Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins

2023 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Regulation of 3′ splice site selection after step 1 of splicing by spliceosomal C* proteins​
Dybkov, O.; Preußner, M.; El Ayoubi, L.; Feng, V.-Y.; Harnisch, C.; Merz, K. & Leupold, P. et al.​ (2023) 
Science Advances9(9) art. eadf1785​.​ DOI: https://doi.org/10.1126/sciadv.adf1785 

Documents & Media

License

GRO License GRO License

Details

Authors
Dybkov, Olexandr; Preußner, Marco; El Ayoubi, Leyla; Feng, Vivi-Yun; Harnisch, Caroline; Merz, Kilian; Leupold, Paula; Yudichev, Peter; Agafonov, Dmitry E.; Will, Cindy L.; Lührmann, Reinhard
Abstract
Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3′ splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA–mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3′ss. Cryo–electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3′ region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3′ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3′ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3′ss choices.
Cryo-EM and global functional analyses reveal how human C* spliceosomal proteins regulate alternative 3' splice site choices.
Issue Date
2023
Journal
Science Advances 
eISSN
2375-2548
Language
English

Reference

Citations


Social Media