which can be taken as an ap-
proximation for the right side in (6), because Munk &
Ruymgaart (1999) have shown that the ECDF, based
on D̂2,∗

i , asymptotically approximates the distribution of
D̂2. The ECDF can be obtained by ordering the values
of D̂2,∗

1 , . . . , D̂2,∗
B increasingly and plotting them against

the value (i)/B, where (i) denotes the position of D̂2,∗
i

in the ordered sample D̂2,∗
(1) , . . . , D̂

2,∗
(B). The so-called esti-

mated evidence of the model U can now be obtained by
determining the position of the original statistic D̂2 in
the ordered sample D̂2,∗

(1) , . . . , D̂
2,∗
(B). This is some number

k∗ ∈ {0, . . . , B + 1}. From this number one computes

α∗ = 1− k∗/B.

Statisticians denote α∗ as the p-value of the test statistic
D̂2. The interpretation of this value is as follows. A small
α∗ indicates that the observed data are very unlikely to
have been generated by model U , because the probability
that the observed (or a larger value) D̂2 occurs is very
small, namely α∗ (recall that the bootstrap algorithm re-
produces the true distribution of D̂2 in (6)). On the other
hand, if α∗ is large (and hence D̂2 small) there should be
rare evidence against a proper use of model U , because
D̂2 provides a good fit of the data to the model compared
to all other possible outcomes which could have occured.

A formal test at significance level α can be performed
when deciding against U if

α∗ < α. (7)

In other words a small α∗ indicates that the deviation
from the model U is not simply due to noise, but rather
a systematic devation from the model U has to be taken
into account.

We would like to close this section by making some re-
marks about the applicability of bootstrap algorithms in

the context of goodness of fit, and giving some arguments
why our bootstrap algorithm is valid in the heteroscedastic
case. Stute et al. (1998) have shown that the wild boot-
strap is valid in heteroskedastic models with random grid
points t. This result can be extended to deterministic grid
points, as is the case in our example, provided the scheme
is not “too” wiggly (a precise formulation can be found in
Munk 1999), which holds true for the subsequent example.
We mention that an explanation for the wild bootstrap va-
lidity is its automatic adaptivity to inhomogeneous vari-
ances, because it can be shown that the variance in the ar-
tifical datapoints y∗i induced by “wild” resampling (step 2
in our algorithm) yields

V ∗[ε∗i ] = ε̂2
i

which estimates approximately σ2(ti). In contrast, the n
out of n bootstrap (cf. Stute et al. 1998) and the residual
bootstrap here fail to hold because the bootstrap variance
is in the latter case 1

n

∑n
i=1 ε̂

2
i , which approximates the

average overall variance
∫∫

σ2(t1, t2)dt1dt2 in our exam-
ple. This argument transfers essentially to any random
quadratic form (such as D̂2 or Bi & Börner’s 1994 χ2-
statistic). The residual bootstrap is consistent only if the
error is homoscedastic, which, however, in the subsequent
example is not the case. The case when the model space U
is of dimension ∞, as considered by Bi & Börner (1994),
is in principle similar; here it is also well known that the
residual bootstrap is insufficient in heteroscedastic models
(Härdle & Marron 1991).

5. Application: Recovering the luminosity
distribution in the Milky Way

The DIRBE experiment on board the COBE satellite,
launched in 1989, made measurements of the surface
brightness in several infrared wavebands (Weiland 1994).
A difficulty with the COBE/DIRBE data is that it has
to be corrected against certain effects. The most impor-
tant correction is the removal of dust absorption. This has
been done by Spergel et al. (1996). We use their corrected
COBE/DIRBE L-band data in our fits. The resolution of
the data are n×m=120×40 points in l, b respectively, cover-
ing a range −89.25o≤ l≤89.25o and −29.25o≤b≤29.25o.
The points in this two-dimensional grid are equally spaced.

The COBE/DIRBE data have been used to depro-
ject the three-dimensional density of the MW in a num-
ber of projects. A main difficulty in recovering the
three-dimensional luminosity distribution from the two-
dimensional surface brightness distribution of the MW is
that it is not a unique operation, in general. One way
to avoid this problem is to fit a parametric model to the
MW in order to reduce the set of possible models. Several
parametric models have been suggested, see for example
Kent et al. (1991), Dwek et al. (1995) or Freudenreich
(1998). Another approach is to use the non-parametric
Richardson-Lucy algorithm for the deprojection of the
data (Binney & Gerhard 1996; Binney et al. 1997;
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Bissantz et al. 1997), in order to reconstruct the lumi-
nosity distribution of the MW.

In parametric models of the MW density, about
ten “structural parameters” – including normalisations,
scale lengths and geometrical shape parameters of the
bulge/bar – are used (see, for example, Kent et al. 1991;
Dwek et al. 1995; Freudenreich 1998). In what follows, we
assume that these parameters are selected such that the
projection of a model onto the sky is an injective opera-
tion.

5.1. The basic equations of the astrophysical problem

We will first derive a general mathematical model of
the problem of recovering the MW luminosity distribu-
tion from the L-band data. The projection of a three-
dimensional light distribution to a surface brightness (on
the sky) is defined as follows. Let ℵ be the set of possible
luminosity densities of the MW, i.e. of maps

ρ : IR3 → IR≥0, x 7→ ρ (x)

and Ω be the surface brightness distributions

ω : [0, 2π]×
[
−π

2
,
π

2

]
→ IR≥0, (l, b) 7→ ω(l, b),

where ω(l, b) is the surface brightness at sky position (l, b),
and ω ∈ Ω. The transformation between a luminosity den-
sity ρ to its corresponding surface brightness distribution
is described by a linear integral operator P . We will call
this operator P the projection operator, since it “projects”
a luminosity density on the sky, i.e. onto a surface bright-
ness distribution.

P : ℵ → Ω, ρ 7→ P (ρ)

P is defined by the integral
∫
ρ(x)dr of the density ρ(x)

along the line-of-sight from the observer to infinity in di-
rection (l, b). Let r denote the distance from the observer.
Note that the integrand is ρ and not ρ × r2 because the
physical extend of the observed cone δΩ increases as r2

whereas the intensity of a source decreases as r−2 and the
r-powers therefore cancel out. Let s(r, l, b) be the path
from the observer to infinity along the line-of-sight to (l, b),
parametrized by the distance from the observer r. Then

ω(l, b) = P (ρ) (l, b) =
∫ ∞

0

ρ(s(r, l, b))dr.

So far we have used a spherical coordinate system centered
at the observer. Coordinate axes are the sky longitude l
and latitude b and the distance from the observer r. We
now introduce a second coordinate system. Let (x, y, z) be
the coordinate axes of a cartesian, galactocentric, coordi-
nate system, s.t. x and y lie in the main plane of the MW.
We define x to be along the major axis of the bulge/bar (cf.
Sect. 5.2 for further explanation of the components of our
parametric MW model, including the bulge/bar), y along
the minor axis, and z perpendicular to the main plane of
the MW. Let us further call “bar angle Φ” the angle be-
tween the major axis of the bar/bulge and the line-of-sight

Galactocentric z
Galactic latitude b

Galactic longitude l

Galactocentric y
Galactocentric

Bar angle
Phi

Observer

l=0°

Galactic center 

x   

Fig. 2. A sketch of the two coordinate systems that we use in
this paper. Luminosity densities of the MW are defined in the
galactocentric coordinate system x, y, z. Galactic longitude l
and latitude b define a position on the sky. Together with the
distance from the observer r they constitute the observer cen-
tered coordinate system.

direction from the observer to the galactic centre. The
position of the observer in this coordinate system is de-
noted as (x�, y�, z�). Figure 2 depicts the two coordinate
systems.

In our setting, a parametric model of the MW is a class
U of distributions ρϑ such that

U = {ρϑ(·)}ϑ∈Θ

where Θ denotes a set of parameters Θ ⊆ IRd. This
definition is in accordance with our terminology at the
beginning of this paper. We cannot observe ω directly,
due to measurement errors, dust removal from the raw
data and other sources of noise. Hence, our observations
yij ≡ ω(li, bj) + εij are blurred by some random error εij ,
the distribution of which may vary between different sky
positions (li, bj). Particularly, we will see in the following
that it is necessary to allow for a position-dependent noise
V ar[εi,j ] = σ2

i,j . Therefore our astrophysical problem is to
reconstruct ρ from the noisy integral equation.

yij = P(ρ)(li, bj) + εij .

Note that this is a noisy Fredholm equation of the first
kind as in (4); the suggested method in the last section
transfers directly to the present setting. Note, that P is
a linear injective operator as long as ρ > 0 due to our
selection of the parametric model.

Let

ωϑ(l, b) = P (ρϑ) (l, b); ϑ ∈ Θ,

and consider the transformed model

VT = TV = {Tωϑ(l, b)}ϑ∈Θ ,
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where

V = PU = {ωϑ(l, b)}ϑ∈Θ

and

T[ω](l′, b′) =
∫ ∫

ω(l, b)T ((l′, b′), (l, b))dldb.

Specific models U will be discussed in the next section
Following the approach in Sect. 4 we specify the smoothing
integral operator T by defining the smoothing kernel as

T ((l′, b′), (l, b))= min{l, l′} ·min{b, b′}; (l, b), (l′, b′) ∈ IR2.

This amounts to a kind of cumulative smoothing, which
downweights small-scale features in the data, and empha-
sizes trends on large scales.

Now, as a first step, we estimate g(l′, b′) = T[ω](l′, b′)
by

ĝ(l′, b′) =
1

n ·m

n∑
i=1

m∑
j=1

yijT ((l′, b′), (li, bj))

and determine numerically the “transformed” LSE

ϑ̂T = argminϑ∈Θ||ĝ −T[ωϑ]||2 (8)

where || · ||2 denotes the usual L2-norm. Finally, the min-
imising value

D̂2 = ||ĝ −T[P
(
ρϑ̂T

)
]||2

is computed. Now the bootstrap algorithm in Sect. 4 can
be applied. Finally, we mention that for the minimization
in (8) we have used the Marquardt-Levenberg algorithm
(Press et al. 1994).

5.2. A parametric model of the Milky Way

We will now investigate whether the functional form of the
luminosity distribution of the MW as suggested by BGS
provides a satisfactory fit to the COBE/DIRBE L-band
data. This functional form is a superposition of a double-
exponential disk with a truncated power-law bulge

ρϑ(x, y, z) = d ·
(

e−|z|/z0

z0
+ α · e−|z|/z1

z1

)
· rd · e−r/rd︸ ︷︷ ︸

disk

+ b · e−a
2/a2

m

a3
m · η · ζ · (1 + a/ac)

q︸ ︷︷ ︸
bulge/bar with cusp

a2 ≡ x2 +
(
y

η

)2

+
(
z

ζ

)2

r2 ≡ x2 + y2, (9)

where the parameter ϑ can be devided into “structural”
parameters (z0, z1, rd, b, am, η, ζ, ac, d, q) that specify the
functional form of the model and “geometrical” parame-
ters that define the position of the sun in the coordinate

system. The “geometrical” parameters are fixed in ad-
vance and are the position of the sun above the main plane
of the MW, z� = 14 pc, the distance of the sun from the
galactic centre projected on the main plane, r� = 8 kpc
and the bar angle, φ = 20o (BGS). It is not feasible to es-
timate the cusp parameters ac = 100 pc and q = 1.8 from
our data, because the available resolution is not sufficient.
We use the same values as BGS.

As a first step we will investigate graphically whether
an inhomogeneous variance pattern has to be assumed,
which is indicated by inhomogeneous squares of residuals.
Figure 3 shows the COBE/DIRBE L-band data and Fig. 4

the residuals r2
ij =

(
yij − ωϑ̂BGS

)2

, with the model param-

eters ϑ̂BGS taken from BGS. Provided this model holds
(approximately) true, as an important conclusion from
Fig. 4 we find strong indication for inhomogeneous noise.
Interestingly, towards the boundary of the observed part
of the sky, the variability of the observations increases.
Figure 6 shows the difference between the model and the
data including the algebraic sign of the difference. Note
that the error distribution is obviously inhomogeneous,
both in the logarithmic magnitude scale plotted in the
figures and in a linear scale. Further note there is a sys-
tematic dependence of the sign of the deviations on the
position on the sky, whereas the model fits well in the cen-
tral part of the observed part of the sky. This is indication
that the MW disk shows deviations from an exponential
z -dependence.

We now determine the best-fit model parameter θ̂∗ by
minimisation of D̂2. We use the parameters found by BGS
as starting values for our minimisation algorithm. Due
to the increasing noise towards the boundary of the ob-
served part of the sky, we restrict the region of the surface
brightness data used in the fit to the region |l|≤ 60o and
−20o ≤ b ≤ 10o. This is done to downweight those parts
of the sky where noninformative parts in the data are ex-
pected (see Fig. 4). Figure 5 shows this data after it has
been smoothed with the smoothing operator T. Note how
much smoother the smoothed data appears compared to
the original COBE/DIRBE L-band data. Our computa-
tional strategy consists of two steps.

1. Fitting the disk: in the first step we fit the disk param-
eters with fixed bulge parameters;

2. Fitting the bulge/bar: in the second step we fix the
disk related parameters found in the first step (ex-
cept for the normalisation parameter d) and fit the
bulge/bar parameters and d.

Table 1 shows our result for the best-fit model parame-
ters ϑ̂∗ and the model parameters of BGS. As suggested
in Sect. 4 we have obtained our best-fit model param-
eters by minimisation of D̂2. Note that BGS have not
used exactly the same region of the sky in their fit as
we use here. Therefore, one has to take into account that
differences between these model parameters may be par-
tially due to different regions of the sky (data) used in
the fit. We reduce this problem by redetermining the
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Fig. 3. COBE/DIRBE L-band data. Contours levels are given in magnitudes. Note that contour levels are only defined up to
a common offset.

Fig. 4. Square difference between COBE/DIRBE L-band data logarithmic surface brightness (magnitudes) and the parametric
model with the parameters from BGS. Contours levels are n× 0.1 mag2, n ∈ IN .

Fig. 5. The smoothed COBE/DIRBE L-band data. This is the observed data in the sky region |l| ≤ 60o and −20o ≤ b ≤ 10o,
after application of the smoothing operator T. Contours indicated are for the natural logarithm of Tω. Note that the x and y
axis are from |l| ≤ 60o and −20o ≤ b ≤ 10o, due to the definition of T.

Table 1. Parameter values for our model and the model according to BGS and the statistical parameter α∗ (7). Note that the
parameters α and z1 are not fitted.

Parameters z0 z1 α rd d η ζ am b α∗

“Our” 0.162 0.042 0.27 2.56 0.41 0.502 0.59 1.90 306.1 0.86
“BGS” 0.21 0.042 0.27 2.5 0.463 0.5 0.6 1.9 234.4 0.80

normalisations b, d of the model by BGS (keeping fixed
their other parameters) with our algorithm, using the re-
gion of the sky selected above. The value of our proposed
statistical quantity α∗ for the BGS model has been calcu-
lated for this modified version of their model parameters.

Applying the bootstrap algorithm presented in Sect. 4
to our model we find that α∗ = 0.86, which indicates no
significant evidence against this model. For the parame-
ters found in BGS a value α∗ = 0.80 is obtained which
yields a slightly worse fit. Note that, at a first glance, this
statement is in contradiction to the argument given by

BGS in the last paragraph of their p. 366. They pointed
out that a graphical inspection of residuals suggests that
for the model considered, some local regions of the sky
seem to show systematic differences between their model
and the observed data. As a conclusion we find that the
proposed method is not capable of concluding that these
local deviations between model and data are due to sys-
tematic deviations. As pointed out by the referee this
might be due to lack of power of the proposed method, be-
cause an additional smoothing step was proposed. Indeed,
this corresponds to some theoretical results concerning the
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Fig. 6. Difference between COBE/DIRBE L-band data logarithmic surface brightness (magnitudes) and the parametric model
from BGS in magnitudes. Negatives values for the contour levels indicate that a model is too bright as compared to the data.
The contour levels are chosen such that their squares are equivalent to ≈0.1 mag2, ≈0.2 mag2 and ≈0.3 mag2, to allow a direct
comparison with Fig. 4.

asymptotic efficiency of the proposed method (Munk &
Ruymgaart 1999). In fact, a more powerful method could
result from chosing a data-driven smoothing operator T,
similar to bandwidth selection in kernel regression. The
main difficulty which arises is a different limit law com-
pared to the case discussed in the present, where T is
fixed. However, this is beyond the scope of this paper and
will be an interesting topic for further research.

It can be seen from Table 1 that the main difference
between the two models is that our model has a lower
disk scale height z0. The value α∗ was found to be slightly
better for our new model compared to the BGS param-
eters. However, recall that we used only a part of the
COBE/DIRBE L-band surface brightness data in our fit.

6. Results and conclusions

We have argued that classical measures of goodness
of fit adopted from checking distributional assumptions
can be misleading in the context of (inverse) regression.
Particularly, an inhomogeneous noise field can inflate the
precision of common χ2 quantities. For this case, a new
method was proposed for noisy Fredholm equations of the
first kind by Munk & Ruymgaart (1999). As an example
for the application of the suggested algorithm, we use the
problem of determining the luminosity density in the MW
from surface brightness data. From this we have found
that the parametric model in Binney et al. (1997) can
be improved slightly and gives a satisfactory fit of the
COBE/DIRBE L-band data in a range of−20o ≤ b ≤ 10o.
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Appendix A: Chosing the smoothing kernel T

We mention that our procedure can also be performed
with any other smoothing kernel T . This will also yield in

general different values of α∗. In principle, a valid option
is any injective Operator T. A good choice of T, however,
is driven by various aspects, such as efficiency or simplic-
ity. An extensive simulation study performed in Munk &
Ruymgaart (1999), reveals the kernel T (u, v) = min(u, v)
as a reasonable choice which yields a procedure capable to
detect a broad range of deviations from U . See, however,
the discussion in Sect. 5. A particularly simple choice in
noisy inverse models

yi = Kf(ti) + εi

can be achieved if T is the adjoint of K itself, provided K
is a smoothing operator of the type

Kf(·) =
∫
K(·, v)f(v)dv.

However, in our application this is not easy to calculate
and will depend on constraints which force the particular
model ρϑ to be identifiable.
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