Transient Receptor Potential Canonical-3 Channel–Dependent Fibroblast Regulation in Atrial Fibrillation

2012 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Transient Receptor Potential Canonical-3 Channel–Dependent Fibroblast Regulation in Atrial Fibrillation​
Harada, M.; Luo, X.; Qi, X. Y.; Tadevosyan, A.; Maguy, A.; Ordog, B. & Ledoux, J. et al.​ (2012) 
Circulation126(17) pp. 2051​-2064​.​ DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.121830 

Documents & Media

License

GRO License GRO License

Details

Authors
Harada, Masahide; Luo, Xiaobin; Qi, Xiao Yan; Tadevosyan, Artavazd; Maguy, Ange; Ordog, Balazs; Ledoux, Jonathan; Kato, Takeshi; Naud, Patrice; Voigt, Niels ; Nattel, Stanley
Abstract
Background— Fibroblast proliferation and differentiation are central in atrial fibrillation (AF)–promoting remodeling. Here, we investigated fibroblast regulation by Ca 2+ -permeable transient receptor potential canonical-3 (TRPC3) channels. Methods and Results— Freshly isolated rat cardiac fibroblasts abundantly expressed TRPC3 and had appreciable nonselective cation currents ( I NSC ) sensitive to a selective TPRC3 channel blocker, pyrazole-3 (3 μmol/L). Pyrazole-3 suppressed angiotensin II–induced Ca 2+ influx, proliferation, and α-smooth muscle actin protein expression in fibroblasts. Ca 2+ removal and TRPC3 blockade suppressed extracellular signal-regulated kinase phosphorylation, and extracellular signal-regulated kinase phosphorylation inhibition reduced fibroblast proliferation. TRPC3 expression was upregulated in atria from AF patients, goats with electrically maintained AF, and dogs with tachypacing-induced heart failure. TRPC3 knockdown (based on short hairpin RNA [shRNA]) decreased canine atrial fibroblast proliferation. In left atrial fibroblasts freshly isolated from dogs kept in AF for 1 week by atrial tachypacing, TRPC3 protein expression, currents, extracellular signal-regulated kinase phosphorylation, and extracellular matrix gene expression were all significantly increased. In cultured left atrial fibroblasts from AF dogs, proliferation rates, α-smooth muscle actin expression, and extracellular signal-regulated kinase phosphorylation were increased and were suppressed by pyrazole-3. MicroRNA-26 was downregulated in canine AF atria; experimental microRNA-26 knockdown reproduced AF-induced TRPC3 upregulation and fibroblast activation. MicroRNA-26 has NFAT (nuclear factor of activated T cells) binding sites in the 5′ promoter region. NFAT activation increased in AF fibroblasts, and NFAT negatively regulated microRNA-26 transcription. In vivo pyrazole-3 administration suppressed AF while decreasing fibroblast proliferation and extracellular matrix gene expression. Conclusions— TRPC3 channels regulate cardiac fibroblast proliferation and differentiation, likely by controlling the Ca 2+ influx that activates extracellular signal-regulated kinase signaling. AF increases TRPC3 channel expression by causing NFAT-mediated downregulation of microRNA-26 and causes TRPC3-dependent enhancement of fibroblast proliferation and differentiation. In vivo, TRPC3 blockade prevents AF substrate development in a dog model of electrically maintained AF. TRPC3 likely plays an important role in AF by promoting fibroblast pathophysiology and is a novel potential therapeutic target.
Background— Fibroblast proliferation and differentiation are central in atrial fibrillation (AF)–promoting remodeling. Here, we investigated fibroblast regulation by Ca 2+ -permeable transient receptor potential canonical-3 (TRPC3) channels. Methods and Results— Freshly isolated rat cardiac fibroblasts abundantly expressed TRPC3 and had appreciable nonselective cation currents ( I NSC ) sensitive to a selective TPRC3 channel blocker, pyrazole-3 (3 μmol/L). Pyrazole-3 suppressed angiotensin II–induced Ca 2+ influx, proliferation, and α-smooth muscle actin protein expression in fibroblasts. Ca 2+ removal and TRPC3 blockade suppressed extracellular signal-regulated kinase phosphorylation, and extracellular signal-regulated kinase phosphorylation inhibition reduced fibroblast proliferation. TRPC3 expression was upregulated in atria from AF patients, goats with electrically maintained AF, and dogs with tachypacing-induced heart failure. TRPC3 knockdown (based on short hairpin RNA [shRNA]) decreased canine atrial fibroblast proliferation. In left atrial fibroblasts freshly isolated from dogs kept in AF for 1 week by atrial tachypacing, TRPC3 protein expression, currents, extracellular signal-regulated kinase phosphorylation, and extracellular matrix gene expression were all significantly increased. In cultured left atrial fibroblasts from AF dogs, proliferation rates, α-smooth muscle actin expression, and extracellular signal-regulated kinase phosphorylation were increased and were suppressed by pyrazole-3. MicroRNA-26 was downregulated in canine AF atria; experimental microRNA-26 knockdown reproduced AF-induced TRPC3 upregulation and fibroblast activation. MicroRNA-26 has NFAT (nuclear factor of activated T cells) binding sites in the 5′ promoter region. NFAT activation increased in AF fibroblasts, and NFAT negatively regulated microRNA-26 transcription. In vivo pyrazole-3 administration suppressed AF while decreasing fibroblast proliferation and extracellular matrix gene expression. Conclusions— TRPC3 channels regulate cardiac fibroblast proliferation and differentiation, likely by controlling the Ca 2+ influx that activates extracellular signal-regulated kinase signaling. AF increases TRPC3 channel expression by causing NFAT-mediated downregulation of microRNA-26 and causes TRPC3-dependent enhancement of fibroblast proliferation and differentiation. In vivo, TRPC3 blockade prevents AF substrate development in a dog model of electrically maintained AF. TRPC3 likely plays an important role in AF by promoting fibroblast pathophysiology and is a novel potential therapeutic target.
Issue Date
2012
Journal
Circulation 
ISSN
0009-7322
eISSN
1524-4539
Language
English

Reference

Citations


Social Media