Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols

2022-02-11 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Attaching Onto or Inserting Into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols​
Lange, M.; Sennert, E. & Suhm, M. A. ​ (2022) 
Symmetry14(2).​ DOI: https://doi.org/10.3390/sym14020357 

Documents & Media

symmetry-14-00357.pdf1.22 MBAdobe PDF

License

GRO License GRO License

Details

Authors
Lange, Manuel; Sennert, Elisabeth; Suhm, Martin A. 
Abstract
Prereactive complexes in noncovalent organocatalysis are sensitive to the relative chirality of the binding partners and to hydrogen bond isomerism. Both effects are present when a transiently chiral alcohol docks on a chiral α-hydroxy ester, turning such 1:1 complexes into elementary, non-reactive model systems for chirality induction in the gas phase. With the help of linear infrared and Raman spectroscopy in supersonic jet expansions, conformational preferences are investigated for benzyl alcohol in combination with methyl lactate, also exploring p-chlorination of the alcohol and the achiral homolog methyl glycolate to identify potential London dispersion and chirality effects on the energy sequence. Three of the four combinations prefer barrierless complexation via the hydroxy group of the ester (association). In contrast, the lightest complex predominantly shows insertion into the intramolecular hydrogen bond, such as the analogous lactate and glycolate complexes of methanol. The experimental findings are rationalized with computations, and a uniform helicality induction in the alcohol by the lactate is predicted, independent of insertion into or association with the internal lactate hydrogen bond. p-chlorination of benzyl alcohol has a stabilizing effect on association because the insertion motif prevents a close contact between the chlorine and the hydroxy ester. After simple anharmonicity and substitution corrections, the B3LYP-D3 approach offers a fairly systematic description of the known spectroscopic data on alcohol complexes with α-hydroxy esters.
Issue Date
11-February-2022
Journal
Symmetry 
eISSN
2073-8994
Language
English

Reference

Citations


Social Media