Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer

2016-02 | journal article; research paper

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer​
Echterdiek, F.; Janikovits, J.; Staffa, L.; Müller, M.; Lahrmann, B.; Frühschütz, M. & Hartog, B. et al.​ (2016) 
OncoImmunology5(2) art. e1075692​.​ DOI: https://doi.org/10.1080/2162402X.2015.1075692 

Documents & Media

License

GRO License GRO License

Details

Authors
Echterdiek, Fabian; Janikovits, Jonas; Staffa, Laura; Müller, Meike; Lahrmann, Bernd; Frühschütz, Monika; Hartog, Benjamin; Nelius, Nina; Benner, Axel; Tariverdian, Mirjam; von Knebel Doeberitz, Magnus; Grabe, Niels ; Kloor, Matthias
Abstract
Microsatellite instability (MSI-H) is caused by DNA mismatch repair deficiency and occurs in 15% of colorectal cancers. MSI-H cancers generate highly immunogenic frameshift peptide (FSP) antigens, which elicit pronounced local immune responses. A subset of MSI-H colorectal cancers develops in frame of Lynch syndrome, which represents an ideal human model for studying the concept of immunoediting. Immunoediting describes how continuous anti-tumoral immune surveillance of the host eventually leads to the selection of tumor cells that escape immune cell recognition and destruction. Between 30 and 40% of Lynch syndrome-associated colorectal cancers display loss of HLA class I antigen expression as a result of Beta2-microglobulin (B2M) mutations. Whether B2M mutations result from immunoediting has been unknown. To address this question, we related B2M mutation status of Lynch syndrome-associated colorectal cancer specimens (n = 30) to CD3-positive, CD8-positive and FOXP3-positive T cell infiltration in both tumor and normal mucosa. No significant correlation between B2M mutations and immune cell infiltration was observed in tumor tissue. However, FOXP3-positive T cell infiltration was significantly lower in normal mucosa adjacent to B2M-mutant (mt) compared to B2M-wild type (wt) tumors (mean: 0.98% FOXP3-positive area/region of interest (ROI) in B2M-wt vs. 0.52% FOXP3-positive area/ROI in B2M-mt, p = 0.023). Our results suggest that in the absence of immune-suppressive regulatory T cells (Treg), the outgrowth of less immunogenic B2M-mt tumor cells is favored. This finding supports the immunoediting concept in human solid cancer development and indicates a critical role of the immune milieu in normal colonic mucosa for the course of disease.
Issue Date
February-2016
Journal
OncoImmunology 
ISSN
2162-4011
Language
English

Reference

Citations


Social Media