Self-amplified photo-induced gap quenching in a correlated electron material

2016 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Self-amplified photo-induced gap quenching in a correlated electron material​
Mathias, S. ; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S. & Stange, A. et al.​ (2016) 
Nature Communications7 art. 12902​.​ DOI: https://doi.org/10.1038/ncomms12902 

Documents & Media

ncomms12902.pdf965.32 kBUnknown

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Mathias, Stefan ; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.
Abstract
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation.
Issue Date
2016
Journal
Nature Communications 
Project
SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen 
SFB 1073 | Topical Area B | B07 Elementare Schritte der Energiekonversion in stark angeregten korrelierten Materialien 
Organization
Fakultät für Physik 
ISSN
2041-1723

Reference

Citations


Social Media