Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band

2022 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band​
Krüger, K.; Wang, Y.; Tödter, S.; Debbeler, F.; Matveenko, A.; Hertl, N. & Zhou, X. et al.​ (2022) 
Nature Chemistry,.​ DOI: https://doi.org/10.1038/s41557-022-01085-x 

Documents & Media

document.pdf2.52 MBAdobe PDF

License

GRO License GRO License

Details

Authors
Krüger, Kerstin; Wang, Yingqi; Tödter, Sophia; Debbeler, Felix; Matveenko, Anna; Hertl, Nils; Zhou, Xueyao; Jiang, Bin; Guo, Hua; Wodtke, Alec M.; Bünermann, Oliver
Abstract
Abstract The Born–Oppenheimer approximation is the keystone of modern computational chemistry and there is wide interest in understanding under what conditions it remains valid. Hydrogen atom scattering from insulator, semi-metal and metal surfaces has helped provide such information. The approximation is adequate for insulators and for metals it fails, but not severely. Here we present hydrogen atom scattering from a semiconductor surface: Ge(111) c (2 × 8). Experiments show bimodal energy-loss distributions revealing two channels. Molecular dynamics trajectories within the Born–Oppenheimer approximation reproduce one channel quantitatively. The second channel transfers much more energy and is absent in simulations. It grows with hydrogen atom incidence energy and exhibits an energy-loss onset equal to the Ge surface bandgap. This leads us to conclude that hydrogen atom collisions at the surface of a semiconductor are capable of promoting electrons from the valence to the conduction band with high efficiency. Our current understanding fails to explain these observations.
Issue Date
2022
Journal
Nature Chemistry 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area A: Control of dissipation 
SFB 1073 | Topical Area A | A04 Kontrolle von Energiedissipation an Oberflächen mittels einstellbaren Eigenschaften von Grenzflächen 
ISSN
1755-4330
eISSN
1755-4349
Language
English

Reference

Citations


Social Media