Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta

2020 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta​
Keunecke, M.; Reutzel, M.; Schmitt, D.; Osterkorn, A.; Mishra, T. A.; Möller, C. & Bennecke, W. et al.​ (2020) 
Physical Review. B102(16).​ DOI: https://doi.org/10.1103/PhysRevB.102.161403 

Documents & Media

PhysRevB.102.161403.pdf820.95 kBUnknown

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Keunecke, Marius; Reutzel, Marcel; Schmitt, David; Osterkorn, Alexander; Mishra, Tridev A.; Möller, Christina; Bennecke, Wiebke; Jansen, G. S. Matthijs ; Steil, Daniel; Manmana, Salvatore R.; Steil, Sabine; Kehrein, Stefan; Mathias, Stefan 
Abstract
Light-engineering of quantum materials via electromagnetic dressing is considered an on-demand approach for tailoring electronic band dispersions and even inducing topological phase transitions. For probing such dressed bands, photoemission spectroscopy is an ideal tool, and we employ here a novel experiment based on ultrafast photoemission momentum microscopy. Using this setup, we measure the in-plane momentum-dependent intensity fingerprints of the electromagnetically-dressed sidebands from a Au(111) surface for s- and p-polarized infrared driving. We find that at metal surfaces, due to screening of the driving laser, the contribution from Floquet-Bloch bands is negligible, and the dressed bands are dominated by the laser-assisted photoelectric effect. Also, we find, from calculations, that in contrast to general expectations, s-polarized light can dress free-electron states at large photoelectron momenta. Our results show that the dielectric response of the material must carefully be taken into account when using photoemission for the identification of light-engineered electronic band structures.
Issue Date
2020
Journal
Physical Review. B 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area B | B03 Relaxation, Thermalisierung, Transport und Kondensation in hochangeregten Festkörpern 
SFB 1073 | Topical Area B | B07 Elementare Schritte der Energiekonversion in stark angeregten korrelierten Materialien 
ISSN
2469-9950
eISSN
2469-9969
Language
English

Reference

Citations


Social Media