Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses

2022 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses​
Chakrabarti, R.; Jaime Tobón, L. M.; Slitin, L.; Redondo-Canales, M.; Hoch, G.; Slashcheva, M. & Fritsch, E. et al.​ (2022) 
eLife11 art. e79494​.​ DOI: https://doi.org/10.7554/eLife.79494 

Documents & Media

document.pdf7.18 MBAdobe PDF

License

GRO License GRO License

Details

Authors
Chakrabarti, Rituparna; Jaime Tobón, Lina María; Slitin, Loujin; Redondo-Canales, Magdalena; Hoch, Gerhard; Slashcheva, Marina; Fritsch, Elisabeth; Bodensiek, Kai; Özçete, Özge Demet; Gültas, Mehmet; Wichmann, Carolin 
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and transmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.
Issue Date
2022
Journal
eLife 
Project
EXC 2067: Multiscale Bioimaging 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | A04: Aktivitätsabhängige morphologische Veränderungen am Endkolben von Held-Synapsen 
SFB 1286 | B05: Quantitative molekulare Physiologie aktiver Zonen in Calyx-Synapsen 
SFB 1286 | Z04: Quantitative Visualisierung und Analyse synaptischer Proteine mit Hilfe von Nanobodies 
Working Group
RG Moser (Molecular Anatomy, Physiology and Pathology of Sound Encoding) 
RG Pangršič Vilfan (Experimental Otology) 
RG Wichmann (Molecular Architecture of Synapses) 
eISSN
2050-084X
Language
English
Sponsor
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Multiscale Bioimaging is a Cluster of Excellence of the University of Göttingen, Germany
MPI-NAT
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
Leibniz Program
Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
Erasmus Mundus
Fondation Pour l'Audition http://dx.doi.org/10.13039/100019671

Reference

Citations


Social Media