Palaeoecological Implications of Lower-Middle Triassic Stromatolites and Microbe-Metazoan Build-Ups in the Germanic Basin: Insights into the Aftermath of the Permian–Triassic Crisis

2022 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Palaeoecological Implications of Lower-Middle Triassic Stromatolites and Microbe-Metazoan Build-Ups in the Germanic Basin: Insights into the Aftermath of the Permian–Triassic Crisis​
Pei, Y.; Hagdorn, H.; Voigt, T.; Duda, J.-P.   & Reitner, J. ​ (2022) 
Geosciences12(3) pp. 133​.​ DOI: https://doi.org/10.3390/geosciences12030133 

Documents & Media

geosciences-12-00133.pdf9.18 MBUnknown

License

GRO License GRO License

Details

Authors
Pei, Yu; Hagdorn, Hans; Voigt, Thomas; Duda, Jan-Peter ; Reitner, Joachim 
Abstract
Following the end-Permian crisis, microbialites were ubiquitous worldwide. For instance, Triassic deposits in the Germanic Basin provide a rich record of stromatolites as well as of microbe-metazoan build-ups with nonspicular demosponges. Despite their palaeoecological significance, however, all of these microbialites have only rarely been studied. This study aims to fill this gap by examining and comparing microbialites from the Upper Buntsandstein (Olenekian, Lower Triassic) and the lower Middle Muschelkalk (Anisian, Middle Triassic) in Germany. By combining analytical petrography (optical microscopy, micro X-ray fluorescence, and Raman spectroscopy) and geochemistry (δ13Ccarb, δ18Ocarb), we show that all the studied microbialites formed in slightly evaporitic environments. Olenekian deposits in the Jena area and Anisian strata at Werbach contain stromatolites. Anisian successions at Hardheim, in contrast, host microbe-metazoan build-ups. Thus, the key difference is the absence or presence of nonspicular demosponges in microbialites. It is plausible that microbes and nonspicular demosponges had a mutualistic relationship, and it is tempting to speculate that the investigated microbial-metazoan build-ups reflect an ancient evolutionary and ecological association. The widespread occurrence of microbialites (e.g., stromatolites/microbe-metazoan build-ups) after the catastrophe may have resulted from suppressed ecological competition and the presence of vacant ecological niches. The distribution of stromatolites and/or microbe-metazoan build-ups might have been controlled by subtle differences in salinity and water depth, the latter influencing hydrodynamic processes and nutrient supply down to the microscale. To obtain a more complete picture of the distribution of such build-ups in the earth’s history, more fossil records need to be (re)investigated. For the time being, environmental and taphonomic studies of modern nonspicular demosponges are urgently required.
Issue Date
2022
Journal
Geosciences 
Organization
Fakultät für Geowissenschaften und Geographie ; Geowissenschaftliches Zentrum ; Abteilung Geobiologie 
ISSN
2076-3263
eISSN
2076-3263
Language
English

Reference

Citations


Social Media